Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(4): e2306634, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702138

RESUMEN

Chemically inert organic networks exhibiting electrical conductivity comparable to metals can advance organic electronics, catalysis, and energy storage systems. Covalent-organic frameworks (COFs) have emerged as promising materials for those applications due to their high crystallinity, porosity, and tunable functionality. However, their low conductivity has limited their practical utilization. In this study, copper-coordinated-fluorinated-phthalocyanine and 2,3,6,7-tetrahydroxy-9,10-anthraquinone-based COF (CuPc-AQ-COF) films with ultrahigh conductivity are developed. The COF films exhibit an electrical conductivity of 1.53 × 103 S m-1 and a Hall mobility of 6.02 × 102 cm2 V-1 s-1 at 298 K, reaching the level of metals. The films are constructed by linking phthalocyanines and anthraquinones through vapor-assisted synthesis. The high conductivity properties of the films are attributed to the molecular design of the CuPc-AQ-COFs and the generation of high-quality crystals via the vapor-assisted method. Density functional theory analysis reveals that an efficient donor-acceptor system between the copper-coordinated phthalocyanines and anthraquinones significantly promotes charge transfer. Overall, the CuPc-AQ-COF films set new records of COF conductivity and mobility and represent a significant step forward in the development of COFs for electronic, catalytic, and electrochemical applications.

2.
Chemistry ; 30(29): e202400504, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38499467

RESUMEN

To fully harness the potential of molecular machines, it is crucial to develop methods by which to exert control over their speed of motion through the application of external stimuli. A conformationally strained macrocyclic fluorescent rotamer, CarROT, displays a reproducible and linear fluorescence decrease towards temperature over the physiological temperature range. Through the external addition of anions, cations or through deprotonation, the compound can access four discreet rotational speeds via supramolecular interactions (very slow, slow, fast and very fast) which in turn stop, reduce or enhance the thermoluminescent properties due to increasing or decreasing non-radiative decay processes, thereby providing a means to externally control the temperature sensitivity of the system. Through comparison with analogues with a higher degree of conformational freedom, the high thermosensitivity of CarROT over the physiological temperature range was determined to be due to conformational strain, which causes a high energy barrier to rotation over this range. Analogues with a higher degree of conformational freedom display lower sensitivities towards temperature over the same temperature range. This study provides an example of an information rich small molecule, in which programable rotational speed states can be observed with facile read-out.

3.
Chemistry ; 30(25): e202304176, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38407941

RESUMEN

A new family of 16-membered macrocycles comprising two indole (In) and two quinoline (Q) units, coined In2Q2, was synthesized. Each unit is diagonally located and concatenated in a head-to-tail fashion, furnishing a non-flat saddle-shaped architecture with C2 symmetry. The synthetic protocol utilizing macrocyclic diamide as a pivotal precursor allowed us to access a series of In2Q2 derivatives bearing various substituents on the periphery. The In2Q2 derivatives and their Zn2+ complexes were emissive in both solution phase and solid state. While the entire architecture of In2Q2 is similar to that of quinoline tetramer TEtraQuinoline, a couple of contrasting physicochemical properties were revealed.

4.
Chemistry ; 30(34): e202400924, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38625050

RESUMEN

The chemistry of molecular gold compounds is dominated by the oxidation states +I and +III. For the intermediate oxidation state +II with 5d9 electron configuration, dimerization or disproportionation of the gold(II) radicals is favored, so that only a few mononuclear gold(II) complexes have been isolated to date. The present study addresses the one-electron reduction of the macrocyclic gold(III) complex [AuIIIL]+ of the innocent ß-diiminato ligand L2- with a 14-membered macrocycle (L2-=5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-5,7,12,14-tetraenato). Electrochemistry, spectroelectrochemistry and chemical reduction of [AuIIIL]+ monitored by UV/Vis, NMR and EPR spectroscopy together with density functional theory calculations reveal disproportionation of the initially generated but elusive gold(II) complex AuIIL and provide guidelines for prospective stable mononuclear tetraazamacrocyclic gold(II) complexes.

5.
Chemistry ; 30(17): e202304088, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38213066

RESUMEN

The study of through-space electronic coupling in π-conjugated systems remains an underexplored area. In this work, we present the facile synthesis of two isomeric macrocycles (1 and 2) bridged by [2,2]paracyclophane (pCp) and based on thiophene. The structures of these macrocycles have been confirmed through X-ray crystallographic analysis. Our investigation centers on their electronic properties across various redox states, with a specific focus on potential through-space electronic coupling and global aromaticity. Experimental measurements, including UV-vis-NIR electronic absorption, NMR, ESR spectra, and X-ray diffraction, combined with theoretical calculations, reveal that both the neutral compounds and their tetracations exhibit a closed-shell ground state. However, their dications manifest as diradical dications with a subtle magnetic exchange interaction. Consequently, the through-space electronic coupling facilitated by the pCp unit in their respective ground states appears to be weak.

6.
Chemistry ; : e202403084, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325698

RESUMEN

The bottom-up synthesis of carbon nanotubes (CNTs) is a long-standing goal in synthetic chemists. Producing CNTs with defined lengths and diameters would render these materials and thus their fascinating properties accessible in a controlled way. Inspired by a recently reported synthesis of armchair graphene sheets that relied on a benzannulation and Scholl oxidation of a poly(p-phenylene ethynylene), the same strategy is applied on a cyclic substrate with a short, but well defined CNT as target structure. Herein we report the synthesis of a derivatized [12]cyclo-para-phenylene acetylene ([12]CPPA) that was accessible employing a Sonogashira macro-cyclization. The obtained macrocycle is the largest [n]CPPA reported to date and displays bright turquoise fluorescence with a large quantum yield of 77%. The [12]CPPA can be transformed by a 12-fold benzannulation that converts each alkyne to a naphthalene and therefore allows formation of an armchair [12,12] CNT precursor. The final 72-fold Scholl oxidation to the [12,12] CNT turned out to be challenging and its optimization requires an improved synthetic strategy to produce large quantities of the final precursor. The developed approach poses a potential break through strategy for the production of CNTs and certainly incentivizes synthetic chemists to apply the same methodology for various conjugated macrocycles.

7.
Chemistry ; 30(50): e202401393, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39023398

RESUMEN

The macrocyclic tumonolide (1) with enamide functionality and the linear tumonolide aldehyde (2) are new interconverting natural products from a marine cyanobacterium with a peptide-polyketide skeleton, representing a hybrid of apratoxins and palmyrolides or laingolides. The planar structures were established by NMR and mass spectrometry. The relative configuration of the stereogenically-rich apratoxin-like polyketide portion was determined using J-based configuration analysis. The absolute configuration of tumonolide (1) was determined by chiral analysis of the amino acid units and computational methods, followed by NMR chemical shift and ECD spectrum prediction, indicating all-R configuration for the polyketide portion, as in palmyrolide A and contrary to the all-S configuration in apratoxins. Functional screening against a panel of 168 GPCR targets revealed tumonolide (1) as a selective antagonist of TACR2 with an IC50 of 7.0 µM, closely correlating with binding affinity. Molecular docking studies established the binding mode and rationalized the selectivity for TACR2 over TACR1 and TACR3. RNA sequencing upon treatment of HCT116 colorectal cancer cells demonstrated activation of the pulmonary fibrosis idiopathic signaling pathway and the insulin secretion signaling pathway at 20 µM, indicating its potential to modulate these pathways.


Asunto(s)
Aldehídos , Cianobacterias , Simulación del Acoplamiento Molecular , Humanos , Cianobacterias/química , Aldehídos/química , Aldehídos/farmacología , Policétidos/química , Policétidos/farmacología , Policétidos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/farmacología , Relación Estructura-Actividad , Estructura Molecular
8.
Chemistry ; 30(31): e202401079, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563628

RESUMEN

The interactions between ether naphthotube and a series of dication guests in organic solution were investigated. It was found that ether naphthotube formed stable host-guest complexes selectively with these guests in a 1 : 1 stoichiometric ratio with association constants ranging from 102 to 106 M-1, which were confirmed by 1H-NMR spectra and ITC experiments. The host-guest interactions are driven by enthalpy change as the entropic factors are unfavorable. Positive correlations between ΔH and ΔS have been observed in the host-guest complexes. Furthermore, the para-substitution of the guests can significantly affect the binding affinities through a combination of field/inductive and resonance effects by following a linear free energy relationship. Based on the host-guest complexes composed of ether naphthotube and organic cations, two interlocked [2]rotaxanes were prepared by cationization reaction and Huisgen cycloaddition between the cations and the stopper components. The ether naphthotube-based host-guest complexes are useful for creating sophisticated interlocked molecules.

9.
Chemistry ; 30(33): e202400586, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38597595

RESUMEN

Zinc carboxylate complexes are widely utilized as artificial models of metalloenzymes and as secondary building units of PCPs/MOFs. However, the relationship between the structure of the monodentate carboxylato ligand and the molecular arrangement of multinuclear zinc carboxylate complexes is not fully understood because of the coordination flexibility of the Zn ion and carboxylato ligands. Herein, we report the structural analysis of a series of complexes derived from zinc (meth)acrylate which has a linear infinite chain structure. The molecular structure of µ4-oxido-bridged tetranuclear complexes [Zn4(µ4-O)(OCOR)6] revealed a distorted Zn4O core. Crystallization of zinc acrylate under aqueous conditions afforded a µ3-hydroxido-containing pentanuclear complex [Zn5(µ3-OH)2(OCOR)8] as the repeating unit of an infinite sheet-like structure in the solid state. It was also obtained by the hydrolysis of the µ4-oxido-bridged tetranuclear complex. In sharp contrast, the methacrylate analog retained the methacrylato ligands under aqueous crystallization conditions to form a macrocyclic dodecanuclear complex with methacrylato as the sole ligand.

10.
Chemistry ; 30(14): e202303618, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38117667

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are porous crystalline materials. The pores in HOFs are usually non-covalent extrinsic pores constructed through the formation of the framework. Supramolecular macrocycles with intrinsic pores in their structures are good candidates for constructing HOFs with intrinsic pores from the macrocycles themselves, thus leading to hierarchically porous structures. Combining the macrocycle and HOFs will endow these hierarchically porous materials with enhanced properties and special functionalities. This review summarizes recent advances in macrocycle-based HOFs, including the macrocycles used for constructing HOFs, the hierarchically porous structures of the HOFs, and the applications induced by the hierarchically HOFs porous structures. This review provides insights for future research on macrocycle-based hierarchically porous HOFs and the appropriate applications of the unique structures.

11.
Chemistry ; 30(16): e202303798, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38214886

RESUMEN

Chiral organic molecules possessing high quantum yields, circular dichroism, and circularly polarized luminescence values have great potential as optically active materials for future applications. Recently, the identification of a promising class of inherently chiral compounds was reported, namely macrocyclic 1,3-butadiyne-linked pseudo-meta[2.2]paracyclophanes, displaying high circular dichroism and related gabs values albeit modest quantum yields. Increasing the quantum yields in an attempt to get bright circularly polarized light emitters, the high-yielding heterocyclization of those 1,3-butadiyne bridges resulting in macrocyclic 2,5-thienyls-linked pseudo-meta [2.2]paracyclophanes is herein described. The chiroptical properties of both, the previously reported 1,3-butadiyne, and the novel 2,5-thienyl bridged macrocycles of various sizes, are experimentally recorded, and theoretically described using density-functional theory.

12.
Chemistry ; : e202402913, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189940

RESUMEN

Two new partially fluorinated dehydrobenzannulenes have been prepared by inter- and intramolecular oxidative homocoupling of diyne precursors. These systems contain fluorinated and nonfluorinated arene rings in a non-alternant arrangement. Both macrocycles are roughly planar and organize into extended columns in the solid state. The assembly of these columns is mediated by the combination of dispersion interactions, slipped [π···π] stacking interactions of the perfluorinated rings with each other, and their association with the nonfluorinated rings in the molecules of the neighboring macrocycles. These results suggest that partial fluorination of dehydrobenzannulenes can serve as a versatile motif for their assembly into columnar superstructures.

13.
Chemistry ; : e202402982, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39348451

RESUMEN

This study employs ab initio molecular dynamics simulations to investigate  the impact of solvent and non-bonded interactions on the structure-reactivity relationship of both strain-free and strained macrocyclic disulfides. Our findings reveal that interactions  with water as a solvent significantly influence the minimum energy geometry structures  of both conformers of the studied macrocycle.  In particular, our simulations identify short contacts, specifically S···π-aromatic interactions,  which suppress reactivity for the strained isomer by obstructing the reaction cone at the minimum free energy.   Surprisingly, the free energy barriers for the disulfide reaction with a simple nucleophile (OH- anion) remain very similar,  despite one conformer having a markedly more strained disulfide bond than the other. Enhanced molecular dynamics simulations in explicit solution  elucidate this apparent contradiction by revealing different solvent exposures of the two sulfur atoms in the macrocycles.

14.
Chemistry ; 30(44): e202401490, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39016691

RESUMEN

As a novel synthetic method for unsymmetrical macrocycles, we herein developed a post-synthetic modification of calix[4]arenes by insertion of a terminal alkyne into an inert C(methylene)-C(aryl) bond of the macrocyclic framework. In this transformation, C-iridated calix[4]arenes, readily synthesized through C-H bond activation of the parent calix[4]arene, undergoes C(methylene)-C(aryl) bond cleavage followed by insertion of an alkyne to provide a ring-expanded calix[4]arene complex. Removal of the iridium metal from the resulting complex was readily accomplished by a simple treatment with an acid. The developed sequential method affords novel unsymmetrical, monofunctionalized macrocyclic compounds via 3 steps from the parent calix[4]arene in good yield. The unique unsymmetrical structures of the alkyne-inserted macrocycles were evaluated by X-ray single crystal analyses. On the basis of theoretical calculations, we propose a reaction mechanism involving an uncommon C-C bond cleavage step through δ-carbon elimination for the ring enlargement process.

15.
Chemistry ; 30(36): e202400970, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38624256

RESUMEN

Biological phosphates can coordinate metal ions and their complexes are common in living systems. Dynamics of mutual oxygen atom exchange in the tetrahedral group in complexes has not been investigated. Here, we present a direct experimental proof of exchange ("phosphonate rotation") in model Ln(III) complexes of monophosphonate H4dota analogue which alters phosphorus atom chirality of coordinated phosphonate monoester. Combination of macrocycle-based isomerism with P-based chirality leads to several diastereoisomers. (Non)-coordinated oxygen atoms were distinguished through 17O-labelled phosphonate group and their mutual exchange was followed by various NMR techniques and DFT calculations. The process is sterically demanding and occurs through bulky bidentate (κ2-PO2)- coordination and was observed only in twisted-square antiprism (TSA) diastereoisomer of large Ln(III) ions. Its energy demands increase for smaller Ln(III) ions (298ΔG≠(exp./DFT)=51.8/52.1 and 61.0/71.5 kJ mol-1 for La(III) and Eu(III), respectively). These results are helpful in design of such complexes as MRI CA and for protein paramagnetic NMR probes. It demonstrates usefulness of 17O NMR to study solution dynamics in complexes involving phosphorus acid derivatives and it may inspire use of this method to study dynamics of phosphoric acid derivatives (as e. g. phosphorus acid-based inhibitors of metalloenzymes) in different areas of chemistry.

16.
Chemistry ; 30(29): e202400926, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38567873

RESUMEN

The molecular-level scrutinization of on-surface tiling garners considerable interest among scientists. Herein, we demonstrate molecular-level heptagonal tiling using the self-assembly of a heptagonal meta-phenylene-ethynylene macrocycle featuring 14 long alkoxy substituents at the liquid-graphite interface using scanning tunneling microscopy. This heptagonal macrocycle produces an antiparallel pattern at the 1-phenyloctane-graphite interface through van der Waals interactions between the alkoxy chains. This pattern resembles the densely packed pattern of heptagonal tiles, albeit with variations in the orientations and spacing of heptagonal cores owing to intermolecular interactions between the alkoxy chains. Conversely, at the 1,2,4-trichlorobenzene-graphite interface, the heptagonal molecule forms an oblique pattern composed of four independent molecular orientations. This phenomenon arises from core distortion induced by the coadsorption of the solvent molecules within the intrinsic macrocyclic pores. This study elucidates the design strategy - specifically, the choice of heptagonal molecular building block - for heptagonal tiling and fills a crucial gap in the field of two-dimensional crystal engineering.

17.
Chemistry ; 30(13): e202303394, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116992

RESUMEN

The development of efficient and selective organic synthetic approaches for complex molecules has garnered significant attention due to the need for precise control over molecular structures and functions. Rotaxanes, a type of mechanically interlocked molecules (MIMs), have shown promising applications in various fields including sensing, catalysis, and material science. However, the highly selective synthesis of oligo[n]rotaxanes (mostly n≥3) through controlling host-guest complexation and supramolecular threading assembly process still remains an ongoing challenge. In particular, the utilization of two-dimensional (2D) macrocycles with structural shape-persistency for the synthesis of oligo[n]rotaxanes is rare. In this concept, research on cooperatively threaded host-guest complexation with hydrogen-bonded (H-bonded) aramide macrocycles and selective synthetic protocols of oligo[n]rotaxanes has been summarized. The high efficiency and selectivity in synthesis are ascribed to the synergistic interplay of multiple non-covalent bonding interactions such as hydrogen bonding and intermolecular π-π stacking of macrocycles within the unique supramolecular structure of threaded host-guest complexes. This review focuses on the latest progress in the concepts, synthesis, and properties of H-bonded aramide macrocycle-based oligorotaxanes, and presents an in-depth outlook on challenges in this emerging field.

18.
Bioorg Med Chem ; 104: 117711, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583237

RESUMEN

Cyclin-dependent kinase 2 (CDK2) is a member of CDK family of kinases (CDKs) that regulate the cell cycle. Its inopportune or over-activation leads to uncontrolled cell cycle progression and drives numerous types of cancers, especially ovarian, uterine, gastric cancer, as well as those associated with amplified CCNE1 gene. However, developing selective lead compound as CDK2 inhibitors remains challenging owing to similarities in the ATP pockets among different CDKs. Herein, we described the optimization of compound 1, a novel macrocyclic inhibitor targeting CDK2/5/7/9, aiming to discover more selective and metabolically stable lead compound as CDK2 inhibitor. Molecular dynamic (MD) simulations were performed for compound 1 and 9 to gain insights into the improved selectivity against CDK5. Further optimization efforts led to compound 22, exhibiting excellent CDK2 inhibitory activity, good selectivity over other CDKs and potent cellular effects. Based on these characterizations, we propose that compound 22 holds great promise as a potential lead candidate for drug development.


Asunto(s)
Inhibidores de Proteínas Quinasas , Quinasa 2 Dependiente de la Ciclina , Inhibidores de Proteínas Quinasas/farmacología , Ciclo Celular , Fosforilación
19.
J Fluoresc ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441712

RESUMEN

Optical chemosensor L comprising of a new mono-N-substituted derivative of dibenzodiaza-crown ether macrocyclic ligand bearing a 2-benzimidazole (2Bim) side arm was synthesized, and characterized by FT-IR, elemental microanalyses, 1H NMR, and 13C NMR, UV-visible, fluorescence (FL) spectroscopy. The colorimetric chemosensing behavior of L toward the library metal ions was examined, wherein L represented a prompt and selective yellow-to-purple color change for Fe(III) cation in a 25µM solution with LOD as 0.23 µM in ethanol:water (9:1, v/v), even in the presence of the other library metal ions (LMI). Based on the 1H NMR, UV-visible, and FL observations the coordination sphere of Fe(III) was shared with two 2-benzoimidazole (2Bim) side arms which were also confirmed by the elemental microanalyses (in the solid state) and the Job plot method (in the solution) of the complex. Moreover, the above-mentioned color change was attributed to the presence of a strong charge transfer (LMCT) band for the Fe(III)/L interaction in the solution. Furthermore, the viscosity measurement in the presence of Fe(III) uncovered an increase at 0.5-1.0 ratios for Fe(III)/L, attributable to the formation of a self-assembly in the solution. A TLC paper strip was impregnated by L for selective detection of Fe(III), demonstrating a live color change for Fe(III) at 0-5 mM in the presence of LMI.

20.
Acta Pharmacol Sin ; 45(5): 1044-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326625

RESUMEN

The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.


Asunto(s)
Antineoplásicos , Proliferación Celular , Neoplasias Colorrectales , Depsipéptidos , Compuestos Macrocíclicos , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Depsipéptidos/química , Depsipéptidos/síntesis química , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA