Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 38(10): e23849, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39264833

RESUMEN

One of the main factors in the pathophysiology of amyotrophic lateral sclerosis is oxidative stress. Mangiferin (MF), a natural plant polyphenol, has anti-inflammatory and antioxidant effects. The aim of our study was to investigate the protective effects and mechanisms of MF in the hSOD1-G93A ALS cell model. Our result revealed that MF treatment reduced the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), decreased oxidative damage, and reduced apoptosis. Additionally, it was observed that MF significantly increased the synthesis of the antioxidant genes hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase 1, which are downstream of the Nrf2 signaling pathway, and increased the expression and activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 knockdown greatly promoted apoptosis, which was reversed by MF treatment. To summarize, MF promoted the Nrf2 pathway and scavenged MDA and ROS to protect the ALS cell model.


Asunto(s)
Apoptosis , Neuronas Motoras , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Xantonas , Xantonas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Animales , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética
2.
J Biochem Mol Toxicol ; 38(7): e23765, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967724

RESUMEN

Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the ß-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.


Asunto(s)
Artritis Reumatoide , Neoplasias , Xantonas , Xantonas/farmacología , Xantonas/uso terapéutico , Xantonas/química , Humanos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química
3.
Acta Pharmacol Sin ; 45(5): 1002-1018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225395

RESUMEN

Diabetes mellitus results in numerous complications. Diabetic pulmonary fibrosis (DPF), a late pulmonary complication of diabetes, has not attracted as much attention as diabetic nephropathy and cardiomyopathy. Mangiferin (MF) is a natural small molecular compound that exhibits a variety of pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetes, and anti-fibrosis effects. In this study, we investigated whether long-term diabetes shock induces DPF, and explored whether MF had a protective effect against DPF. We first examined the lung tissues and sections of 20 diabetic patients obtained from discarded lung surgical resection specimens and found that pulmonary fibrosis mainly accumulated around the pulmonary vessels, accompanied by significantly enhanced endothelial-mesenchymal transition (EndMT). We established a mouse model of DPF by STZ injections. Ten days after the final STZ injection, the mice were administered MF (20, 60 mg/kg, i.g.) every 3 days for 4 weeks, and kept feeding until 16 weeks and euthanized. We showed that pulmonary fibrotic lesions were developed in the diabetic mice, which began around the pulmonary vessels, while MF administration did not affect long-term blood glucose levels, but dose-dependently alleviated diabetes-induced pulmonary fibrosis. In human umbilical vein endothelial cells (HUVECs), exposure to high glucose (33.3 mM) induced EndMT, which was dose-dependently inhibited by treatment with MF (10, 50 µM). Furthermore, MF treatment promoted SIRT3 expression in high glucose-exposed HUVECs by directly binding to AMPK to enhance the activity of FoxO3, which finally reversed diabetes-induced EndMT. We conclude that MF attenuates DPF by inhibiting EndMT through the AMPK/FoxO3/SIRT3 axis. MF could be a potential candidate for the early prevention and treatment of DPF.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Proteína Forkhead Box O3 , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Sirtuina 3 , Xantonas , Animales , Xantonas/farmacología , Xantonas/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Sirtuina 3/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O3/metabolismo , Masculino , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Estreptozocina , Transducción de Señal/efectos de los fármacos , Transición Endotelial-Mesenquimatosa
4.
Biomed Chromatogr ; 38(9): e5936, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38956791

RESUMEN

Mangifera indica peels are a rich source of diverse flavonoids and xanthonoids; however, generally these are discarded. Computational studies revealed that mangiferin significantly interacts with amino acid residues of transcriptional regulators 1IK3, 3TOP, and 4f5S. The methanolic extract of Langra variety of mangoes contained the least phenol concentrations (22.6 ± 0.32 mg/gGAE [gallic acid equivalent]) compared to the chloroform (214.8 ± 0.12 mg/gGAE) and ethyl acetate fractions (195.6 ± 0.14 mg/gGAE). Similarly, the methanolic extract of Sindhri variety contained lower phenol concentrations (42.3 ± 0.13 mg/gRUE [relative utilization efficiency]) compared with the chloroform (85.6 ± 0.15 mg/gGAE) and ethyl acetate (76.1 ± 0.32 mg/gGAE) fractions. Langra extract exhibited significant α-glucosidase inhibition (IC50 0.06 mg/mL), whereas the ethyl acetate fraction was highly active (IC50 0.12 mg/mL) in Sindhri variety. Mangiferin exhibited significant inhibition (IC50 0.026 mg/mL). A moderate inhibition of 15-LOX was observed in all samples, whereas mangiferin was least active. In advanced glycation end product inhibition assay, the chloroform fraction of Langra variety exhibited significant inhibition in nonoxidative (IC50 64.4 µg/mL) and oxidative modes (IC50 54.7 µg/mL). It was concluded that both Langra and Sindhri peel extracts and fractions possess significant antidiabetic activities. The results suggest the potential use of peel waste in the management and complications of diabetes.


Asunto(s)
Antioxidantes , Productos Finales de Glicación Avanzada , Hipoglucemiantes , Mangifera , Extractos Vegetales , Xantonas , Xantonas/química , Xantonas/farmacología , Xantonas/análisis , Mangifera/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/análisis , Productos Finales de Glicación Avanzada/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Simulación del Acoplamiento Molecular , Frutas/química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/análisis , Simulación por Computador
5.
Phytother Res ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372084

RESUMEN

Oxidative stress is implicated in the initiation, pathogenesis, and progression of various gastric inflammatory diseases (GID). The prevalence of these diseases remains a concern along with the increasing risks of adverse effects in current clinical interventions. Hence, new gastroprotective agents capable of inhibiting oxidative stress by modulating cellular defense systems such as the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway are critically needed to address these issues. A candidate to solve the present issue is xanthone, a natural compound that reportedly exerts gastroprotective effects via antioxidant, anti-inflammatory, and cytoprotective mechanisms. Moreover, xanthone derivatives were shown to modulate the Nrf2/ARE signaling pathway to counter oxidative stress in both in vitro and in vivo models. Thirteen natural xanthones have demonstrated the ability to modulate the Nrf2/ARE signaling pathway and have high potential as lead compounds for GID as indicated by their in vivo gastroprotective action-particularly mangiferin (2), α-mangostin (3), and γ-mangostin (4). Further studies on these compounds are recommended to validate the Nrf2 modulatory ability in relation to their gastroprotective action.

6.
Reprod Domest Anim ; 59(4): e14565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646981

RESUMEN

Mangiferin (MGN) is primarily found in the fruits, leaves, and bark of plants of the Anacardiaceae family, including mangoes. MGN exhibits various pharmacological effects, such as protection of the liver and gallbladder, anti-lipid peroxidation, and cancer prevention. This study aimed to investigate the effects of MGN supplementation during in vitro culture (IVC) on the antioxidant capacity of early porcine embryos and the underlying mechanisms involved. Porcine parthenotes in the IVC medium were exposed to different concentrations of MGN (0, 0.01, 0.1, and 1 µM). The addition of 0.1 µM MGN significantly increased the blastocyst formation rate of porcine embryos while reducing the apoptotic index and autophagy. Furthermore, the expression of antioxidation-related (SOD2, GPX1, NRF2, UCHL1), cell pluripotency (SOX2, NANOG), and mitochondria-related (TFAM, PGC1α) genes was upregulated. In contrast, the expression of apoptosis-related (CAS3, BAX) and autophagy-related (LC3B, ATG5) genes decreased after MGN supplementation. These findings suggest that MGN improves early porcine embryonic development by reducing oxidative stress-related genes.


Asunto(s)
Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Estrés Oxidativo , Xantonas , Animales , Estrés Oxidativo/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Xantonas/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Porcinos , Blastocisto/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Partenogénesis
7.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952150

RESUMEN

Inhibition of lipid synthesis in sebocytes is essential for acne treatments. The effects of natural product-derived substances on lipid synthesis are unknown. This study investigated the effects of water extract of Mangifera indica leaves (WEML) on lipid synthesis in human sebocytes. Sebocyte differentiation in low serum conditions increased lipid accumulation and proliferator-activated receptor γ expression. WEML treatment significantly inhibited lipid accumulation and adipogenic mRNA expression in sebocytes. Mangiferin, a bioactive compound in WEML, also reduced lipid accumulation and adipogenic mRNA expression via the AKT pathway. Thus, WEML and mangiferin effectively inhibit lipid synthesis in sebocytes, showing promise for acne treatment.

8.
Int J Mol Sci ; 25(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39337458

RESUMEN

Myocarditis is a major cause of heart failure and death, particularly in young individuals. Current treatments are mainly symptomatic, but emerging therapies focus on targeting inflammation and fibrosis pathways. Natural bioactive compounds like flavonoids and phenolic acids show promising anti-inflammatory and antioxidant properties. Corticosteroids are frequently employed in the treatment of autoimmune myocarditis and appear to lower mortality rates compared to conventional therapies for heart failure. This study aims to explore the effects of Mangiferin on pro-inflammatory cytokine levels, nitro-oxidative stress markers, histopathological alterations, and cardiac function in experimental myosin-induced autoimmune myocarditis. The effects were compared to Prednisone, used as a reference anti-inflammatory compound, and Trolox, used as a reference antioxidant. The study involved 30 male Wistar-Bratislava rats, which were randomly divided into five groups: a negative control group (C-), a positive control group with induced myocarditis using a porcine myosin solution (C+), three groups with induced myocarditis receiving Mangiferin (M), Prednisone (P), or Trolox (T) as treatment. Cardiac function was evaluated using echocardiography. Biochemical measurements of nitro-oxidative stress and inflammatory markers were conducted. Finally, histopathological changes were assessed. At echocardiography, the evaluation of the untreated myocarditis group showed a trend toward decreased left ventricular ejection fraction (LVEF) but was not statistically significant, while all treated groups showed some improvement in LVEF and left ventricular fraction shortening (LVFS). Significant changes were seen in the Mangiferin group, with lower end-diastolic left ventricular posterior wall (LVPWd) by day 21 compared to the Trolox group (p < 0.001). In the first week of the experiment, levels of interleukins (IL)-1ß, IL-6, and tumour necrosis factor (TNF)-α were significantly higher in the myosin group compared to the negative control group (p < 0.001, p < 0.001, p < 0.01), indicating the progression of inflammation in this group. Treatment with Mangiferin, Prednisone, and Trolox caused a significant reduction in IL-1ß compared to the positive control group (p < 0.001). Notably, Mangiferin resulted in a superior reduction in IL-1ß compared to Prednisone (p < 0.05) and Trolox (p < 0.05). Furthermore, Mangiferin treatment led to a statistically significant increase in total oxidative capacity (TAC) (p < 0.001) and a significant reduction in nitric oxide (NOx) levels (p < 0.001) compared to the negative control group. Furthermore, when compared to the Prednisone-treated group, Mangiferin significantly reduced NOx levels (p < 0.001) and increased TAC levels (p < 0.001). Mangiferin treatment significantly lowered creatine kinase (CK) and aspartate aminotransferase (AST) levels on day 7 (p < 0.001 and p < 0.01, respectively) and reduced CK levels on day 21 (p < 0.01) compared to the untreated group. In the nontreated group, the histological findings at the end of the experiment were consistent with myocarditis. In the group treated with Mangiferin, only one case exhibited mild inflammatory infiltrates, represented by mononucleated leukocytes admixed with few neutrophils, with the severity graded as mild. Statistically significant correlations between the grades (0 vs. 1-2) and the study groups have been highlighted (p < 0.005). This study demonstrated Mangiferin's cardioprotective effects in autoimmune myocarditis, showing reduced oxidative stress and inflammation. Mangiferin appears promising as a treatment for acute myocarditis, but further research is needed to compare its efficacy with other treatments like Trolox and Prednisone.


Asunto(s)
Antiinflamatorios , Antioxidantes , Modelos Animales de Enfermedad , Miocarditis , Estrés Oxidativo , Ratas Wistar , Xantonas , Animales , Miocarditis/tratamiento farmacológico , Miocarditis/metabolismo , Miocarditis/patología , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Masculino , Xantonas/farmacología , Xantonas/uso terapéutico , Ratas , Estrés Oxidativo/efectos de los fármacos , Citocinas/metabolismo , Miocardio/metabolismo , Miocardio/patología , Cromanos
9.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611723

RESUMEN

This study, for the first time, has investigated the relationships between alterations of mangiferin contents in mango leaves at different maturity stages and their antibacterial properties. Leaves were classified into six different maturity stages based on their color: (1) young dark reddish brown, (2) young yellow, (3) young light green, (4) mature green, (5) old dark green, and (6) old yellow leaves. Ethanol extracts were then examined against Gram-positive and Gram-negative bacteria, applying broth dilution and agar well diffusion methods. In addition, we also measured the mangiferin contents in leaves at different stages for the purpose of evaluating how the changes in this phytochemistry value affects their activities against bacteria. The results showed that extracts from leaves at young ages had better antibacterial properties than those from old leaves, as evidenced by the lower minimum inhibitory concentrations and larger inhibitory zones. In addition, we also found that the contents of mangiferin were significantly decreased followed the maturation process. These results suggest that mango leaves at young stages, especially dark reddish brown and young yellow leaves, are preferable for application in bacterial infections and other therapies related to mangiferin's constituents.


Asunto(s)
Mangifera , Animales , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Vietnam , Aves
10.
Medicina (Kaunas) ; 60(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39202505

RESUMEN

Background and Objectives: Hyperglycemia is known to undermine the osteointegration process of implants. In this study, the effects of mangiferin (MF) on the post-implant osteointegration process in a type-II diabetes model were investigated molecularly and morphologically. Materials and Methods: Sprague Dawley male rats were divided into three groups: control, diabetes, and diabetes + MF. All animals were implanted in their tibia bones on day 0. At the end of the 3-month experimental period, the animals' blood and the implant area were isolated. Biochemical measurements were performed on blood samples and micro-CT, qRT-PCR, histological, and immunohistochemical measurements were performed on tibia samples. Results: MF significantly improved the increased glucose, triglyceride-VLDL levels, and liver enzymes due to diabetes. By administering MF to diabetic rats, the osteointegration percentage and bone volume increased while porosity decreased. DKK1 and BMP-2 mRNA expressions and OPN, OCN, and OSN mRNA-protein expressions increased by MF administration in diabetic rats. Additionally, while osteoblast and osteoid surface areas increased with MF, osteoclast and eroded surface areas decreased. Conclusions: The findings of our study indicate that MF will be beneficial to the bone-repairing process and osteointegration, which are impaired by type-II diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Oseointegración , Ratas Sprague-Dawley , Xantonas , Animales , Xantonas/farmacología , Xantonas/uso terapéutico , Masculino , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Oseointegración/efectos de los fármacos , Tibia/efectos de los fármacos , Microtomografía por Rayos X , Modelos Animales de Enfermedad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular
11.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543353

RESUMEN

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Asunto(s)
Antimaláricos , Antineoplásicos , Antagonistas del Ácido Fólico , Xantonas , Humanos , Antimaláricos/farmacología , Glicina Hidroximetiltransferasa , Simulación del Acoplamiento Molecular , Xantonas/farmacología , Antineoplásicos/farmacología , Serina/química
12.
Pharmacol Res ; 196: 106923, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37709183

RESUMEN

Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.


Asunto(s)
Ileus , Plantas Medicinales , Humanos , Canal Catiónico TRPA1 , Ileus/tratamiento farmacológico , Dolor , Extractos Vegetales , Canales Catiónicos TRPV/fisiología
13.
Crit Rev Food Sci Nutr ; 63(18): 3046-3064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34606395

RESUMEN

Mangiferin is a potential candidate for use in nutraceutical and functional food applications due to its numerous bioactivities. However, the low bioavailability of mangiferin is a major limitation for establishing efficacy for use. This review describes current information on known food sources and factors that influence mangiferin contents, absorption, and metabolism features, and recent progress that has come from research efforts to increase the bioavailability of mangiferin. We also list patents that targeted to enhance mangiferin bioavailability. Mangifera indica L. is the major dietary source for mangiferin, a xanthone that varies widely in different parts of the plant and is influenced by many factors that involve plant propagation and post-harvest processing. Mangiferin absorption occurs mostly in the small intestine by passive diffusion with varying absorption capacities in different segments of the gastrointestinal tract. Recent research has led to the development of novel technologies to encapsulate mangiferin in nano/microparticle carrier systems as well as generate mangiferin derivatives to improve solubility and bioavailability. Preclinical studies reported that mangiferin < 2000 mg/kg is generally nontoxic. The safety and the increase in bioavailability are key limiting factors for developing successful applications for mangiferin as a nutritional dietary supplement or nutraceutical.Supplemental data for this article is available online at.


Asunto(s)
Mangifera , Xantonas , Disponibilidad Biológica , Antioxidantes , Suplementos Dietéticos , Extractos Vegetales
14.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37451811

RESUMEN

AIM: Using in vitro assay and eukaryotic cell model of Saccharomyces cerevisiae, we investigated the impact of microbial fermentation on the antioxidant activity of phenolic substances. METHODS AND RESULTS: Caffeic acid phenethyl ester (CAPE) and mangiferin were fermented by lactic acid bacteria (LAB), and the antioxidant activity of the fermented products was compared to that of the pure substances. This comparison was assessed using high-performance liquid chromatography (HPLC), in vitro by 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and in vivo in yeast cells. The wild-type strain (BY4741) and its isogenic mutants in glutathione (Δgsh1), catalase (Δctt1), and superoxide dismutase (Δsod1) were treated with CAPE and mangiferin, fermented or not, and exposed to hydrogen peroxide (H2O2)-induced stress. The antioxidant activity was evaluated by cellular viability, intracellular oxidation, and lipid peroxidation. We expected that fermentation would change the antioxidant activity of phenolic substances. While HPLC analysis revealed changes in the composition of fermented products, significant alterations in antioxidant activity were only observed when using mutant strains. The fermentation of mangiferin increased dependency on GSH compared to the respective pure phenolic substance to resolve H2O2-induced stress. Additionally, CAPE appeared to act as a preconditioning agent, enhancing antioxidant responses, and promoting increased tolerance to H2O2 stress, and this mechanism was maintained after fermentation. CONCLUSIONS: This study highlights that fermentation impacts the enzymatic mechanism of oxidative stress resolution, even though differences could not be observed in in vitro assays or in the wild-type strain.


Asunto(s)
Antioxidantes , Saccharomyces cerevisiae , Antioxidantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fenoles/farmacología , Glutatión/metabolismo
15.
Metab Brain Dis ; 38(1): 383-391, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322276

RESUMEN

PURPOSE: Mangiferin is a natural free radical scavenging antioxidant that induces excitation of the central nervous system. However, the mechanism of neuroprotective effect of mangiferin on focal cerebral ischemia has not been fully investigated. The aim of this study was to investigate the protective effect of mangiferin on focal cerebral ischemia in mice. METHODS: Middle cerebral artery occlusion (MCAO) was performed to investigate the effect of mangiferin on focal cerebral ischemia. Mice were randomly divided into 5 groups: sham, MCAO, MCAO + 5 mg/kg mangiferin, MCAO + 20 mg/kg mangiferin and MCAO + 5 mg/kg nimodipine. Neurobehavioral scores, brain edema, brain injury scores, relative infarct size and expression of some inflammatory factors in the brain were evaluated. NF-κB pathway was detected by Western blotting and immunofluorescence. RESULTS: The results showed that mangiferin effectively attenuated MCAO-induced brain injury, including improvement of neurological impairment, reduction of brain edema, and reduction of infarct size. Compared with the MCAO group, mangiferin significantly inhibited MCAO-induced neuroinflammation, which can be proved by reduced expression levels of TNF-α, IL-1ß, iNOS and COX-2. In addition, we found that phosphorylation of IκBα was inhibited and the expression of NF-κB p65 in the nucleus was reduced after the addition of mangiferin. CONCLUSION: Our study suggested that mangiferin exerts neuroprotective effects on focal cerebral ischemia in mice by regulating the NF-κB signaling pathway. Mangiferin may be an effective treatment for cerebral ischemia and other neurological disorders.


Asunto(s)
Edema Encefálico , Lesiones Encefálicas , Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Ratones , Animales , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Edema Encefálico/tratamiento farmacológico , Ratas Sprague-Dawley , Transducción de Señal , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Daño por Reperfusión/tratamiento farmacológico
16.
Biomed Chromatogr ; 37(8): e5648, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37051941

RESUMEN

The present study delineates the development of a novel rugged and sensitive stability-indicating risk-based HPLC method for the concurrent estimation of methotrexate and mangiferin in dual drug-loaded nanopharmaceuticals based on an analytical QbD approach. Preliminary screening trials along with systemic risk analysis were performed, endeavouring to explicate the critical method attributes, namely pH, percentage orthophosphoric acid content and percentage methanol content, that influence critical quality attributes. Box-Behnken design was utilized for the optimization of the tailing factor as response for methotrexate and mangiferin in short run time. The chromatographic conditions were optimized by performing 17 experimental runs acquired from Design-Expert software. The chromatographic conditions after the analysis of an optimized zone within the confines of the design space were chosen as mobile phase water-methanol adjusted to pH 3.0 with 0.05% orthophosphoric acid (65:35, v/v) and flow rate 1.0 ml/min using a C18 analytical column at an isosbestic wavelength of 265 nm. Furthermore, the validation of the optimized method was done in accordance with International Conference on Harmonization guidelines and were reckoned to be in the prescribed limits. The developed RP-HPLC method has a high degree of practical utility for synchronous detection of methotrexate and mangiferin in pharmaceutical nano-dosage forms such as protein-based-nanoparticles, nanocrystals, polymeric nanoparticles and metallic nanoparticles in in vivo and in vitro studies.


Asunto(s)
Liposomas , Metotrexato , Cromatografía Líquida de Alta Presión/métodos , Metanol
17.
Chem Biodivers ; 20(8): e202300578, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458474

RESUMEN

The rhizoma of Anemarrhenae asphodeloides has a long history of hypoglycemic use in Chinese traditional medicine. In this article, 400 µmol/L H2 O2 induced normal INS-1 pancreatic beta cells to establish experimental model of oxidative damage. Quercetin was used as a positive drug, and mangiferin and its ethanolic extract were selected as therapeutic agents in an oxidative damage model to evaluate the ameliorative effect of the active ingredients of Anemarrhenae asphodeloides rhizoma on oxidative damage in INS-1 pancreatic ß-cells. Building a qualitative analysis method of membrane phospholipids of INS-1 pancreatic beta cells and identified 82 phospholipids based on the UPLC/Q-TOF MS technology, which could provide a database for further statistics analysis. OPLS-DA was used to screen the phospholipid biomarkers from the raw data. Exploring the biological significances of these biomarkers, and discussing the toxic effect of the effective components of Anemarrhena asphodeloides rhizoma, on oxidatively damaged INS-1 pancreatic beta cell.


Asunto(s)
Anemarrhena , Medicamentos Herbarios Chinos , Células Secretoras de Insulina , Cromatografía Líquida de Alta Presión/métodos , Rizoma , Medicamentos Herbarios Chinos/farmacología
18.
Molecules ; 28(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570887

RESUMEN

Making nanoscale drug carriers could boost the bioavailability of medications that are slightly water soluble. One of the most promising approaches for enhancing the chemical stability and bioavailability of a variety of therapeutic medicines is liquid nanocrystal technology. This study aimed to prepare nanocrystals of mangiferin for sustained drug delivery and enhance the pharmacokinetic profile of the drug. The fractional factorial design (FFD) was used via a selection of independent and dependent variables. The selected factors were the concentration of mangiferin (A), hydroxypropyl methyl cellulose (HPMC) (B), pluronic acid (C), tween 80 (D), and the ratio of antisolvent to solvent (E). The selected responses were the particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The nanocrystals were further evaluated for mangiferin release, release kinetics, Fourier transforms infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), particle size, zeta potential, and scanning electron microscopy (SEM). The stability studies of developed nanocrystals were performed for 6 months and pharmacokinetics on albino rabbits. The value of entrapment efficiencies ranged from 23.98% to 86.23%. The percentage release of mangiferin varied from 62.45 to 99.02%. FTIR and DSC studies showed the stability of mangiferin in the nanocrystals. The particle size of the optimized formulation was almost 100 nm and -12 mV the value of the zeta potential. The results of stability studies showed that the nanocrystals of mangiferin were stable for a period of six months. The peak plasma concentration of mangiferin from nanocrystals and suspension of mangiferin were 412 and 367 ng/mL, respectively. The value of AUC0-t of nanocrystals and suspension of mangiferin was 23,567.45 ± 10.876 and 18,976.12 ± 9.765 µg×h/mL, respectively, indicating that the nanocrystals of mangiferin showed greater availability of mangiferin compared to the suspension of the formulation. The developed nanocrystals showed a good release pattern of mangiferin, better stability studies, and enhanced the pharmacokinetics of the drug.

19.
Toxicol Mech Methods ; 33(9): 707-718, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455591

RESUMEN

INTRODUCTION: C-Glucosyl Xanthone derivatives were assessed to inhibit the JNK3 mediated Caspase pathway in Almal (Aluminum Maltolate) induced neurotoxicity in SHSY-5Y cells. METHODS: Mangiferin was selected among 200 C-Glucosyl Xanthones based on molecular interaction, docking score (-10.22 kcal/mol), binding free energy (-71.12 kcal/mol), ADME/tox properties and by molecular dynamic studies. Further, it was noticed that glycone moiety of Mangiferin forms H-bond with ASN 194, SER 193, GLY 76, and OH group in the first position of the aglycone moiety shows interaction at Met 149 which is exceptionally crucial for JNK3 inhibitory activity. RESULTS AND DISCUSSION: Mangiferin (0.5, 1, 10, 20 and 30 µM) and standard SP600125 (20 µM) treatment increased the cell survival rate against Almal 200 µM, with EC50 of Mangiferin (8 µM) and standard SP600125 (4.9 µM) respectively. Mangiferin significantly impedes kinase activation, indicating suppression of JNK3 signaling with IC50 (98.26 nM). Mangiferin (10 and 15 µM) dose-dependently inhibits the caspase 3, 8, and 9 enzyme activation in comparison to Almal group. CONCLUSION: Mangiferin demonstrated neuroprotection in SHSY-5Y cells against apoptosis induced by Almal by adapting the architecture of the neurons and increasing their density. Among all Xanthone derivatives, Mangiferin could improve neuronal toxicity by inhibiting JNK3 and down-regulating the Caspase activation.


Asunto(s)
Neuroblastoma , Xantonas , Humanos , Xantonas/farmacología , Xantonas/química , Xantonas/metabolismo , Caspasas
20.
Trop Anim Health Prod ; 55(2): 103, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856876

RESUMEN

The purpose of this study was to evaluate the inclusion of mango peel ethanolic extract (MPEE) as antioxidant in quail diets containing two lipid sources, on performance, carcass characteristics, and lipid stability of in natura and frozen meat. A total of 432 meat quails were used, males and females, from 7 to 42 days of age, distributed in a completely randomized design in a 3 × 2 factorial arrangement, with 3 levels of MPEE (0, 500, and 1000 mg/kg) and 2 lipid sources (soybean and sunflower oil), totaling 6 treatments with 6 replications of 12 birds. In order to evaluate the meat lipid stability, carcass samples were used in a 2 × 2 × 2 × 3 factorial arrangement, with 2 levels of MPEE (0 and 1000 mg/kg), 2 lipid sources (soybean and sunflower oil), 2 types of packaging (conventional and vacuum), and 3 storage times (0, 60, and 120 days), totaling 16 treatments with 6 replications. There was no effect of interaction (P > 0.05) between the factors on the performance variables and carcass characteristics. Oil types and MPEE levels did not influence (P > 0.05) performance. For carcass characteristics, it was found to be increased (P < 0.05) in breast meat yield due to the inclusion of MPEE. For the meat lipid stability, there was only an effect of interaction (P < 0.05) between type of packaging and storage time. The inclusion of 1000 mg/kg of MPEE provided greater meat lipid stability, enabling the use of common packaging for the storage of quail meat for up to 120 days.


Asunto(s)
Mangifera , Codorniz , Animales , Femenino , Masculino , Antioxidantes , Dieta , Etanol , Lípidos , Carne , Extractos Vegetales , Glycine max , Aceite de Girasol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA