Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.959
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(6): 1029-1041.e16, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575667

RESUMEN

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Electrodos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Transcraneal de Corriente Directa/instrumentación
2.
Annu Rev Neurosci ; 42: 271-293, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-30939100

RESUMEN

Magnetic fields pass through tissue undiminished and without producing harmful effects, motivating their use as a wireless, minimally invasive means to control neural activity. Here, we review mechanisms and techniques coupling magnetic fields to changes in electrochemical potentials across neuronal membranes. Biological magnetoreception, although incompletely understood, is discussed as a potential source of inspiration. The emergence of magnetic properties in materials is reviewed to clarify the distinction between biomolecules containing transition metals and ferrite nanoparticles that exhibit significant net moments. We describe recent developments in the use of magnetic nanomaterials as transducers converting magnetic stimuli to forms readily perceived by neurons and discuss opportunities for multiplexed and bidirectional control as well as the challenges posed by delivery to the brain. The variety of magnetic field conditions and mechanisms by which they can be coupled to neuronal signaling cascades highlights the desirability of continued interchange between magnetism physics and neurobiology.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiología , Campos Magnéticos , Red Nerviosa/fisiología , Animales , Ansiedad/fisiopatología , Humanos , Neuronas/fisiología
3.
Proc Natl Acad Sci U S A ; 121(27): e2404925121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917006

RESUMEN

Humans tend to spontaneously imitate others' behavior, even when detrimental to the task at hand. The action observation network (AON) is consistently recruited during imitative tasks. However, whether automatic imitation is mediated by cortico-cortical projections from AON regions to the primary motor cortex (M1) remains speculative. Similarly, the potentially dissociable role of AON-to-M1 pathways involving the ventral premotor cortex (PMv) or supplementary motor area (SMA) in automatic imitation is unclear. Here, we used cortico-cortical paired associative stimulation (ccPAS) to enhance or hinder effective connectivity in PMv-to-M1 and SMA-to-M1 pathways via Hebbian spike-timing-dependent plasticity (STDP) to test their functional relevance to automatic and voluntary motor imitation. ccPAS affected behavior under competition between task rules and prepotent visuomotor associations underpinning automatic imitation. Critically, we found dissociable effects of manipulating the strength of the two pathways. While strengthening PMv-to-M1 projections enhanced automatic imitation, weakening them hindered it. On the other hand, strengthening SMA-to-M1 projections reduced automatic imitation but also reduced interference from task-irrelevant cues during voluntary imitation. Our study demonstrates that driving Hebbian STDP in AON-to-M1 projections induces opposite effects on automatic imitation that depend on the targeted pathway. Our results provide direct causal evidence of the functional role of PMv-to-M1 projections for automatic imitation, seemingly involved in spontaneously mirroring observed actions and facilitating the tendency to imitate them. Moreover, our findings support the notion that SMA exerts an opposite gating function, controlling M1 to prevent overt motor behavior when inadequate to the context.


Asunto(s)
Conducta Imitativa , Corteza Motora , Plasticidad Neuronal , Humanos , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Masculino , Femenino , Adulto , Conducta Imitativa/fisiología , Adulto Joven , Estimulación Magnética Transcraneal , Desempeño Psicomotor/fisiología
4.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38395616

RESUMEN

Control over internal representations requires the prioritization of relevant information and suppression of irrelevant information. The frontoparietal network exhibits prominent neural oscillations during these distinct cognitive processes. Yet, the causal role of this network-scale activity is unclear. Here, we targeted theta-frequency frontoparietal coherence and dynamic alpha oscillations in the posterior parietal cortex using online rhythmic transcranial magnetic stimulation (TMS) in women and men while they prioritized or suppressed internally maintained working memory (WM) representations. Using concurrent high-density EEG, we provided evidence that we acutely drove the targeted neural oscillation and TMS improved WM capacity only when the evoked activity corresponded with the desired cognitive process. To suppress an internal representation, we increased the amplitude of lateralized alpha oscillations in the posterior parietal cortex contralateral to the irrelevant visual field. For prioritization, we found that TMS to the prefrontal cortex increased theta-frequency connectivity in the prefrontoparietal network contralateral to the relevant visual field. To understand the spatial specificity of these effects, we administered the WM task to participants with implanted electrodes. We found that theta connectivity during prioritization was directed from the lateral prefrontal to the superior posterior parietal cortex. Together, these findings provide causal evidence in support of a model where a frontoparietal theta network prioritizes internally maintained representations and alpha oscillations in the posterior parietal cortex suppress irrelevant representations.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Masculino , Humanos , Femenino , Ritmo Teta/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Memoria a Corto Plazo/fisiología
5.
J Neurosci ; 44(39)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39164105

RESUMEN

Understanding how spontaneous brain activity influences the response to neurostimulation is crucial for the development of neurotherapeutics and brain-computer interfaces. Localized brain activity is suggested to influence the response to neurostimulation, but whether fast-fluctuating (i.e., tens of milliseconds) large-scale brain dynamics also have any such influence is unknown. By stimulating the prefrontal cortex using combined transcranial magnetic stimulation (TMS) and electroencephalography, we examined how dynamic global brain state patterns, as defined by microstates, influence the magnitude of the evoked brain response. TMS applied during what resembled the canonical Microstate C was found to induce a greater evoked response for up to 80 ms compared with other microstates. This effect was found in a repeated experimental session, was absent during sham stimulation, and was replicated in an independent dataset. Ultimately, ongoing and fast-fluctuating global brain states, as probed by microstates, may be associated with intrinsic fluctuations in connectivity and excitation-inhibition balance and influence the neurostimulation outcome. We suggest that the fast-fluctuating global brain states be considered when developing any related paradigms.


Asunto(s)
Encéfalo , Electroencefalografía , Corteza Prefrontal , Estimulación Magnética Transcraneal , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Femenino , Adulto , Electroencefalografía/métodos , Adulto Joven , Corteza Prefrontal/fisiología , Encéfalo/fisiología , Potenciales Evocados/fisiología
6.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38649270

RESUMEN

In competitive interactions, humans have to flexibly update their beliefs about another person's intentions in order to adjust their own choice strategy, such as when believing that the other may exploit their cooperativeness. Here we investigate both the neural dynamics and the causal neural substrate of belief updating processes in humans. We used an adapted prisoner's dilemma game in which participants explicitly predicted the coplayer's actions, which allowed us to quantify the prediction error between expected and actual behavior. First, in an EEG experiment, we found a stronger medial frontal negativity (MFN) for negative than positive prediction errors, suggesting that this medial frontal ERP component may encode unexpected defection of the coplayer. The MFN also predicted subsequent belief updating after negative prediction errors. In a second experiment, we used transcranial magnetic stimulation (TMS) to investigate whether the dorsomedial prefrontal cortex (dmPFC) causally implements belief updating after unexpected outcomes. Our results show that dmPFC TMS impaired belief updating and strategic behavioral adjustments after negative prediction errors. Taken together, our findings reveal the time course of the use of prediction errors in social decisions and suggest that the dmPFC plays a crucial role in updating mental representations of others' intentions.


Asunto(s)
Corteza Prefrontal , Interacción Social , Estimulación Magnética Transcraneal , Humanos , Corteza Prefrontal/fisiología , Masculino , Femenino , Adulto Joven , Adulto , Electroencefalografía , Dilema del Prisionero , Cultura , Potenciales Evocados/fisiología
7.
Methods ; 229: 49-60, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880432

RESUMEN

Magnetic technology has been a hotspot of neuromodulation research in recent years. However, magnetic coil is limited by their size, and it is impossible to realize precise targeted magnetic stimulation to the target area at the cellular scale. To this end, this study designs a 1 × 4 array micro-magnetic stimulation (µMS) device with four sub-millimeter-sized elements, enabling precise magnetic stimulation of the CA1-CA3-DG tri-synaptic positions in the rat hippocampal region. First, it is determined that 70 KHz/2 mT/1 min magnetic stimulation parameter has a modulatory effect on the long-term potentiation (LTP) of Schaffer-CA1 in rat hippocampus. Then, a 1 × 4 array µMS device is used to perform magnetic stimulation at 70 KHz/2 mT/1 min, targeting the CA1, CA3, and DG regions individually with single-point magnetic stimulation; and multi-region magnetic stimulation is applied to the double-point targeting regions of CA1-CA3, CA1-DG, and CA3-DG, as well as the triple-point targeting region of CA1-CA3-DG, so as to investigate the regulation of LTP by single-region magnetic stimulation and multi-region magnetic stimulation. The experimental results indicate that, in the case of single-region magnetic stimulation, the magnitude of the increase in LTP in the CA1 region is the greatest, followed by the CA3 region, while the effect of magnetic stimulation on the DG region is less pronounced. In multi-region magnetic stimulation, synergistic magnetic stimulation of the three-point CA1-CA3-DG results in a greater increase in LTP compared to stimulation of two individual areas, and the enhancement of LTP induction with multi-region magnetic stimulation surpasses that of single-region stimulation. This study has implications for the collaborative targeted magnetic stimulation application of arrayed micro-magnetic devices.


Asunto(s)
Región CA1 Hipocampal , Potenciación a Largo Plazo , Animales , Potenciación a Largo Plazo/fisiología , Ratas , Región CA1 Hipocampal/fisiología , Masculino , Hipocampo/fisiología , Hipocampo/metabolismo , Diseño de Equipo , Ratas Sprague-Dawley
8.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38037857

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) and cognitive training for patients with Alzheimer's disease (AD) can change functional connectivity (FC) within gray matter (GM). However, the role of white matter (WM) and changes of GM-WM FC under these therapies are still unclear. To clarify this problem, we applied 40 Hz rTMS over angular gyrus (AG) concurrent with cognitive training to 15 mild-moderate AD patients and analyzed the resting-state functional magnetic resonance imaging before and after treatment. Through AG-based FC analysis, corona radiata and superior longitudinal fasciculus (SLF) were identified as activated WM tracts. Compared with the GM results with AG as seed, more GM regions were found with activated WM tracts as seeds. The averaged FC, fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) of the above GM regions had stronger clinical correlations (r/P = 0.363/0.048 vs 0.299/0.108, 0.351/0.057 vs 0.267/0.153, 0.420/0.021 vs 0.408/0.025, for FC/fALFF/ReHo, respectively) and better classification performance to distinguish pre-/post-treatment groups (AUC = 0.91 vs 0.88, 0.65 vs 0.63, 0.87 vs 0.82, for FC/fALFF/ReHo, respectively). Our results indicated that rTMS concurrent with cognitive training could rewire brain network by enhancing GM-WM FC in AD, and corona radiata and SLF played an important role in this process.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Sustancia Gris/patología , Sustancia Blanca/patología , Estimulación Magnética Transcraneal , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/patología , Entrenamiento Cognitivo , Imagen por Resonancia Magnética/métodos , Encéfalo
9.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38011084

RESUMEN

This study provides evidence that the posterior parietal cortex is causally involved in risky decision making via the processing of reward values but not reward probabilities. In the within-group experimental design, participants performed a binary lottery choice task following transcranial magnetic stimulation of the right posterior parietal cortex, left posterior parietal cortex, and a right posterior parietal cortex sham (placebo) stimulation. The continuous theta-burst stimulation protocol supposedly downregulating the cortical excitability was used. Both, mean-variance and the prospect theory approach to risky choice showed that the posterior parietal cortex stimulation shifted participants toward greater risk aversion compared with sham. On the behavioral level, after the posterior parietal cortex stimulation, the likelihood of choosing a safer option became more sensitive to the difference in standard deviations between lotteries, compared with sham, indicating greater risk avoidance within the mean-variance framework. We also estimated the shift in prospect theory parameters of risk preferences after posterior parietal cortex stimulation. The hierarchical Bayesian approach showed moderate evidence for a credible change in risk aversion parameter toward lower marginal reward value (and, hence, lower risk tolerance), while no credible change in probability weighting was observed. In addition, we observed anecdotal evidence for a credible increase in the consistency of responses after the left posterior parietal cortex stimulation compared with sham.


Asunto(s)
Lóbulo Parietal , Estimulación Magnética Transcraneal , Humanos , Teorema de Bayes , Lóbulo Parietal/fisiología , Estimulación Magnética Transcraneal/métodos , Probabilidad , Recompensa
10.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38300180

RESUMEN

Psychophysical observations indicate that the spatial profile of visuospatial attention includes a central enhancement around the attentional focus, encircled by a narrow zone of reduced excitability in the immediate surround. This inhibitory ring optimally amplifies relevant target information, likely stemming from top-down frontoparietal recurrent activity modulating early visual cortex activations. However, the mechanisms through which neural suppression gives rise to the surrounding attenuation and any potential hemispheric specialization remain unclear. We used transcranial magnetic stimulation to evaluate the role of two regions of the dorsal attention network in the center-surround profile: the frontal eye field and the intraparietal sulcus. Participants performed a psychophysical task that mapped the entire spatial attentional profile, while transcranial magnetic stimulation was delivered either to intraparietal sulcus or frontal eye field on the right (Experiment 1) and left (Experiment 2) hemisphere. Results showed that stimulation of right frontal eye field and right intraparietal sulcus significantly changed the center-surround profile, by widening the inhibitory ring around the attentional focus. The stimulation on the left frontal eye field, but not left intraparietal sulcus, induced a general decrease in performance but did not alter the center-surround profile. Results point to a pivotal role of the right dorsal attention network in orchestrating inhibitory spatial mechanisms required to limit interference by surrounding distractors.


Asunto(s)
Lateralidad Funcional , Estimulación Magnética Transcraneal , Humanos , Lateralidad Funcional/fisiología , Lóbulo Parietal/fisiología , Lóbulo Frontal/fisiología , Estimulación Luminosa/métodos , Imagen por Resonancia Magnética , Mapeo Encefálico
11.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494418

RESUMEN

Listeners can use prior knowledge to predict the content of noisy speech signals, enhancing perception. However, this process can also elicit misperceptions. For the first time, we employed a prime-probe paradigm and transcranial magnetic stimulation to investigate causal roles for the left and right posterior superior temporal gyri (pSTG) in the perception and misperception of degraded speech. Listeners were presented with spectrotemporally degraded probe sentences preceded by a clear prime. To produce misperceptions, we created partially mismatched pseudo-sentence probes via homophonic nonword transformations (e.g. The little girl was excited to lose her first tooth-Tha fittle girmn wam expited du roos har derst cooth). Compared to a control site (vertex), inhibitory stimulation of the left pSTG selectively disrupted priming of real but not pseudo-sentences. Conversely, inhibitory stimulation of the right pSTG enhanced priming of misperceptions with pseudo-sentences, but did not influence perception of real sentences. These results indicate qualitatively different causal roles for the left and right pSTG in perceiving degraded speech, supporting bilateral models that propose engagement of the right pSTG in sublexical processing.


Asunto(s)
Lenguaje , Habla , Humanos , Femenino , Habla/fisiología , Lóbulo Temporal , Estimulación Magnética Transcraneal , Ruido
12.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38879808

RESUMEN

Navigated repetitive transmagnetic stimulation is a non-invasive and safe brain activity modulation technique. When combined with the classical rehabilitation process in stroke patients it has the potential to enhance the overall neurologic recovery. We present a case of a peri-operative stroke, treated with ultra-early low frequency navigated repetitive transmagnetic stimulation over the contralesional hemisphere. The patient received low frequency navigated repetitive transmagnetic stimulation within 12 hours of stroke onset for seven consecutive days and a significant improvement in his right sided weakness was noticed and he was discharge with normal power. This was accompanied by an increase in the number of positive responses evoked by navigated repetitive transmagnetic stimulation and a decrease of the resting motor thresholds at a cortical level. Subcortically, a decrease in the radial, axial, and mean diffusivity were recorded in the ipsilateral corticospinal tract and an increase in fractional anisotropy, axial diffusivity, and mean diffusivity was observed in the interhemispheric fibers of the corpus callosum responsible for the interhemispheric connectivity between motor areas. Our case demonstrates clearly that ultra-early low frequency navigated repetitive transmagnetic stimulation applied to the contralateral motor cortex can lead to significant clinical motor improvement in patients with subcortical stroke.


Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Potenciales Evocados Motores/fisiología
13.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39077918

RESUMEN

Repetitive transcranial magnetic stimulation is used in early-stage Alzheimer's disease to slow progression, but heterogeneity in response results in different treatment outcomes. The mechanisms underlying this heterogeneity are unclear. This study used resting-state neuroimaging to investigate the variability in episodic memory improvement from angular gyrus repetitive transcranial magnetic stimulation and tracked the neural circuits involved. Thirty-four amnestic mild cognitive impairment patients underwent angular gyrus repetitive transcranial magnetic stimulation (4 weeks, 20 Hz, 100% resting motor threshold) and were divided into high-response and low-response groups based on minimal clinically important differences in auditory verbal learning test scores. Baseline and pre/post-treatment neural circuit activities were compared. Results indicated that the orbital middle frontal gyrus in the orbitofrontal cortex network and the precuneus in the default mode network had higher local activity in the low-response group. After treatment, changes in local and remote connectivity within brain regions of the orbitofrontal cortex, default mode network, visual network, and sensorimotor network showed opposite trends and were related to treatment effects. This suggests that the activity states of brain regions within the orbitofrontal cortex and default mode network could serve as imaging markers for early cognitive compensation in amnestic mild cognitive impairment patients and predict the aftereffects of repetitive transcranial magnetic stimulation response.


Asunto(s)
Disfunción Cognitiva , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/diagnóstico por imagen , Anciano , Imagen por Resonancia Magnética , Resultado del Tratamiento , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Memoria Episódica , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
14.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227309

RESUMEN

Paired-pulse transcranial magnetic stimulation is a valuable tool for investigating inhibitory mechanisms in motor cortex. We recently demonstrated its use in measuring cortical inhibition in visual cortex, using an approach in which participants trace the size of phosphenes elicited by stimulation to occipital cortex. Here, we investigate age-related differences in primary visual cortical inhibition and the relationship between primary visual cortical inhibition and local GABA+ in the same region, estimated using magnetic resonance spectroscopy. GABA+ was estimated in 28 young (18 to 28 years) and 47 older adults (65 to 84 years); a subset (19 young, 18 older) also completed a paired-pulse transcranial magnetic stimulation session, which assessed visual cortical inhibition. The paired-pulse transcranial magnetic stimulation measure of inhibition was significantly lower in older adults. Uncorrected GABA+ in primary visual cortex was also significantly lower in older adults, while measures of GABA+ that were corrected for the tissue composition of the magnetic resonance spectroscopy voxel were unchanged with age. Furthermore, paired-pulse transcranial magnetic stimulation-measured inhibition and magnetic resonance spectroscopy-measured tissue-corrected GABA+ were significantly positively correlated. These findings are consistent with an age-related decline in cortical inhibition in visual cortex and suggest paired-pulse transcranial magnetic stimulation effects in visual cortex are driven by GABAergic mechanisms, as has been demonstrated in motor cortex.


Asunto(s)
Envejecimiento , Espectroscopía de Resonancia Magnética , Inhibición Neural , Estimulación Magnética Transcraneal , Corteza Visual , Ácido gamma-Aminobutírico , Humanos , Estimulación Magnética Transcraneal/métodos , Adulto , Anciano , Masculino , Femenino , Adulto Joven , Espectroscopía de Resonancia Magnética/métodos , Inhibición Neural/fisiología , Ácido gamma-Aminobutírico/metabolismo , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen
15.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596882

RESUMEN

We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/métodos , Corteza Prefontal Dorsolateral , Reproducibilidad de los Resultados , Corteza Prefrontal/fisiología , Potenciales Evocados/fisiología
16.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517175

RESUMEN

Intermittent theta-burst stimulation (iTBS) is emerging as a noninvasive therapeutic strategy for Alzheimer's disease (AD). Recent advances highlighted a new accelerated iTBS (aiTBS) protocol, consisting of multiple sessions per day and higher overall pulse doses, in brain modulation. To examine the possibility of applying the aiTBS in treating AD patients, we enrolled 45 patients in AD at early clinical stages, and they were randomly assigned to either receive real or sham aiTBS. Neuropsychological scores were evaluated before and after treatment. Moreover, we detected cortical excitability and oscillatory activity changes in AD, by the single-pulse TMS in combination with EEG (TMS-EEG). Real stimulation showed markedly better performances in the group average of Auditory Verbal Learning Test scores compared to baseline. TMS-EEG revealed that aiTBS has reinforced this memory-related cortical mechanism by increasing cortical excitability and beta oscillatory activity underlying TMS target. We also found an enhancement of local natural frequency after aiTBS treatment. The novel findings implicated that high-dose aiTBS targeting left DLPFC is rapid-acting, safe, and tolerable in AD patients. Furthermore, TMS-related increase of specific neural oscillation elucidates the mechanisms of the AD cognitive impairment ameliorated by aiTBS.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Enfermedad de Alzheimer/terapia , Corteza Prefrontal/fisiología , Encéfalo , Corteza Prefontal Dorsolateral
17.
Cereb Cortex ; 34(9)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39285717

RESUMEN

In this study, repetitive transcranial magnetic stimulation was applied to either the right inferior frontal junction or the right inferior parietal cortex during a difficult aerial reconnaissance search task to test its capacity to improve search performance. Two stimulation strategies previously found to enhance cognitive performance were tested: The first is called "addition by subtraction," and the second condition utilizes a direct excitatory approach by applying brief trains of high-frequency repetitive transcranial magnetic stimulation immediately before task trials. In a within-subjects design, participants were given active or sham repetitive transcranial magnetic stimulation at either 1 Hz or at 1 Hz above their individual peak alpha frequency (IAF + 1, mean 11.5 Hz), delivered to either the right inferior frontal junction or the right inferior parietal cortex, both defined with individualized peak functional magnetic resonance imaging (fMRI) activation obtained during the visual search task. Results indicated that among the 13 participants who completed the protocol, only active IAF + 1 stimulation to inferior frontal junction resulted in significant speeding of reaction time compared to sham. This site- and frequency-specific enhancement of performance with IAF + 1 repetitive transcranial magnetic stimulation applied immediately prior to task trials provides evidence for the involvement of inferior frontal junction in guiding difficult visual search, and more generally for the use of online repetitive transcranial magnetic stimulation directed at specific functional networks to enhance visual search performance.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Adulto , Adulto Joven , Tiempo de Reacción/fisiología , Lóbulo Frontal/fisiología , Ritmo alfa/fisiología , Lóbulo Parietal/fisiología , Mapeo Encefálico/métodos , Percepción Visual/fisiología
18.
Proc Natl Acad Sci U S A ; 119(21): e2113778119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594397

RESUMEN

Mild cognitive impairment (MCI) during aging is often a harbinger of Alzheimer's disease, and, therefore, early intervention to preserve cognitive abilities before the MCI symptoms become medically refractory is particularly critical. Functional MRI­guided transcranial magnetic stimulation is a promising approach for modulating hippocampal functional connectivity and enhancing memory in healthy adults. Here, we extend these previous findings to individuals with MCI and leverage theta burst stimulation (TBS) and white matter tractography derived from diffusion-weighted MRI to target the hippocampus. Our preliminary findings suggested that TBS could be used to improve associative memory performance and increase resting-state functional connectivity of the hippocampus and other brain regions, including the occipital fusiform, frontal orbital cortex, putamen, posterior parahippocampal gyrus, and temporal pole, along the inferior longitudinal fasciculus in MCI. Although the sample size is small, these results shed light on how TBS propagates from the superficial cortex around the parietal lobe to the hippocampus.


Asunto(s)
Disfunción Cognitiva , Memoria , Sustancia Blanca , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/terapia , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Memoria/fisiología , Estimulación Magnética Transcraneal/métodos , Sustancia Blanca/diagnóstico por imagen
19.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34983868

RESUMEN

Human learning is supported by multiple neural mechanisms that maturate at different rates and interact in mostly cooperative but also sometimes competitive ways. We tested the hypothesis that mature cognitive mechanisms constrain implicit statistical learning mechanisms that contribute to early language acquisition. Specifically, we tested the prediction that depleting cognitive control mechanisms in adults enhances their implicit, auditory word-segmentation abilities. Young adults were exposed to continuous streams of syllables that repeated into hidden novel words while watching a silent film. Afterward, learning was measured in a forced-choice test that contrasted hidden words with nonwords. The participants also had to indicate whether they explicitly recalled the word or not in order to dissociate explicit versus implicit knowledge. We additionally measured electroencephalography during exposure to measure neural entrainment to the repeating words. Engagement of the cognitive mechanisms was manipulated by using two methods. In experiment 1 (n = 36), inhibitory theta-burst stimulation (TBS) was applied to the left dorsolateral prefrontal cortex or to a control region. In experiment 2 (n = 60), participants performed a dual working-memory task that induced high or low levels of cognitive fatigue. In both experiments, cognitive depletion enhanced word recognition, especially when participants reported low confidence in remembering the words (i.e., when their knowledge was implicit). TBS additionally modulated neural entrainment to the words and syllables. These findings suggest that cognitive depletion improves the acquisition of linguistic knowledge in adults by unlocking implicit statistical learning mechanisms and support the hypothesis that adult language learning is antagonized by higher cognitive mechanisms.


Asunto(s)
Cognición/fisiología , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Lenguaje , Desarrollo del Lenguaje , Lingüística , Masculino , Memoria a Corto Plazo/fisiología , Recuerdo Mental , Corteza Prefrontal/crecimiento & desarrollo , Estimulación Magnética Transcraneal , Adulto Joven
20.
J Neurosci ; 43(12): 2116-2125, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36788027

RESUMEN

In the macaque monkey, area V6A, located in the medial posterior parietal cortex, contains cells that encode the spatial position of a reaching target. It has been suggested that during reach planning this information is sent to the frontal cortex along a parieto-frontal pathway that connects V6A-premotor cortex-M1. A similar parieto-frontal network may also exist in the human brain, and we aimed here to study the timing of this functional connection during planning of a reaching movement toward different spatial positions. We probed the functional connectivity between human area V6A (hV6A) and the primary motor cortex (M1) using dual-site, paired-pulse transcranial magnetic stimulation with a short (4 ms) and a longer (10 ms) interstimulus interval while healthy participants (18 men and 18 women) planned a visually-guided or a memory-guided reaching movement toward positions located at different depths and directions. We found that, when the stimulation over hV6A is sent 4 ms before the stimulation over M1, hV6A inhibits motor-evoked potentials during planning of either rightward or leftward reaching movements. No modulations were found when the stimulation over hV6A was sent 10 ms before the stimulation over M1, suggesting that only short medial parieto-frontal routes are active during reach planning. Moreover, the short route of hV6A-premotor cortex-M1 is active during reach planning irrespectively of the nature (visual or memory) of the reaching target. These results agree with previous neuroimaging studies and provide the first demonstration of the flow of inhibitory signals between hV6A and M1.SIGNIFICANCE STATEMENT All our dexterous movements depend on the correct functioning of the network of brain areas. Knowing the functional timing of these networks is useful to gain a deeper understanding of how the brain works to enable accurate arm movements. In this article, we probed the parieto-frontal network and demonstrated that it takes 4 ms for the medial posterior parietal cortex to send inhibitory signals to the frontal cortex during reach planning. This fast flow of information seems not to be dependent on the availability of visual information regarding the reaching target. This study opens the way for future studies to test how this timing could be impaired in different neurological disorders.


Asunto(s)
Corteza Motora , Masculino , Animales , Humanos , Femenino , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Lóbulo Parietal/fisiología , Estimulación Magnética Transcraneal/métodos , Macaca , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA