Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(7): e0015524, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38832790

RESUMEN

Marburg virus infection in humans is associated with case fatality rates that can reach up to 90%, but to date, there are no approved vaccines or monoclonal antibody (mAb) countermeasures. Here, we immunized Rhesus macaques with multivalent combinations of filovirus glycoprotein (GP) antigens belonging to Marburg, Sudan, and Ebola viruses to generate monospecific and cross-reactive antibody responses against them. From the animal that developed the highest titers of Marburg virus GP-specific neutralizing antibodies, we sorted single memory B cells using a heterologous Ravn virus GP probe and cloned and characterized a panel of 34 mAbs belonging to 28 unique lineages. Antibody specificities were assessed by overlapping pepscan and binding competition analyses, revealing that roughly a third of the lineages mapped to the conserved receptor binding region, including potent neutralizing lineages that were confirmed by negative stain electron microscopy to target this region. Additional lineages targeted a protective region on GP2, while others were found to possess cross-filovirus reactivity. Our study advances the understanding of orthomarburgvirus glycoprotein antigenicity and furthers efforts to develop candidate antibody countermeasures against these lethal viruses. IMPORTANCE: Marburg viruses were the first filoviruses characterized to emerge in humans in 1967 and cause severe hemorrhagic fever with average case fatality rates of ~50%. Although mAb countermeasures have been approved for clinical use against the related Ebola viruses, there are currently no approved countermeasures against Marburg viruses. We successfully isolated a panel of orthomarburgvirus GP-specific mAbs from a macaque immunized with a multivalent combination of filovirus antigens. Our analyses revealed that roughly half of the antibodies in the panel mapped to regions on the glycoprotein shown to protect from infection, including the host cell receptor binding domain and a protective region on the membrane-anchoring subunit. Other antibodies in the panel exhibited broad filovirus GP recognition. Our study describes the discovery of a diverse panel of cross-reactive macaque antibodies targeting orthomarburgvirus and other filovirus GPs and provides candidate immunotherapeutics for further study and development.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Reacciones Cruzadas , Macaca mulatta , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Marburgvirus/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Monoclonales/inmunología , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/prevención & control , Reacciones Cruzadas/inmunología , Glicoproteínas/inmunología , Proteínas del Envoltorio Viral/inmunología , Inmunización , Humanos , Ebolavirus/inmunología , Antígenos Virales/inmunología
2.
J Virol ; 98(9): e0104724, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194238

RESUMEN

Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE: Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.


Asunto(s)
Marburgvirus , Proteína Fosfatasa 2 , Transcripción Genética , Marburgvirus/fisiología , Marburgvirus/genética , Marburgvirus/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Humanos , Fosforilación , Replicación Viral , Células HEK293 , Animales , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteínas Virales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Enfermedad del Virus de Marburg/virología , Enfermedad del Virus de Marburg/metabolismo , Unión Proteica , Línea Celular
3.
J Cell Mol Med ; 28(18): e70116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39340487

RESUMEN

Global impact of viral diseases specially Monkeypox (mpox) and Marburg virus, emphasizing the urgent need for effective drug interventions. Oxymatrine is an alkaloid which has been selected and modified using various functional groups to enhance its efficacy. The modifications were evaluated using various computatioanal analysis such as pass prediction, molecular docking, ADMET, and molecular dynamic simulation. Mpox and Marburg virus were chosen as target diseases based on their maximum pass prediction spectrum against viral disease. After that, molecular docking, dynamic simulation, DFT, calculation and ADMET prediction were determined. The main objective of this study was to enhance the efficacy of oxymatrine derivatives through functional group modifications and computational analyses to develop effective drug candidates against mpox and Marburg viruses. The calculated binding affinities indicated strong interactions against both mpox virus and Marburg virus. After that, the molecular dynamic simulation was conducted at 100 ns, which confirmed the stability of the binding interactions between the modified oxymatrine derivatives and target proteins. Then, the modified oxymatrine derivatives conducted theoretical ADMET profiling, which demonstrated their potential for effective drug development. Moreover, HOMO-LUMO calculation was performed to understand the chemical reactivity and physicochemical properties of compounds. This computational analysis indicated that modified oxymatrine derivatives for the treatment of mpox and Marburg virus suggested effective drug candidates based on their binding affinity, drug-like properties, stability and chemical reactivity. However, further experimental validation is necessary to confirm their clinical value and efficacy as therapeutic candidates.


Asunto(s)
Alcaloides , Antivirales , Diseño de Fármacos , Marburgvirus , Monkeypox virus , Quinolizinas , Alcaloides/química , Alcaloides/farmacología , Antivirales/farmacología , Antivirales/química , Marburgvirus/efectos de los fármacos , Matrinas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Quinolizinas/química , Quinolizinas/farmacología , Monkeypox virus/efectos de los fármacos
4.
J Gen Virol ; 105(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305775

RESUMEN

Filoviridae is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles. The filovirid genome is a linear, non-segmented RNA with five canonical open reading frames (ORFs) that encode a nucleoprotein (NP), a polymerase cofactor (VP35), a glycoprotein (GP1,2), a transcriptional activator (VP30) and a large protein (L) containing an RNA-directed RNA polymerase (RdRP) domain. All filovirid genomes encode additional proteins that vary among genera. Several filovirids (e.g., Ebola virus, Marburg virus) are pathogenic for humans and highly virulent. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Filoviridae, which is available at www.ictv.global/report/filoviridae.


Asunto(s)
Ebolavirus , Marburgvirus , Rhabdoviridae , Animales , Humanos , Ebolavirus/genética , Rhabdoviridae/genética , Filogenia , Genoma Viral , Replicación Viral , Mamíferos/genética
5.
BMC Biotechnol ; 24(1): 45, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970027

RESUMEN

Marburg virus (MARV) is a highly contagious and virulent agent belonging to Filoviridae family. MARV causes severe hemorrhagic fever in humans and non-human primates. Owing to its highly virulent nature, preventive approaches are promising for its control. There is currently no approved drug or vaccine against MARV, and management mainly involves supportive care to treat symptoms and prevent complications. Our aim was to design a novel multi-epitope vaccine (MEV) against MARV using immunoinformatics studies. In this study, various proteins (VP35, VP40 and glycoprotein precursor) were used and potential epitopes were selected. CTL and HTL epitopes covered 79.44% and 70.55% of the global population, respectively. The designed MEV construct was stable and expressed in Escherichia coli (E. coli) host. The physicochemical properties were also acceptable. MARV MEV candidate could predict comprehensive immune responses such as those of humoral and cellular in silico. Additionally, efficient interaction to toll-like receptor 3 (TLR3) and its agonist (ß-defensin) was predicted. There is a need for validation of these results using further in vitro and in vivo studies.


Asunto(s)
Biología Computacional , Enfermedad del Virus de Marburg , Marburgvirus , Vacunas Virales , Marburgvirus/inmunología , Enfermedad del Virus de Marburg/prevención & control , Enfermedad del Virus de Marburg/inmunología , Vacunas Virales/inmunología , Biología Computacional/métodos , Animales , Humanos , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos/inmunología , Epítopos/genética , Epítopos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunoinformática
6.
Rev Med Virol ; 33(5): e2461, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37208958

RESUMEN

In 1967, the very first case of the Marburgvirus disease (MVD) was detected in Germany and Serbia sequentially. Since then, MVD has been considered one of the most serious and deadly infectious diseases in the world with a case-fatality rate between 23% and 90% and a substantial number of recorded deaths. Marburgvirus belongs to the family of Filoviridae (filoviruses), which causes severe viral hemorrhagic fever (VHF). Some major risk factors for human infections are close contact with African fruit bats, MVD-infected non-human primates, and MVD-infected individuals. Currently, there is no vaccine or specific treatment for MVD, which emphasizes the seriousness of this disease. In July 2022, the World Health Organization reported outbreaks of MVD in Ghana after two suspected VHF cases were detected. This was followed in February and March 2023 with the emergence of the virus in two countries new to the virus: Equatorial Guinea and Tanzania, respectively. In this review, we aim to highlight the characteristics, etiology, epidemiology, and clinical symptoms of MVD, along with the current prevention measures and the possible treatments to control this virus.


Asunto(s)
Quirópteros , Ebolavirus , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Enfermedad del Virus de Marburg/epidemiología , Enfermedad del Virus de Marburg/prevención & control , Enfermedad del Virus de Marburg/diagnóstico , Brotes de Enfermedades , Factores de Riesgo
7.
Mol Ther ; 31(1): 269-281, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36114672

RESUMEN

Marburg virus (MARV) infection results in severe viral hemorrhagic fever with mortalities up to 90%, and there is a pressing need for effective therapies. Here, we established a small interfering RNA (siRNA) conjugate platform that enabled successful subcutaneous delivery of siRNAs targeting the MARV nucleoprotein. We identified a hexavalent mannose ligand with high affinity to macrophages and dendritic cells, which are key cellular targets of MARV infection. This ligand enabled successful siRNA conjugate delivery to macrophages both in vitro and in vivo. The delivered hexa-mannose-siRNA conjugates rendered substantial target gene silencing in macrophages when supported by a mannose functionalized endosome release polymer. This hexa-mannose-siRNA conjugate was further evaluated alongside our hepatocyte-targeting GalNAc-siRNA conjugate, to expand targeting of infected liver cells. In MARV-Angola-infected guinea pigs, these platforms offered limited survival benefit when used as individual agents. However, in combination, they achieved up to 100% protection when dosed 24 h post infection. This novel approach, using two different ligands to simultaneously deliver siRNA to multiple cell types relevant to infection, provides a convenient subcutaneous route of administration for treating infection by these dangerous pathogens. The mannose conjugate platform has potential application to other diseases involving macrophages and dendritic cells.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Virosis , Animales , Cobayas , ARN Interferente Pequeño/genética , Manosa , Ligandos , ARN Bicatenario , Marburgvirus/genética , Enfermedad del Virus de Marburg/metabolismo , Enfermedad del Virus de Marburg/prevención & control
8.
Mar Drugs ; 22(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38248659

RESUMEN

The Marburg virus (MBV), a deadly pathogen, poses a serious threat to world health due to the lack of effective treatments, calling for an immediate search for targeted and efficient treatments. In this study, we focused on compounds originating from marine fungi in order to identify possible inhibitory compounds against the Marburg virus (MBV) VP35-RNA binding domain (VP35-RBD) using a computational approach. We started with a virtual screening procedure using the Lipinski filter as a guide. Based on their docking scores, 42 potential candidates were found. Four of these compounds-CMNPD17596, CMNPD22144, CMNPD25994, and CMNPD17598-as well as myricetin, the control compound, were chosen for re-docking analysis. Re-docking revealed that these particular compounds had a higher affinity for MBV VP35-RBD in comparison to the control. Analyzing the chemical interactions revealed unique binding properties for every compound, identified by a range of Pi-cation interactions and hydrogen bond types. We were able to learn more about the dynamic behaviors and stability of the protein-ligand complexes through a 200-nanosecond molecular dynamics simulation, as demonstrated by the compounds' consistent RMSD and RMSF values. The multidimensional nature of the data was clarified by the application of principal component analysis, which suggested stable conformations in the complexes with little modification. Further insight into the energy profiles and stability states of these complexes was also obtained by an examination of the free energy landscape. Our findings underscore the effectiveness of computational strategies in identifying and analyzing potential inhibitors for MBV VP35-RBD, offering promising paths for further experimental investigations and possible therapeutic development against the MBV.


Asunto(s)
Enfermedad del Virus de Marburg , Animales , Motivos de Unión al ARN , Hongos , Enlace de Hidrógeno , Simulación de Dinámica Molecular
9.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37474248

RESUMEN

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Anticuerpos Monoclonales , Primates , Aerosoles
10.
J Infect Dis ; 228(Suppl 7): S559-S570, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37610176

RESUMEN

BACKGROUND: Marburg virus (MARV) has caused numerous sporadic outbreaks of severe hemorrhagic fever in humans. Human case fatality rates of Marburg virus disease (MVD) outbreaks range from 20% to 90%. Viral genotypes of MARV can differ by over 20%, suggesting variable virulence between lineages may accompany this genetic divergence. Comparison of existing animal models of MVD employing different strains of MARV support differences in virulence across MARV genetic lineages; however, there are few systematic comparisons in models that recapitulate human disease available. METHODS: We compared features of disease pathogenesis in uniformly lethal hamster models of MVD made possible through serial adaptation in rodents. RESULTS: No further adaptation from a previously reported guinea pig-adapted (GPA) isolate of MARV-Angola was necessary to achieve uniform lethality in hamsters. Three passages of GPA MARV-Ci67 resulted in uniform lethality, where 4 passages of a GPA Ravn virus was 75% lethal. Hamster-adapted MARV-Ci67 demonstrated delayed time to death, protracted weight loss, lower viral burden, and slower histologic alteration compared to GPA MARV-Angola. CONCLUSIONS: These data suggest isolate-dependent virulence differences are maintained even after serial adaptation in rodents and may serve to guide choice of variant and model used for development of vaccines or therapeutics for MVD.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Cricetinae , Humanos , Cobayas , Animales , Mesocricetus , Virulencia , Angola
11.
J Infect Dis ; 228(Suppl 7): S594-S603, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37288605

RESUMEN

Ebola virus (EBOV) causes lethal disease in ferrets, whereas Marburg virus (MARV) does not. To investigate this difference, we first evaluated viral entry by infecting ferret spleen cells with vesicular stomatitis viruses pseudotyped with either MARV or EBOV glycoprotein (GP). Both viruses were capable of infecting ferret spleen cells, suggesting that lack of disease is not due to a block in MARV entry. Next, we evaluated replication kinetics of authentic MARV and EBOV in ferret cell lines and demonstrated that, unlike EBOV, MARV was only capable of low levels of replication. Finally, we inoculated ferrets with a recombinant EBOV expressing MARV GP in place of EBOV GP. Infection resulted in uniformly lethal disease within 7-9 days postinfection, while MARV-inoculated animals survived until study endpoint. Together these data suggest that the inability of MARV to cause disease in ferrets is not entirely linked to GP.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Hurones , Línea Celular , Glicoproteínas/genética
12.
J Infect Dis ; 228(Suppl 7): S671-S676, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290042

RESUMEN

Ebola virus (EBOV) and Marburg virus (MARV) made headlines in the past decade, causing outbreaks of human disease in previously nonendemic yet overlapping areas. While EBOV outbreaks can be mitigated with licensed vaccines and treatments, there is not yet a licensed countermeasure for MARV. Here, we used nonhuman primates (NHPs) previously vaccinated with vesicular stomatitis virus (VSV)-MARV and protected against lethal MARV challenge. After a resting period of 9 months, these NHPs were revaccinated with VSV-EBOV and challenged with EBOV, resulting in 75% survival. Surviving NHPs developed EBOV glycoprotein (GP)-specific antibody titers and no viremia or clinical signs of disease. The single vaccinated NHP succumbing to challenge showed the lowest EBOV GP-specific antibody response after challenge, supporting previous findings with VSV-EBOV that antigen-specific antibodies are critical in mediating protection. This study again demonstrates that VSVΔG-based filovirus vaccine can be successfully used in individuals with preexisting VSV vector immunity, highlighting the platform's applicability for consecutive outbreak response.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Marburgvirus , Estomatitis Vesicular , Animales , Humanos , Fiebre Hemorrágica Ebola/prevención & control , Estomatitis Vesicular/prevención & control , Vesiculovirus , Virus de la Estomatitis Vesicular Indiana , Anticuerpos Antivirales , Glicoproteínas , Primates
13.
J Infect Dis ; 228(Suppl 6): S446-S459, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37849404

RESUMEN

Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.


Asunto(s)
Ebolavirus , Filoviridae , Fiebre Hemorrágica Ebola , Marburgvirus , Animales , Humanos , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Brotes de Enfermedades
14.
J Infect Dis ; 228(Suppl 7): S660-S670, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37171813

RESUMEN

BACKGROUND: The family Filoviridae consists of several virus members known to cause significant mortality and disease in humans. Among these, Ebola virus (EBOV), Marburg virus (MARV), Sudan virus (SUDV), and Bundibugyo virus (BDBV) are considered the deadliest. The vaccine, Ervebo, was shown to rapidly protect humans against Ebola disease, but is indicated only for EBOV infections with limited cross-protection against other filoviruses. Whether multivalent formulations of similar recombinant vesicular stomatitis virus (rVSV)-based vaccines could likewise confer rapid protection is unclear. METHODS: Here, we tested the ability of an attenuated, quadrivalent panfilovirus VesiculoVax vaccine (rVSV-Filo) to elicit fast-acting protection against MARV, EBOV, SUDV, and BDBV. Groups of cynomolgus monkeys were vaccinated 7 days before exposure to each of the 4 viral pathogens. All subjects (100%) immunized 1 week earlier survived MARV, SUDV, and BDBV challenge; 80% survived EBOV challenge. Survival correlated with lower viral load, higher glycoprotein-specific immunoglobulin G titers, and the expression of B-cell-, cytotoxic cell-, and antigen presentation-associated transcripts. CONCLUSIONS: These results demonstrate multivalent VesiculoVax vaccines are suitable for filovirus outbreak management. The highly attenuated nature of the rVSV-Filo vaccine may be preferable to the Ervebo "delta G" platform, which induced adverse events in a subset of recipients.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Marburgvirus , Vacunas Virales , Humanos , Animales , Vacunas Atenuadas , Macaca fascicularis , Vesiculovirus/genética , Virus de la Estomatitis Vesicular Indiana , Anticuerpos Antivirales
15.
J Infect Dis ; 228(Suppl 7): S682-S690, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638865

RESUMEN

Although there are no approved countermeasures available to prevent or treat disease caused by Marburg virus (MARV), potently neutralizing monoclonal antibodies (mAbs) derived from B cells of human survivors have been identified. One such mAb, MR191, has been shown to provide complete protection against MARV in nonhuman primates. We previously demonstrated that prophylactic administration of an adeno-associated virus (AAV) expressing MR191 protected mice from MARV. Here, we modified the AAV-MR191 coding sequence to enhance efficacy and reevaluated protection in a guinea pig model. Remarkably, 4 different variants of AAV-MR191 provided complete protection against MARV, despite administration 90 days prior to challenge. Based on superior expression kinetics, AAV-MR191-io2, was selected for evaluation in a dose-reduction experiment. The highest dose provided 100% protection, while a lower dose provided ∼88% protection. These data confirm the efficacy of AAV-mediated expression of MR191 and support the further development of this promising MARV countermeasure.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Humanos , Cobayas , Animales , Ratones , Linfocitos B , Anticuerpos Neutralizantes
16.
Emerg Infect Dis ; 29(11): 2238-2245, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877537

RESUMEN

Marburg virus disease, caused by Marburg and Ravn orthomarburgviruses, emerges sporadically in sub-Saharan Africa and is often fatal in humans. The natural reservoir is the Egyptian rousette bat (ERB), which sheds virus in saliva, urine, and feces. Frugivorous ERBs discard test-bitten and partially eaten fruit, potentially leaving infectious virus behind that could be consumed by other susceptible animals or humans. Historically, 8 of 17 known Marburg virus disease outbreaks have been linked to human encroachment on ERB habitats, but no linkage exists for the other 9 outbreaks, raising the question of how bats and humans might intersect, leading to virus spillover. We used micro‒global positioning systems to identify nightly ERB foraging locations. ERBs from a known Marburg virus‒infected population traveled long distances to feed in cultivated fruit trees near homes. Our results show that ERB foraging behavior represents a Marburg virus spillover risk to humans and plausibly explains the origins of some past outbreaks.


Asunto(s)
Quirópteros , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Enfermedad del Virus de Marburg/epidemiología , Sistemas de Información Geográfica , Brotes de Enfermedades
17.
Mol Divers ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37925643

RESUMEN

Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.

18.
Proc Natl Acad Sci U S A ; 117(49): 31142-31148, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229516

RESUMEN

Marburg virus (MARV) disease is lethal, with fatality rates up to 90%. Neutralizing antibodies (Abs) are promising drug candidates to prevent or treat the disease. Current efforts are focused in part on vaccine development to induce such MARV-neutralizing Abs. We analyzed the antibody repertoire from healthy unexposed and previously MARV-infected individuals to assess if naïve repertoires contain suitable precursor antibodies that could become neutralizing with a limited set of somatic mutations. We computationally searched the human Ab variable gene repertoire for predicted structural homologs of the neutralizing Ab MR78 that is specific to the receptor binding site (RBS) of MARV glycoprotein (GP). Eight Ab heavy-chain complementarity determining region 3 (HCDR3) loops from MARV-naïve individuals and one from a previously MARV-infected individual were selected for testing as HCDR3 loop chimeras on the MR78 Ab framework. Three of these chimerized antibodies bound to MARV GP. We then tested a full-length native Ab heavy chain encoding the same 17-residue-long HCDR3 loop that bound to the MARV GP the best among the chimeric Abs tested. Despite only 57% amino acid sequence identity, the Ab from a MARV-naïve donor recognized MARV GP and possessed neutralizing activity against the virus. Crystallization of both chimeric and full-length native heavy chain-containing Abs provided structural insights into the mechanism of binding for these types of Abs. Our work suggests that the MARV GP RBS is a promising candidate for epitope-focused vaccine design to induce neutralizing Abs against MARV.


Asunto(s)
Anticuerpos Antivirales/genética , Regiones Determinantes de Complementariedad/genética , Enfermedad del Virus de Marburg/inmunología , Marburgvirus/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Regiones Determinantes de Complementariedad/inmunología , Epítopos/genética , Epítopos/inmunología , Glicoproteínas/genética , Glicoproteínas/inmunología , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Enfermedad del Virus de Marburg/tratamiento farmacológico , Enfermedad del Virus de Marburg/genética , Enfermedad del Virus de Marburg/virología , Marburgvirus/patogenicidad , Mutación/genética , Mutación/inmunología , Proteínas del Envoltorio Viral , Vacunas Virales/genética , Vacunas Virales/inmunología
19.
J Biol Chem ; 296: 100796, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34019871

RESUMEN

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Asunto(s)
Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Lípidos de la Membrana/metabolismo , Proteínas de la Matriz Viral/metabolismo , Virión/metabolismo , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Enfermedad del Virus de Marburg/metabolismo , Marburgvirus/química , Lípidos de la Membrana/química , Modelos Moleculares , Multimerización de Proteína , Proteínas de la Matriz Viral/química , Virión/química , Ensamble de Virus
20.
J Virol ; 95(19): e0065221, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34346762

RESUMEN

The filovirus family includes deadly pathogens such as Ebola virus (EBOV) and Marburg virus (MARV). A substantial portion of filovirus genomes encode 5' and 3' untranslated regions (UTRs) of viral mRNAs. Select viral genomic RNA sequences corresponding to 3' UTRs are prone to editing by adenosine deaminase acting on RNA 1 (ADAR1). A reporter mRNA approach, in which different 5' or 3' UTRs were inserted into luciferase-encoding mRNAs, demonstrates that MARV 3' UTRs yield different levels of reporter gene expression, suggesting modulation of translation. The modulation occurs in cells unable to produce microRNAs (miRNAs) and can be recapitulated in a MARV minigenome assay. Deletion mutants identified negative regulatory regions at the ends of the MARV nucleoprotein (NP) and large protein (L) 3' UTRs. Apparent ADAR1 editing mutants were previously identified within the MARV NP 3' UTR. Introduction of these changes into the MARV nucleoprotein (NP) 3' UTR or deletion of the region targeted for editing enhances translation, as indicated by reporter assays and polysome analysis. In addition, the parental NP 3' UTR, but not the edited or deletion mutant NP 3' UTRs, induces a type I interferon (IFN) response upon transfection into cells. Because some EBOV isolates from the West Africa outbreak exhibited ADAR1 editing of the viral protein of 40 kDa (VP40) 3' UTR, VP40 3' UTRs with parental and edited sequences were similarly assayed. The EBOV VP40 3' UTR edits also enhanced translation, but neither the wild-type nor the edited 3' UTRs induced IFN. These findings implicate filoviral mRNA 3' UTRs as negative regulators of translation that can be inactivated by innate immune responses that induce ADAR1. IMPORTANCE UTRs comprise a large percentage of filovirus genomes and are apparent targets of editing by ADAR1, an enzyme with pro- and antiviral activities. However, the functional significance of the UTRs and ADAR1 editing has been uncertain. This study demonstrates that MARV and EBOV 3' UTRs can modulate translation, in some cases negatively. ADAR1 editing or deletion of select regions within the translation suppressing 3' UTRs relieves the negative effects of the UTRs. These data indicate that filovirus 3' UTRs contain translation regulatory elements that are modulated by activation of ADAR1, suggesting a complex interplay between filovirus gene expression and innate immunity.


Asunto(s)
Regiones no Traducidas 3' , Adenosina Desaminasa/metabolismo , Ebolavirus/genética , Marburgvirus/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Ebolavirus/metabolismo , Genes Reporteros , Humanos , Interferón Tipo I/biosíntesis , Marburgvirus/metabolismo , MicroARNs/genética , Mutación , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Polirribosomas/metabolismo , Edición de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA