Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 245-275, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301739

RESUMEN

Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.


Asunto(s)
Genoma , Metabolómica/estadística & datos numéricos , Modelos Biológicos , Modelos Estadísticos , Biología de Sistemas/estadística & datos numéricos , Transcriptoma , Bacterias/genética , Bacterias/metabolismo , Hongos/genética , Hongos/metabolismo , Humanos , Cinética , Ingeniería Metabólica , Metabolómica/métodos , Proteómica , Biología de Sistemas/métodos
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546323

RESUMEN

Cancer metabolism is a marvellously complex topic, in part, due to the reprogramming of its pathways to self-sustain the malignant phenotype in the disease, to the detriment of its healthy counterpart. Understanding these adjustments can provide novel targeted therapies that could disrupt and impair proliferation of cancerous cells. For this very purpose, genome-scale metabolic models (GEMs) have been developed, with Human1 being the most recent reconstruction of the human metabolism. Based on GEMs, we introduced the genetic Minimal Cut Set (gMCS) approach, an uncontextualized methodology that exploits the concepts of synthetic lethality to predict metabolic vulnerabilities in cancer. gMCSs define a set of genes whose knockout would render the cell unviable by disrupting an essential metabolic task in GEMs, thus, making cellular proliferation impossible. Here, we summarize the gMCS approach and review the current state of the methodology by performing a systematic meta-analysis based on two datasets of gene essentiality in cancer. First, we assess several thresholds and distinct methodologies for discerning highly and lowly expressed genes. Then, we address the premise that gMCSs of distinct length should have the same predictive power. Finally, we question the importance of a gene partaking in multiple gMCSs and analyze the importance of all the essential metabolic tasks defined in Human1. Our meta-analysis resulted in parameter evaluation to increase the predictive power for the gMCS approach, as well as a significant reduction of computation times by only selecting the crucial gMCS lengths, proposing the pertinency of particular parameters for the peak processing of gMCS.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Proliferación Celular , Expresión Génica , Estado de Salud , Fenotipo
3.
Proc Natl Acad Sci U S A ; 120(37): e2304722120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669378

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2). The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection. The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Metaboloma
4.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38048080

RESUMEN

Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.


Asunto(s)
Algoritmos , Simulación por Computador
5.
Mol Syst Biol ; 20(10): 1134-1150, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134886

RESUMEN

Genome-scale metabolic models (GEMs) can facilitate metabolism-focused multi-omics integrative analysis. Since Yeast8, the yeast-GEM of Saccharomyces cerevisiae, published in 2019, has been continuously updated by the community. This has increased the quality and scope of the model, culminating now in Yeast9. To evaluate its predictive performance, we generated 163 condition-specific GEMs constrained by single-cell transcriptomics from osmotic pressure or reference conditions. Comparative flux analysis showed that yeast adapting to high osmotic pressure benefits from upregulating fluxes through central carbon metabolism. Furthermore, combining Yeast9 with proteomics revealed metabolic rewiring underlying its preference for nitrogen sources. Lastly, we created strain-specific GEMs (ssGEMs) constrained by transcriptomics for 1229 mutant strains. Well able to predict the strains' growth rates, fluxomics from those large-scale ssGEMs outperformed transcriptomics in predicting functional categories for all studied genes in machine learning models. Based on those findings we anticipate that Yeast9 will continue to empower systems biology studies of yeast metabolism.


Asunto(s)
Genoma Fúngico , Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Biología de Sistemas/métodos , Proteómica , Transcriptoma , Redes y Vías Metabólicas/genética , Presión Osmótica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Carbono/metabolismo , Nitrógeno/metabolismo , Perfilación de la Expresión Génica
6.
Proc Natl Acad Sci U S A ; 119(35): e2205456119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994654

RESUMEN

Triple negative breast cancer (TNBC) metastases are assumed to exhibit similar functions in different organs as in the original primary tumor. However, studies of metastasis are often limited to a comparison of metastatic tumors with primary tumors of their origin, and little is known about the adaptation to the local environment of the metastatic sites. We therefore used transcriptomic data and metabolic network analyses to investigate whether metastatic tumors adapt their metabolism to the metastatic site and found that metastatic tumors adopt a metabolic signature with some similarity to primary tumors of their destinations. The extent of adaptation, however, varies across different organs, and metastatic tumors retain metabolic signatures associated with TNBC. Our findings suggest that a combination of anti-metastatic approaches and metabolic inhibitors selected specifically for different metastatic sites, rather than solely targeting TNBC primary tumors, may constitute a more effective treatment approach.


Asunto(s)
Redes y Vías Metabólicas , Metástasis de la Neoplasia , Especificidad de Órganos , Neoplasias de la Mama Triple Negativas , Humanos , Redes y Vías Metabólicas/genética , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Transcriptoma , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
7.
BMC Biol ; 22(1): 224, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379910

RESUMEN

BACKGROUND: Nematodes are the most abundant metazoans in marine sediments, many of which are bacterivores; however, how habitat bacteria affect physiological outcomes in marine nematodes remains largely unknown.  RESULTS: Here, we used a Litoditis marina inbred line to assess how native bacteria modulate host nematode physiology. We characterized seasonal dynamic bacterial compositions in L. marina habitats and examined the impacts of 448 habitat bacteria isolates on L. marina development, then focused on HQbiome with 73 native bacteria, of which we generated 72 whole genomes sequences. Unexpectedly, we found that the effects of marine native bacteria on the development of L. marina and its terrestrial relative Caenorhabditis elegans were significantly positively correlated. Next, we reconstructed bacterial metabolic networks and identified several bacterial metabolic pathways positively correlated with L. marina development (e.g., ubiquinol and heme b biosynthesis), while pyridoxal 5'-phosphate biosynthesis pathway was negatively associated. Through single metabolite supplementation, we verified CoQ10, heme b, acetyl-CoA, and acetaldehyde promoted L. marina development, while vitamin B6 attenuated growth. Notably, we found that only four development correlated metabolic pathways were shared between L. marina and C. elegans. Furthermore, we identified two bacterial metabolic pathways correlated with L. marina lifespan, while a distinct one in C. elegans. Strikingly, we found that glycerol supplementation significantly extended L. marina but not C. elegans longevity. Moreover, we comparatively demonstrated the distinct gut microbiota characteristics and their effects on L. marina and C. elegans physiology. CONCLUSIONS: Given that both bacteria and marine nematodes are dominant taxa in sedimentary ecosystems, the resource presented here will provide novel insights to identify mechanisms underpinning how habitat bacteria affect nematode biology in a more natural context. Our integrative approach will provide a microbe-nematodes framework for microbiome mediated effects on host animal fitness.


Asunto(s)
Caenorhabditis elegans , Microbiota , Animales , Microbiota/fisiología , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/microbiología , Nematodos/fisiología , Nematodos/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Ecosistema
8.
Trends Biochem Sci ; 45(3): 185-201, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31955965

RESUMEN

Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field.


Asunto(s)
Células/metabolismo , Marcaje Isotópico , Animales , Humanos
9.
BMC Bioinformatics ; 25(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166586

RESUMEN

BACKGROUND: Uniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees. RESULTS: Here, we present LooplessFluxSampler, an efficient algorithm for exploring the loopless mass-balanced flux solution space of metabolic models, based on an Adaptive Directions Sampling on a Box (ADSB) algorithm. ADSB is rooted in the general Adaptive Direction Sampling (ADS) framework, specifically the Parallel ADS, for which theoretical convergence and irreducibility results are available for sampling from arbitrary distributions. By sampling directions that adapt to the target distribution, ADSB traverses more efficiently the sample space achieving faster mixing than other methods. Importantly, the presented algorithm is guaranteed to target the uniform distribution over convex regions, and it provably converges on the latter distribution over more general (non-convex) regions provided the sample can have full support. CONCLUSIONS: LooplessFluxSampler enables scalable statistical inference of the loopless mass-balanced solution space of large metabolic models. Grounded in a theoretically sound framework, this toolbox provides not only efficient but also reliable results for exploring the properties of the almost surely non-convex loopless flux space. Finally, LooplessFluxSampler includes a Markov Chain diagnostics suite for assessing the quality of the final sample and the performance of the algorithm.


Asunto(s)
Algoritmos , Modelos Biológicos , Redes y Vías Metabólicas , Proyectos de Investigación , Adaptación Fisiológica
10.
Metab Eng ; 85: 61-72, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038602

RESUMEN

Advances in synthetic biology and artificial intelligence (AI) have provided new opportunities for modern biotechnology. High-performance cell factories, the backbone of industrial biotechnology, are ultimately responsible for determining whether a bio-based product succeeds or fails in the fierce competition with petroleum-based products. To date, one of the greatest challenges in synthetic biology is the creation of high-performance cell factories in a consistent and efficient manner. As so-called white-box models, numerous metabolic network models have been developed and used in computational strain design. Moreover, great progress has been made in AI-powered strain engineering in recent years. Both approaches have advantages and disadvantages. Therefore, the deep integration of AI with metabolic models is crucial for the construction of superior cell factories with higher titres, yields and production rates. The detailed applications of the latest advanced metabolic models and AI in computational strain design are summarized in this review. Additionally, approaches for the deep integration of AI and metabolic models are discussed. It is anticipated that advanced mechanistic metabolic models powered by AI will pave the way for the efficient construction of powerful industrial chassis strains in the coming years.


Asunto(s)
Inteligencia Artificial , Ingeniería Metabólica , Modelos Biológicos , Biología Sintética
11.
Metab Eng ; 82: 183-192, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387677

RESUMEN

Metabolism governs cell performance in biomanufacturing, as it fuels growth and productivity. However, even in well-controlled culture systems, metabolism is dynamic, with shifting objectives and resources, thus limiting the predictive capability of mechanistic models for process design and optimization. Here, we present Cellular Objectives and State Modulation In bioreaCtors (COSMIC)-dFBA, a hybrid multi-scale modeling paradigm that accurately predicts cell density, antibody titer, and bioreactor metabolite concentration profiles. Using machine-learning, COSMIC-dFBA decomposes the instantaneous metabolite uptake and secretion rates in a bioreactor into weighted contributions from each cell state (growth or antibody-producing state) and integrates these with a genome-scale metabolic model. A major strength of COSMIC-dFBA is that it can be parameterized with only metabolite concentrations from spent media, although constraining the metabolic model with other omics data can further improve its capabilities. Using COSMIC-dFBA, we can predict the final cell density and antibody titer to within 10% of the measured data, and compared to a standard dFBA model, we found the framework showed a 90% and 72% improvement in cell density and antibody titer prediction, respectively. Thus, we demonstrate our hybrid modeling framework effectively captures cellular metabolism and expands the applicability of dFBA to model the dynamic conditions in a bioreactor.


Asunto(s)
Reactores Biológicos , Modelos Biológicos , Transporte Biológico
12.
Biotechnol Bioeng ; 121(10): 3351-3359, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39199017

RESUMEN

Organism-specific genome-scale metabolic models (GSMMs) can unveil molecular mechanisms within cells and are commonly used in diverse applications, from synthetic biology, biotechnology, and systems biology to metabolic engineering. There are limited studies incorporating time-series transcriptomics in GSMM simulations. Yeast is an easy-to-manipulate model organism for tumor research. Here, a novel approach (TS-GSMM) was proposed to integrate time-series transcriptomics with GSMMs to narrow down the feasible solution space of all possible flux distributions and attain time-series flux samples. The flux samples were clustered using machine learning techniques, and the clusters' functional analysis was performed using reaction set enrichment analysis. A time series transcriptomics response of Yeast cells to a chemotherapeutic reagent-doxorubicin-was mapped onto a Yeast GSMM. Eleven flux clusters were obtained with our approach, and pathway dynamics were displayed. Induction of fluxes related to bicarbonate formation and transport, ergosterol and spermidine transport, and ATP production were captured. Integrating time-series transcriptomics data with GSMMs is a promising approach to reveal pathway dynamics without any kinetic modeling and detects pathways that cannot be identified through transcriptomics-only analysis. The codes are available at https://github.com/karabekmez/TS-GSMM.


Asunto(s)
Modelos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Genoma Fúngico , Transcriptoma/efectos de los fármacos , Redes y Vías Metabólicas/genética , Perfilación de la Expresión Génica
13.
Int Microbiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937311

RESUMEN

Can we anticipate the emergence of the next pandemic antibiotic-resistant bacterial clone? Addressing such an ambitious question relies on our ability to comprehensively understand the ecological and epidemiological factors fostering the evolution of high-risk clones. Among these factors, the ability to persistently colonize and thrive in the human gut is crucial for most high-risk clones. Nonetheless, the causes and mechanisms facilitating successful gut colonization remain obscure. Here, we review recent evidence that suggests that bacterial metabolism plays a pivotal role in determining the ability of high-risk clones to colonize the human gut. Subsequently, we outline novel approaches that enable the exploration of microbial metabolism at an unprecedented scale and level of detail. A thorough understanding of the constraints and opportunities of bacterial metabolism in gut colonization will foster our ability to predict the emergence of high-risk clones and take appropriate containment strategies.

14.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791446

RESUMEN

Patient blood samples are invaluable in clinical omics databases, yet current methodologies often fail to fully uncover the molecular mechanisms driving patient pathology. While genome-scale metabolic models (GEMs) show promise in systems medicine by integrating various omics data, having only exometabolomic data remains a limiting factor. To address this gap, we introduce a comprehensive pipeline integrating GEMs with patient plasma metabolome. This pipeline constructs case-specific GEMs using literature-based and patient-specific metabolomic data. Novel computational methods, including adaptive sampling and an in-house developed algorithm for the rational exploration of the sampled space of solutions, enhance integration accuracy while improving computational performance. Model characterization involves task analysis in combination with clustering methods to identify critical cellular functions. The new pipeline was applied to a cohort of trauma patients to investigate shock-induced endotheliopathy using patient plasma metabolome data. By analyzing endothelial cell metabolism comprehensively, the pipeline identified critical therapeutic targets and biomarkers that can potentially contribute to the development of therapeutic strategies. Our study demonstrates the efficacy of integrating patient plasma metabolome data into computational models to analyze endothelial cell metabolism in disease contexts. This approach offers a deeper understanding of metabolic dysregulations and provides insights into diseases with metabolic components and potential treatments.


Asunto(s)
Células Endoteliales , Metaboloma , Metabolómica , Humanos , Células Endoteliales/metabolismo , Metabolómica/métodos , Modelos Biológicos , Algoritmos , Biomarcadores/sangre , Biología Computacional/métodos
15.
BMC Bioinformatics ; 24(Suppl 1): 321, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626282

RESUMEN

BACKGROUND: The impact of a perturbation, over-expression, or repression of a key node on an organism, can be modelled based on a regulatory and/or metabolic network. Integration of these two networks could improve our global understanding of biological mechanisms triggered by a perturbation. This study focuses on improving the modelling of the regulatory network to facilitate a possible integration with the metabolic network. Previously proposed methods that study this problem fail to deal with a real-size regulatory network, computing predictions sensitive to perturbation and quantifying the predicted species behaviour more finely. RESULTS: To address previously mentioned limitations, we develop a new method based on Answer Set Programming, MajS. It takes a regulatory network and a discrete partial set of observations as input. MajS tests the consistency between the input data, proposes minimal repairs on the network to establish consistency, and finally computes weighted and signed predictions over the network species. We tested MajS by comparing the HIF-1 signalling pathway with two gene-expression datasets. Our results show that MajS can predict 100% of unobserved species. When comparing MajS with two similar (discrete and quantitative) tools, we observed that compared with the discrete tool, MajS proposes a better coverage of the unobserved species, is more sensitive to system perturbations, and proposes predictions closer to real data. Compared to the quantitative tool, MajS provides more refined discrete predictions that agree with the dynamic proposed by the quantitative tool. CONCLUSIONS: MajS is a new method to test the consistency between a regulatory network and a dataset that provides computational predictions on unobserved network species. It provides fine-grained discrete predictions by outputting the weight of the predicted sign as a piece of additional information. MajS' output, thanks to its weight, could easily be integrated with metabolic network modelling.


Asunto(s)
Transducción de Señal , Expresión Génica
16.
Brief Bioinform ; 22(1): 109-126, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-31813964

RESUMEN

MOTIVATION: Biological systems function through dynamic interactions among genes and their products, regulatory circuits and metabolic networks. Our development of the Pathway Tools software was motivated by the need to construct biological knowledge resources that combine these many types of data, and that enable users to find and comprehend data of interest as quickly as possible through query and visualization tools. Further, we sought to support the development of metabolic flux models from pathway databases, and to use pathway information to leverage the interpretation of high-throughput data sets. RESULTS: In the past 4 years we have enhanced the already extensive Pathway Tools software in several respects. It can now support metabolic-model execution through the Web, it provides a more accurate gap filler for metabolic models; it supports development of models for organism communities distributed across a spatial grid; and model results may be visualized graphically. Pathway Tools supports several new omics-data analysis tools including the Omics Dashboard, multi-pathway diagrams called pathway collages, a pathway-covering algorithm for metabolomics data analysis and an algorithm for generating mechanistic explanations of multi-omics data. We have also improved the core pathway/genome databases management capabilities of the software, providing new multi-organism search tools for organism communities, improved graphics rendering, faster performance and re-designed gene and metabolite pages. AVAILABILITY: The software is free for academic use; a fee is required for commercial use. See http://pathwaytools.com. CONTACT: pkarp@ai.sri.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Briefings in Bioinformatics online.


Asunto(s)
Genómica/métodos , Metabolómica/métodos , Programas Informáticos/normas , Biología de Sistemas/métodos , Animales , Humanos
17.
Metab Eng ; 80: 78-93, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689259

RESUMEN

Reactive species (RS) play significant roles in many disease contexts. Despite their crucial roles in diseases including cancer, the RS are not adequately modeled in the genome-scale metabolic (GSM) models, which are used to understand cell metabolism in disease contexts. We have developed a scalable RS reactions module that can be integrated with any Recon 3D-derived human metabolic model, or after fine-tuning, with any metabolic model. With RS-integration, the GSM models of three cancers (basal-like triple negative breast cancer (TNBC), high grade serous ovarian carcinoma (HGSOC) and colorectal cancer (CRC)) built from Recon 3D, precisely highlighted the increases/decreases in fluxes (dysregulation) occurring in important pathways of these cancers. These dysregulations were not prominent in the standard cancer models without the RS module. Further, the results from these RS-integrated cancer GSM models suggest the following decreasing order in the ease of ferroptosis-targeting to treat the cancers: TNBC > HGSOC > CRC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Genoma
18.
BMC Bioinformatics ; 23(1): 566, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585633

RESUMEN

BACKGROUND: Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium used to treat various gastrointestinal diseases. EcN is increasingly being used as a chassis for the engineering of advanced microbiome therapeutics. To aid in future engineering efforts, our aim was to construct an updated metabolic model of EcN with extended secondary metabolite representation. RESULTS: An updated high-quality genome-scale metabolic model of EcN, iHM1533, was developed based on comparison with 55 E. coli/Shigella reference GEMs and manual curation, including expanded secondary metabolite pathways (enterobactin, salmochelins, aerobactin, yersiniabactin, and colibactin). The model was validated and improved using phenotype microarray data, resulting in an 82.3% accuracy in predicting growth phenotypes on various nutrition sources. Flux variability analysis with previously published 13C fluxomics data validated prediction of the internal central carbon fluxes. A standardised test suite called Memote assessed the quality of iHM1533 to have an overall score of 89%. The model was applied by using constraint-based flux analysis to predict targets for optimisation of secondary metabolite production. Modelling predicted design targets from across amino acid metabolism, carbon metabolism, and other subsystems that are common or unique for influencing the production of various secondary metabolites. CONCLUSION: iHM1533 represents a well-annotated metabolic model of EcN with extended secondary metabolite representation. Phenotype characterisation and the iHM1533 model provide a better understanding of the metabolic capabilities of EcN and will help future metabolic engineering efforts.


Asunto(s)
Escherichia coli , Probióticos , Escherichia coli/metabolismo , Redes y Vías Metabólicas/genética , Ingeniería Metabólica
19.
Metab Eng ; 72: 365-375, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537663

RESUMEN

Phenotype-centric modeling enables a paradigm shift in the analysis of mechanistic models. It brings the focus to a network's biochemical phenotypes and their relationship with measurable traits (e.g., product yields, system dynamics, signal amplification factors, etc.) and away from computationally intensive simulation-centric modeling. Here, we explore applications of this new modeling strategy in the field of rational metabolic engineering using the amorphadiene biosynthetic network as a case study. This network has previously been studied using a mechanistic model and the simulation-centric strategy, and thus provides an excellent means to compare and contrast results obtained from these two very different strategies. We show that the phenotype-centric strategy, without values for the parameters, not only identifies beneficial intervention strategies obtained with the simulation-centric strategy, but it also provides an understanding of the mechanistic context for the validity of these predictions. Additionally, we propose a set of hypothetical strains with the potential to outperform reported production strains and to enhance the mechanistic understanding of the amorphadiene biosynthetic network. Further, we identify the landscape of possible intervention strategies for the given model. We believe that phenotype-centric modeling can advance the field of rational metabolic engineering by enabling the development of next generation kinetics-based algorithms and methods that do not rely on a priori knowledge of kinetic parameters but allow a structured, global analysis of system design in the parameter space.


Asunto(s)
Ingeniería Metabólica , Modelos Biológicos , Simulación por Computador , Cinética , Ingeniería Metabólica/métodos , Fenotipo
20.
Mol Syst Biol ; 17(10): e10427, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34676984

RESUMEN

Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome-scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence-level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.


Asunto(s)
Redes y Vías Metabólicas , Saccharomyces cerevisiae , Evolución Molecular , Duplicación de Gen , Transferencia de Gen Horizontal , Genoma , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA