Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(21): e113933, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37621215

RESUMEN

Deadenylation-dependent mRNA decapping and decay is the major cytoplasmic mRNA turnover pathway in eukaryotes. Many mRNA decapping and decay factors are associated with each other via protein-protein interaction motifs. For example, the decapping enzyme DCP2 and the 5'-3' exonuclease XRN1 interact with the enhancer of mRNA-decapping protein 4 (EDC4), a large scaffold that has been reported to stimulate mRNA decapping. mRNA decapping and decay factors are also found in processing bodies (P-bodies), evolutionarily conserved ribonucleoprotein granules that are often enriched with mRNAs targeted for decay, yet paradoxically are not required for mRNA decay to occur. Here, we show that disrupting the EDC4-XRN1 interaction or altering their stoichiometry inhibits mRNA decapping, with microRNA-targeted mRNAs being stabilized in a translationally repressed state. Importantly, we demonstrate that this concomitantly leads to larger P-bodies that are responsible for preventing mRNA decapping. Finally, we demonstrate that P-bodies support cell viability and prevent stress granule formation when XRN1 is limiting. Taken together, these data demonstrate that the interaction between XRN1 and EDC4 regulates P-body dynamics to properly coordinate mRNA decapping with 5'-3' decay in human cells.


Asunto(s)
Endorribonucleasas , Cuerpos de Procesamiento , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Estabilidad del ARN/genética , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
2.
EMBO J ; 41(6): e108650, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35156721

RESUMEN

Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells. Remarkably, our transcriptome-wide analysis only detects marginal mRNA translation changes in PABP-depleted cells. In contrast, rapidly depleting PABP alters mRNA abundance and stability, albeit non-uniformly. Otherwise stable transcripts, including those encoding proteins with constitutive functions, are destabilized in PABP-depleted cells. In contrast, many unstable mRNAs, including those encoding proteins with regulatory functions, decay at similar rates in presence or absence of PABP. Moreover, PABP depletion-induced cell death can partially be suppressed by disrupting the mRNA decapping and 5'-3' decay machinery. Finally, we provide evidence that the LSM1-7 complex promotes decay of "stable" mRNAs in PABP-depleted cells. Taken together, these findings suggest that PABP plays an important role in preventing the untimely decay of select mRNA populations.


Asunto(s)
Perfilación de la Expresión Génica , Muerte Celular , Humanos , ARN Mensajero/genética
3.
J Biol Chem ; 299(3): 102990, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758802

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Humanos , SARS-CoV-2 , Histona Desacetilasas/genética , Interferón Tipo I/farmacología , Péptido Hidrolasas , Mamíferos , Endorribonucleasas , Transactivadores
4.
J Biomol NMR ; 77(1-2): 55-67, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36639431

RESUMEN

Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.


Asunto(s)
Protones , Triptófano , Flúor , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Triptófano/química , Radioisótopos de Flúor/química
5.
Biol Chem ; 404(11-12): 1101-1121, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37709756

RESUMEN

The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.


Asunto(s)
Biología , Estabilidad del ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo
6.
J Virol ; 96(10): e0190521, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35481780

RESUMEN

Removal of 5' cap on cellular mRNAs by the African swine fever virus (ASFV) decapping enzyme g5R protein (g5Rp) is beneficial to viral gene expression during the early stages of infection. As the only nucleoside diphosphate-linked moiety X (Nudix) decapping enzyme encoded in the ASFV genome, g5Rp works in both the degradation of cellular mRNA and the hydrolyzation of the diphosphoinositol polyphosphates. Here, we report the structures of dimeric g5Rp and its complex with inositol hexakisphosphate (InsP6). The two g5Rp protomers interact head to head to form a dimer, and the dimeric interface is formed by extensive polar and nonpolar interactions. Each protomer is composed of a unique N-terminal helical domain and a C-terminal classic Nudix domain. As g5Rp is an mRNA-decapping enzyme, we identified key residues, including K8, K94, K95, K98, K175, R221, and K243 located on the substrate RNA binding interfaces of g5Rp which are important to RNA binding and decapping enzyme activity. Furthermore, the g5Rp-mediated mRNA decapping was inhibited by InsP6. The g5Rp-InsP6 complex structure showed that the InsP6 molecules occupy the same regions that primarily mediate g5Rp-RNA interaction, elucidating the roles of InsP6 in the regulation of the viral decapping activity of g5Rp in mRNA degradation. Collectively, these results provide the structural basis of interaction between RNA and g5Rp and highlight the inhibitory mechanism of InsP6 on mRNA decapping by g5Rp. IMPORTANCE ASF is a highly contagious hemorrhagic viral disease in domestic pigs which causes high mortality. Currently, there are still no effective vaccines or specific drugs available against this particular virus. The protein g5Rp is the only viral mRNA-decapping enzyme, playing an essential role in the machinery assembly of mRNA regulation and translation initiation. In this study, we solved the crystal structures of g5Rp dimer and complex with InsP6. Structure-based mutagenesis studies revealed critical residues involved in a candidate RNA binding region, which also play pivotal roles in complex with InsP6. Notably, InsP6 can inhibit g5Rp activity by competitively blocking the binding of substrate mRNA to the enzyme. Our structure-function studies provide the basis for potential anti-ASFV inhibitor designs targeting the critical enzyme.


Asunto(s)
Virus de la Fiebre Porcina Africana , Endorribonucleasas , Ácido Fítico , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/enzimología , Animales , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Ácido Fítico/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Porcinos
7.
New Phytol ; 239(1): 222-239, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36631975

RESUMEN

To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.


Asunto(s)
Basidiomycota , ARN Mensajero/genética , ARN Mensajero/metabolismo , Basidiomycota/genética , Hongos/genética , Pirofosfatasas/metabolismo , Virulencia/genética , Enfermedades de las Plantas/microbiología , Hidrolasas Nudix
8.
J Cell Mol Med ; 26(5): 1714-1721, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35174610

RESUMEN

Sepsis is an aberrant systemic inflammatory response mediated by the acute activation of the innate immune system. Neutrophils are important contributors to the innate immune response that controls the infection, but harbour the risk of collateral tissue damage such as thrombosis and organ dysfunction. A better understanding of the modulations of cellular processes in neutrophils and other blood cells during sepsis is needed and can be initiated via transcriptomic profile investigations. To that point, the growing repertoire of publicly accessible transcriptomic datasets serves as a valuable resource for discovering and/or assessing the robustness of biomarkers. We employed systematic literature mining, reductionist approach to gene expression profile and empirical in vitro work to highlight the role of a Nudix hydrolase family member, NUDT16, in sepsis. The relevance and implication of the expression of NUDT16 under septic conditions and the putative functional roles of this enzyme are discussed.


Asunto(s)
Sepsis , Transcriptoma , Humanos , Pirofosfatasas , Sepsis/genética , Transcriptoma/genética
9.
Mol Plant Microbe Interact ; 35(2): 125-130, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35100808

RESUMEN

Turnip mosaic virus is a devastating potyvirus infecting many economically important brassica crops. In response to this, the plant host engages its RNA silencing machinery, involving AGO proteins, as a prominent strategy to restrain turnip mosaic virus (TuMV) infection. It has also been shown that the mRNA decay components DCP2 and VCS partake in viral infection suppression. Here, we report that the mRNA decapping components LSM1, PAT1, PATH1, and PATH2 are essential for TuMV infection. More specifically, lsm1a/lsm1b double mutants and pat1/path1/path2 triple mutants in summ2 background exhibit resistance to TuMV. Concurrently, we observed that TuMV interferes with the decapping function of LSM1 and PAT proteins as the mRNA-decay target genes UGT87A2 and ASL9 accumulate during TuMV infection. Moreover, as TuMV coat protein can be specifically found in complexes with PAT proteins but not LSM1, this suggests that TuMV "hijacks" decapping components via PAT proteins to support viral infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Potyvirus , Enfermedades de las Plantas , Potyvirus/genética , Potyvirus/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510985

RESUMEN

The LSM domain-containing protein LSM14/Rap55 plays a role in mRNA decapping, translational repression, and RNA granule (P-body) assembly. How LSM14 interacts with the mRNA silencing machinery, including the eIF4E-binding protein 4E-T and the DEAD-box helicase DDX6, is poorly understood. Here we report the crystal structure of the LSM domain of LSM14 bound to a highly conserved C-terminal fragment of 4E-T. The 4E-T C-terminus forms a bi-partite motif that wraps around the N-terminal LSM domain of LSM14. We also determined the crystal structure of LSM14 bound to the C-terminal RecA-like domain of DDX6. LSM14 binds DDX6 via a unique non-contiguous motif with distinct directionality as compared to other DDX6-interacting proteins. Together with mutational and proteomic studies, the LSM14-DDX6 structure reveals that LSM14 has adopted a divergent mode of binding DDX6 in order to support the formation of mRNA silencing complexes and P-body assembly.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN/fisiología , ARN Mensajero/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Caenorhabditis elegans , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Drosophila melanogaster , Factor 4E Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas/genética , Rec A Recombinasas/química , Proteínas Recombinantes/química , Ribonucleoproteínas/genética , Alineación de Secuencia
11.
J Virol ; 95(19): e0110421, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34232734

RESUMEN

Modified vaccinia virus Ankara (MVA) was derived by repeated passaging in chick fibroblasts, during which deletions and mutations rendered the virus unable to replicate in most mammalian cells. Marker rescue experiments demonstrated that the host range defect could be overcome by replacing DNA that had been deleted from near the left end of the genome. One virus isolate, however, recovered the ability to replicate in monkey BS-C-1 cells but not human cells without added DNA, suggesting that it arose from a spontaneous mutation. Here, we showed that variants with enhanced ability to replicate in BS-C-1 cells could be isolated by blind passaging of MVA and that in each there was a point mutation leading to an amino acid substitution in the D10 decapping enzyme. The sufficiency of these single mutations to enhance host range was confirmed by constructing recombinant viruses. The D10 mutations occurred at N- or C-terminal locations distal to the active site, suggesting an indirect effect on decapping or on another previously unknown role of D10. Although increased amounts of viral mRNA and proteins were found in BS-C-1 cells infected with the mutants compared to those with parental MVA, the increases were much less than the 1- to 2-log-higher virus yields. Nevertheless, a contributing role for diminished decapping in overcoming the host range defect was consistent with increased replication and viral protein synthesis in BS-C-1 cells infected with an MVA engineered to have active-site mutations that abrogate decapping activity entirely. Optimal decapping may vary depending on the biological context. IMPORTANCE Modified vaccinia virus Ankara (MVA) is an attenuated virus that is approved as a smallpox vaccine and is in clinical trials as a vector for other pathogens. The safety of MVA is due in large part to its inability to replicate in mammalian cells. Although host range restriction is considered a stable feature of the virus, we describe the occurrence of spontaneous mutations in MVA that increase replication considerably in monkey BS-C-1 cells but only slightly in human cells. The mutants contain single nucleotide changes that lead to amino acid substitutions in one of the two decapping enzymes. Although the spontaneous mutations are distant from the decapping enzyme active site, engineered active-site mutations also increased virus replication in BS-C-1 cells. The effects of these mutations on the immunogenicity of MVA vectors remain to be determined.


Asunto(s)
Nucleotidasas/genética , Nucleotidasas/metabolismo , Virus Vaccinia/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales , Dominio Catalítico , Línea Celular , Embrión de Pollo , Chlorocebus aethiops , Recombinación Homóloga , Especificidad del Huésped , Humanos , Nucleotidasas/química , Sistemas de Lectura Abierta , Mutación Puntual , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Eliminación de Secuencia , Virus Vaccinia/genética , Ensayo de Placa Viral , Proteínas Virales/química , Replicación Viral
12.
Biochem Biophys Res Commun ; 555: 128-133, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33813271

RESUMEN

mRNA decapping is a critical step in posttranscriptional regulation of gene expression in eukaryotes. Although Dcp1a is a well characterized and widely conserved mRNA decapping factor, little is known about its physiological function. To extend our understanding of Dcp1a function in vivo, we employed a transgenic rescue strategy to produce Dcp1a-deficient mice using the CRISPR/Cas9 system. This approach arrowed us to generate heterozygous Dcp1a mice and define the phenotype of Dcp1a-deficient embryos. We found that expression of Dcp1a protein, which is detectable in most mouse tissues, was developmentally regulated through embryonic growth, and that depletion of the Dcp1a gene resulted in embryonic lethality around embryonic day 10.5 (E10.5) concomitant with massive growth retardation and cardiac developmental defects. Moreover, the embryonic lethality was fully rescued by transgenic expression of exogenous human Dcp1a. Together, our results suggest that Dcp1a is required for embryonic growth.


Asunto(s)
Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transactivadores/genética , Transactivadores/metabolismo , Animales , Sistemas CRISPR-Cas , Femenino , Corazón/embriología , Cardiopatías Congénitas/genética , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos
13.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32461317

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The nonstructural protein nsp5, also called 3C-like protease, is responsible for processing viral polyprotein precursors in coronavirus (CoV) replication. Previous studies have shown that PDCoV nsp5 cleaves the NF-κB essential modulator and the signal transducer and activator of transcription 2 to disrupt interferon (IFN) production and signaling, respectively. Whether PDCoV nsp5 also cleaves IFN-stimulated genes (ISGs), IFN-induced antiviral effector molecules, remains unclear. In this study, we screened 14 classical ISGs and found that PDCoV nsp5 cleaved the porcine mRNA-decapping enzyme 1a (pDCP1A) through its protease activity. Similar cleavage of endogenous pDCP1A was also observed in PDCoV-infected cells. PDCoV nsp5 cleaved pDCP1A at glutamine 343 (Q343), and the cleaved pDCP1A fragments, pDCP1A1-343 and pDCP1A344-580, were unable to inhibit PDCoV infection. Mutant pDCP1A-Q343A, which resists nsp5-mediated cleavage, exhibited a stronger ability to inhibit PDCoV infection than wild-type pDCP1A. Interestingly, the Q343 cleavage site is highly conserved in DCP1A homologs from other mammalian species. Further analyses demonstrated that nsp5 encoded by seven tested CoVs that can infect human or pig also cleaved pDCP1A and human DCP1A, suggesting that DCP1A may be the common target for cleavage by nsp5 of mammalian CoVs.IMPORTANCE Interferon (IFN)-stimulated gene (ISG) induction through IFN signaling is important to create an antiviral state and usually directly inhibits virus infection. The present study first demonstrated that PDCoV nsp5 can cleave mRNA-decapping enzyme 1a (DCP1A) to attenuate its antiviral activity. Furthermore, cleaving DCP1A is a common characteristic of nsp5 proteins from different coronaviruses (CoVs), which represents a common immune evasion mechanism of CoVs. Previous evidence showed that CoV nsp5 cleaves the NF-κB essential modulator and signal transducer and activator of transcription 2. Taken together, CoV nsp5 is a potent IFN antagonist because it can simultaneously target different aspects of the host IFN system, including IFN production and signaling and effector molecules.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/metabolismo , Cisteína Endopeptidasas/metabolismo , Endorribonucleasas/metabolismo , Transactivadores/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/química , Exorribonucleasas/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Interferones/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , Porcinos , Enfermedades de los Porcinos/virología
14.
Circ Res ; 125(2): 170-183, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31145021

RESUMEN

RATIONALE: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE: To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.


Asunto(s)
Miocitos Cardíacos/metabolismo , Factores de Empalme Serina-Arginina/genética , Disfunción Ventricular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Sístole , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Disfunción Ventricular/metabolismo
15.
RNA ; 24(10): 1418-1425, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30045887

RESUMEN

RNA 5' cap structures comprising the metabolic effector nicotinamide adenine dinucleotide (NAD) have been identified in diverse organisms. Here we report a simple, two-step procedure to detect and quantitate NAD-capped RNA, termed "NAD-capQ." By use of NAD-capQ we quantitate NAD-capped RNA levels in Escherichia coli, Saccharomyces cerevisiae, and human cells, and we measure increases in NAD-capped RNA levels in cells from all three organisms harboring disruptions in their respective "deNADding" enzymes. We further show that NAD-capped RNA levels in human cells respond to changes in cellular NAD concentrations, indicating that NAD capping provides a mechanism for human cells to directly sense and respond to alterations in NAD metabolism. Our findings establish NAD-capQ as a versatile, rapid, and accessible methodology to detect and quantitate 5'-NAD caps on endogenous RNA in any organism.


Asunto(s)
Colorimetría , NAD/química , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN/química , ARN/genética , Alelos , Línea Celular , Colorimetría/métodos , Humanos , Espacio Intracelular , Espectrometría de Masas , Mutación , NAD/metabolismo , ARN Mensajero/química , ARN Mensajero/genética
16.
RNA ; 24(4): 557-573, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29348139

RESUMEN

The term "nonsense-mediated mRNA decay" (NMD) originally described the degradation of mRNAs with premature translation-termination codons (PTCs), but its meaning has recently been extended to be a translation-dependent post-transcriptional regulator of gene expression affecting 3%-10% of all mRNAs. The degradation of NMD target mRNAs involves both exonucleolytic and endonucleolytic pathways in mammalian cells. While the latter is mediated by the endonuclease SMG6, the former pathway has been reported to require a complex of SMG5-SMG7 or SMG5-PNRC2 binding to UPF1. However, the existence, dominance, and mechanistic details of these exonucleolytic pathways are divisive. Therefore, we have investigated the possible exonucleolytic modes of mRNA decay in NMD by examining the roles of UPF1, SMG5, SMG7, and PNRC2 using a combination of functional assays and interaction mapping. Confirming previous work, we detected an interaction between SMG5 and SMG7 and also a functional need for this complex in NMD. In contrast, we found no evidence for the existence of a physical or functional interaction between SMG5 and PNRC2. Instead, we show that UPF1 interacts with PNRC2 and that it triggers 5'-3' exonucleolytic decay of reporter transcripts in tethering assays. PNRC2 interacts mainly with decapping factors and its knockdown does not affect the RNA levels of NMD reporters. We conclude that PNRC2 is probably an important mRNA decapping factor but that it does not appear to be required for NMD.


Asunto(s)
Proteínas Portadoras/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Helicasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transactivadores/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Codón sin Sentido/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Unión Proteica/genética , ARN Helicasas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Receptores Citoplasmáticos y Nucleares/genética , Transactivadores/genética , Técnicas del Sistema de Dos Híbridos
17.
Am J Med Genet A ; 182(10): 2391-2398, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32770650

RESUMEN

Al-Raqad syndrome (ARS) is a rare autosomal recessive congenital disorder, associated mainly with developmental delay, and intellectual disability. This syndrome is caused by mutations in DCPS, encoding scavenger mRNA decapping enzyme, which plays a role in the 3-prime-end mRNA decay pathway. Whole-exome sequencing was performed on an offspring of a consanguineous family presenting with developmental delay, intellectual disability, growth retardation, mild craniofacial abnormalities, cerebral and cerebellar atrophy, and white matter diffuse hypomyelination pattern. A novel biallelic missense variant, c.918G>C p. (Glu306Asp), in the DCPS gene was identified which was confirmed by sanger sequencing and segregation analysis subsequently. Few cases of ARS have been described up to now, and this study represents a 7-years-old boy presenting with central and peripheral nervous system impaired myelination in addition to ocular and dental manifestation, therefore outstretch both neuroimaging and clinical findings of this ultra-rare syndrome.


Asunto(s)
Discapacidades del Desarrollo/genética , Endorribonucleasas/genética , Discapacidad Intelectual/genética , Leucoencefalopatías/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Niño , Consanguinidad , Anomalías Craneofaciales/diagnóstico por imagen , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/fisiopatología , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/fisiopatología , Masculino , Mutación Missense/genética , Neuroimagen/métodos , Linaje , Fenotipo , Secuenciación del Exoma
18.
Hereditas ; 157(1): 41, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054858

RESUMEN

BACKGROUND: Cervical cancer (CC) is the third most common gynecological malignancy around the world. Cisplatin is an effective drug, but cisplatin resistance is a vital factor limiting the clinical usage of cisplatin. Enhancer of mRNA decapping protein 4 (EDC4) is a known regulator of mRNA decapping, which was related with genome stability and sensitivity of drugs. This research was to investigate the mechanism of EDC4 on cisplatin resistance in CC. Two human cervical cancer cell lines, HeLa and SiHa, were used to investigate the role of EDC4 on cisplatin resistance in vitro. The knockdown or overexpression of EDC4 or replication protein A (RPA) in HeLa or SiHa cells was performed by transfection. Cell viability was analyzed by MTT assay. The growth of cancer cells was evaluated by colony formation assay. DNA damage was measured by γH2AX (a sensitive DNA damage response marker) immunofluorescent staining. The binding of EDC4 and RPA was analyzed by immunoprecipitation. RESULTS: EDC4 knockdown in cervical cancer cells (HeLa and SiHa) enhanced cisplatin sensitivity and cisplatin induced cell growth inhibition and DNA damage. EDC4 overexpression reduced DNA damage caused by cisplatin and enhanced cell growth of cervical cancer cells. EDC4 could interact with RPA and promote RPA phosphorylation. RPA knockdown reversed the inhibitory effect of EDC4 on cisplatin-induced DNA damage. CONCLUSION: The present results indicated that EDC4 is responsible for the cisplatin resistance partly through interacting with RPA in cervical cancer by alleviating DNA damage. This study indicated that EDC4 or RPA may be novel targets to combat chemotherapy resistance in cervical cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Resistencia a Antineoplásicos , Proteínas/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Células HeLa , Humanos , Modelos Biológicos , Fosforilación , Unión Proteica , Proteínas/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
19.
Proc Natl Acad Sci U S A ; 114(23): 6034-6039, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533364

RESUMEN

Crystal structures of enzymes are indispensable to understanding their mechanisms on a molecular level. It, however, remains challenging to determine which structures are adopted in solution, especially for dynamic complexes. Here, we study the bilobed decapping enzyme Dcp2 that removes the 5' cap structure from eukaryotic mRNA and thereby efficiently terminates gene expression. The numerous Dcp2 structures can be grouped into six states where the domain orientation between the catalytic and regulatory domains significantly differs. Despite this wealth of structural information it is not possible to correlate these states with the catalytic cycle or the activity of the enzyme. Using methyl transverse relaxation-optimized NMR spectroscopy, we demonstrate that only three of the six domain orientations are present in solution, where Dcp2 adopts an open, a closed, or a catalytically active state. We show how mRNA substrate and the activator proteins Dcp1 and Edc1 influence the dynamic equilibria between these states and how this modulates catalytic activity. Importantly, the active state of the complex is only stably formed in the presence of both activators and the mRNA substrate or the m7GDP decapping product, which we rationalize based on a crystal structure of the Dcp1:Dcp2:Edc1:m7GDP complex. Interestingly, we find that the activating mechanisms in Dcp2 also result in a shift of the substrate specificity from bacterial to eukaryotic mRNA.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Dominio Catalítico , Cristalografía por Rayos X/métodos , Endorribonucleasas/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Proteica , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/metabolismo , Caperuzas de ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Schizosaccharomyces/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(45): E9493-E9501, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078363

RESUMEN

The Pat1 protein is a central player of eukaryotic mRNA decay that has also been implicated in translational control. It is commonly considered a central platform responsible for the recruitment of several RNA decay factors. We demonstrate here that a yeast-specific C-terminal region from Pat1 interacts with several short motifs, named helical leucine-rich motifs (HLMs), spread in the long C-terminal region of yeast Dcp2 decapping enzyme. Structures of Pat1-HLM complexes reveal the basis for HLM recognition by Pat1. We also identify a HLM present in yeast Xrn1, the main 5'-3' exonuclease involved in mRNA decay. We show further that the ability of yeast Pat1 to bind HLMs is required for efficient growth and normal mRNA decay. Overall, our analyses indicate that yeast Pat1 uses a single binding surface to successively recruit several mRNA decay factors and show that interaction between those factors is highly polymorphic between species.


Asunto(s)
Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , ARN Mensajero/metabolismo , Levaduras/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA