Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Gene Med ; 26(1): e3664, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282143

RESUMEN

BACKGROUND: The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS: The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS: TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS: These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Humanos , Adenocarcinoma del Pulmón/genética , MicroARNs/genética , Neoplasias Pulmonares/genética , Línea Celular , Proliferación Celular/genética , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Proteínas Activadoras de GTPasa
2.
Cell Mol Biol Lett ; 29(1): 29, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431560

RESUMEN

Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand.


Asunto(s)
Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , Melanoma/genética , MicroARNs/metabolismo , Neoplasias Cutáneas/genética , Apoptosis/genética , Genómica , Inestabilidad Genómica , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
3.
Ren Fail ; 46(1): 2316259, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38345033

RESUMEN

Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Humanos , Ratones , Animales , MicroARNs/metabolismo , Lipocalina 2 , Vimentina/metabolismo , Factor 4 Similar a Kruppel , Hibridación Fluorescente in Situ , Calidad de Vida , Cadherinas/metabolismo , Lesión Renal Aguda/genética , Transición Epitelial-Mesenquimal , Colágeno/metabolismo , Fibrosis , Hipoxia
4.
Blood Cells Mol Dis ; 103: 102781, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37478523

RESUMEN

Ineffective erythropoiesis is the main cause of anemia in ß-thalassemia. The crucial hallmark of ineffective erythropoiesis is the high proliferation of erythroblast. microRNA (miR/miRNA) involves several biological processes, including cell proliferation and erythropoiesis. miR-101 was widely studied and associated with proliferation in several types of cancer. However, the miR-101-3p has not been studied in ß-thalassemia/HbE. Therefore, this study aims to investigate the expression of miR-101-3p during erythropoiesis in ß-thalassemia/HbE. The results showed that miR-101-3p was upregulated in the erythroblast of ß-thalassemia/HbE patients on day 7, indicating that miR-101-3p may be involved with high proliferation in ß-thalassemia/HbE. Therefore, the mRNA targets of miR-101-3p including Rac1, SUB1, TET2, and TRIM44 were investigated to determine the mechanisms involved with high proliferation of ß-thalassemia/HbE erythroblasts. Rac1 expression was significantly reduced at day 11 in severe ß-thalassemia/HbE compared to normal controls and mild ß-thalassemia/HbE. SUB1 gene expression was significantly lower in severe ß-thalassemia/HbE compared to normal controls at day 9 of culture. For TET2 and TRIM44 expression, a significant difference was not observed among normal and ß-thalassemia/HbE. However, the high expression of miR-101-3p at day 7 and these target genes was not correlated, suggesting that this miRNA may regulate ineffective erythropoiesis in ß-thalassemia/HbE via other target genes.


Asunto(s)
Hemoglobina E , MicroARNs , Talasemia beta , Humanos , Talasemia beta/complicaciones , Talasemia beta/genética , Talasemia beta/metabolismo , MicroARNs/genética , Eritropoyesis/genética , Regulación hacia Arriba , Hemoglobina E/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
5.
Arch Biochem Biophys ; 744: 109692, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37437834

RESUMEN

Preeclampsia is a potentially life-threatening condition that can arise due to poor placentation and consequent abnormal uterine spiral artery remodeling. Abnormal placentation, in turn, is associated with aberrant trophoblast cell proliferation and apoptosis. Here, we investigated the lncRNA MALAT1 in trophoblast proliferation during early-onset preeclampsia (ePE). MALAT1 levels were examined in placental tissue samples from ePE patients and control patients. The effects and underlying mechanism of MALAT1 on proliferation, migration, invasion and apoptosis were investigated in the first-trimester extravillous trophoblast HTR-8/SVneo cells and the human choriocarcinoma JAR cells. MALAT1 levels were decreased in the placental tissue samples of ePE patients compared with those of control patients, and the levels of MALAT1 were positively correlated with the neonate birth-weight. Knockdown of MALAT1 attenuated the cell viability, proliferation, migration, invasion and the cell cycle progression of trophoblasts, but promoted the apoptosis of trophoblasts. The MALAT1 knockdown promoted miR-101-3p upregulation and VEGFA downregulation. Inhibitor of miR-101-3p increased vascular endothelial growth factor A (VEGFA) expression, and miR-101-3p mimic inhibited VEGFA expression. Luciferase assays showed that miR-101-3p could bind to both MALAT1 and VEGFA. The MALAT1 knockdown-induced induction in the cell vitality and proliferation were attenuated by miR-101-3p inhibitor. We conclude that endogenous MALAT1 promotes proliferation, migration and invasion of trophoblasts by inhibiting the miR-101-3p expression and the subsequent VEGFAupregulation. The reduced MALAT1 level in placental tissue may be involved in the pathogenesis of the ePE.


Asunto(s)
MicroARNs , Preeclampsia , ARN Largo no Codificante , Recién Nacido , Humanos , Femenino , Embarazo , Trofoblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Preeclampsia/metabolismo , Fenotipo , Proliferación Celular/genética , Movimiento Celular/genética
6.
Cell Commun Signal ; 21(1): 31, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747241

RESUMEN

BACKGROUND: Angiostrongylus cantonensis (A. cantonensis) infection can induce acute inflammation, which causes meningoencephalitis and tissue mechanical injury to the brain. Parasite infection-induced microRNAs play important roles in anti-parasite immunity in non-permissive hosts. miR-101b-3p is highly expressed after A. cantonensis infection; however, the role of miR-101b-3p and the transcription regulation of miR-101b-3p in A. cantonensis infection remain poorly characterized. RESULTS: In the present study, we found that miR-101b-3p inhibition alleviated inflammation infiltration and pyroptosis in A. cantonensis infection. In addition, we found that CCAAT/enhancer-binding protein alpha (CEBPα) directly bound to the - 6-k to - 3.5-k region upstream of miR-101b, and CEBPα activated miR-101b-3p expression in microglia. These data suggest the existence of a novel CEBPα/miR-101b-3p/pyroptosis pathway in A. cantonensis infection. Further investigation verified that CEBPα promotes pyroptosis by activating miR-101b-3p expression in microglia, and microglial pyroptosis further promoted inflammation. CONCLUSIONS: Our results suggest that a CEBPα/miR-101b-3p/pyroptosis pathway may contribute to A. cantonensis infection-induced inflammation and highlight the pro-inflammatory effect of miR-101b-3p. Video Abstract.


Asunto(s)
Angiostrongylus cantonensis , Meningoencefalitis , MicroARNs , Animales , Ratones , Angiostrongylus cantonensis/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT , Inflamación , Microglía/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Piroptosis
7.
Mol Cell Probes ; 67: 101887, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509232

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a type of bone cancer most often affects pre-teens and teens, but it is still a rare disorder. Neuropilin and tolloid-like 2 (NETO2) has been reported to promote OS progression, but its upstream mechanism in OS cells remains obscure. METHODS: Quantitative real-time PCR (RT-qPCR) and Western blot were conducted to examine RNA and protein levels, separately. Functional assays were performed to assess the impact of NETO2 on OS cell malignancy. Moreover, bioinformatics analyses and mechanism experiments were performed to identify the upstream mechanism of NETO2 in OS cells. RESULTS: Functionally, NETO2 depletion repressed cell proliferation, migration and invasion as well as epithelial-mesenchymal transition (EMT) but triggered the apoptosis of OS cells. NETO2 is directly targeted and negatively regulated by microRNA-101-3p (miR-101-3p). Mechanically, miR-101-3p could combine with long noncoding RNA (lncRNA) TYMS opposite strand RNA (TYMSOS) in OS cells. In addition, our study proved that TYMSOS promotes the malignancy of OS via elevating NETO2 expression as miR-101-3p sponge. CONCLUSION: TYMSOS-miR-101-3p-NETO2 axis promotes the malignant behaviors of OS cells, which might offer a novel sight for OS treatment.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , ARN Largo no Codificante , Adolescente , Niño , Humanos , MicroARNs/genética , Línea Celular Tumoral , Osteosarcoma/genética , Neoplasias Óseas/genética , Proliferación Celular/genética , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética
8.
J Assist Reprod Genet ; 40(7): 1597-1610, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37300650

RESUMEN

PURPOSE: Dysregulated behaviors of trophoblast cells leading to defective placentation are considered the main cause of preeclampsia (PE). Abnormal miRNA expression profiles have been observed in PE placental tissue, indicating the significant role of miRNAs in PE development. This study aimed to investigate the expression of miR-101-5p in PE placental tissue and its biological functions. METHODS: The expression of miR-101-5p in placental tissue was detected by quantitative real-time PCR (qRT-PCR). The localization of miR-101-5p in term placental tissue and decidual tissue was determined by the fluorescence in situ hybridization (FISH)-immunofluorescence (IF) double labeling assay. The effect of miR-101-5p on the migration, invasion, proliferation, and apoptosis of the HTR8/SVneo trophoblast cells was investigated. Online databases combined with transcriptomics were used to identify potential target genes and related pathways of miR-101-5p. Finally, the interaction between miR-101-5p and the target gene was verified by qRT-PCT, WB, dual-luciferase reporter assay, and rescue experiments. RESULTS: The study found that miR-101-5p was upregulated in PE placental tissue compared to normal controls and was mainly located in various trophoblast cell subtypes in placental and decidual tissues. Overexpression of miR-101-5p impaired the migration and invasion of HTR8/SVneo cells. DUSP6 was identified as a potential downstream target of miR-101-5p. The expression of miR-101-5p was negatively correlated with DUSP6 expression in HTR8/SVneo cells, and miR-101-5p directly bound to the 3' UTR region of DUSP6. DUSP6 upregulation rescued the migratory and invasive abilities of HTR8/SVneo cells in the presence of miR-101-5p overexpression. Additionally, miR-101-5p downregulated DUSP6, resulting in enhanced ERK1/2 phosphorylation. CONCLUSION: This study revealed that miR-101-5p inhibits the migration and invasion of HTR8/SVneo cells by regulating the DUSP6-ERK1/2 axis, providing a new molecular mechanism for the pathogenesis of PE.


Asunto(s)
MicroARNs , Preeclampsia , Humanos , Embarazo , Femenino , Placenta/metabolismo , Trofoblastos/metabolismo , Preeclampsia/patología , Hibridación Fluorescente in Situ , Sistema de Señalización de MAP Quinasas/genética , Línea Celular , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Fosfatasa 6 de Especificidad Dual/genética , Fosfatasa 6 de Especificidad Dual/metabolismo
9.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203269

RESUMEN

Esophageal adenocarcinoma (EAC) is a malignant tumor with poorly understood molecular mechanisms. This study endeavors to elucidate how the long non-coding RNAs (lncRNAs) MALAT1, MANCR and PSMA3-AS1, as well as the microRNA miR-101, exhibit specific expression patterns in the pathogenesis and prognosis of EAC. A total of 50 EAC tissue samples (tumors and lymph nodes) and a control group comprising 26 healthy individuals were recruited. The samples underwent quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The relative expression levels of MALAT1, MANCR, PSMA3-AS1, and miR-101 were ascertained and correlated with various clinicopathological parameters including TNM staging, tumor characteristics (size and grade of the tumor) lymphatic invasion, disease-free (DFS) and overall survival (OS) of EAC patients. Quantitative analyses revealed that MALAT1 and MANCR were significantly upregulated in EAC tumors and positive lymph nodes when compared to control tissues (p < 0.05). Such dysregulations correlated positively with advanced lymphatic metastases and a higher N stage. DFS in the subgroup of patients with negative lymph nodes was higher in the setting of low-MANCR-expression patients compared to patients with high MANCR expression (p = 0.02). Conversely, miR-101 displayed a significant downregulation in EAC tumors and positive lymph nodes (p < 0.05), and correlated negatively with advanced tumor stage, lymphatic invasion and the grade of the tumor (p = 0.006). Also, patients with low miR-101 expression showed a tendency towards inferior overall survival. PSMA3-AS1 did not demonstrate statistically significant alterations (p > 0.05). This study reveals MALAT1, MANCR, and miR-101 as putative molecular markers for prognostic evaluation in EAC and suggests their involvement in EAC progression.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Adenocarcinoma/genética , Neoplasias Esofágicas/genética , MicroARNs/genética , Complejo de la Endopetidasa Proteasomal
10.
Pharmacol Res ; 182: 106332, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779817

RESUMEN

Currently, the reported source of extracellular vesicles (EVs) for the treatment of ischemic stroke(IS)is limited to mammals. Moreover, these EVs are restricted to clinical translation by the high cost of cell culture. In this respect, Lactobacillus plantarum culture is advantaged by low cost and high yield. However, it is poorly understood whether Lactobacillus plantarum-derived EVs (LEVs) are applicable for the treatment of IS. Here, our results demonstrated that LEVs reduced apoptosis in ischemic neuron both in vivo and in vitro. As revealed by high-throughput sequencing, miR-101a-3p expression was significantly elevated by LEV treatment in OGD/R-induced neurons, as confirmed in the tMCAO mice treated with LEVs. Mechanistically, c-Fos was directly targeted by miR-101a-3p. In addition, c-Fos determined ischemia-induced neuron apoptosis in vivo and in vitro through the TGF-ß1 pathway, miR-101a-3p inhibition aggravated ischemia-induced neuron apoptosis in vitro and in vivo, and miR-101a-3p overexpression produced the opposite results. Hsa-miR-101-3p was downregulated in the plasma of patients with IS but upregulated in the patients with neurological recovery after rt-PA intravenous thrombolysis. In conclusion, Our results demonstrated for the first time that LEVs might inhibit neuron apoptosis via the miR-101a-3p/c-Fos/TGF-ß axis, and has-miR-101-3p is a potential marker of neurological recovery in IS patients.


Asunto(s)
Lesiones Encefálicas , Vesículas Extracelulares , Lactobacillus plantarum , MicroARNs , Animales , Apoptosis , Vesículas Extracelulares/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Mamíferos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Factor de Crecimiento Transformador beta
11.
Purinergic Signal ; 18(1): 123-133, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741235

RESUMEN

Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama Triple Negativas , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Antígenos CD , Apirasa , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
12.
J Pathol ; 253(2): 186-197, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33095908

RESUMEN

Cystic fibrosis (CF), a genetic disorder, is characterized by chronic lung disease. Small non-coding RNAs are key regulators of gene expression and participate in various processes, which are dysregulated in CF; however, they remain poorly studied. Here, we determined the complete microRNAs (miRNAs) expression pattern in three CF ex vivo models. The miRNA profiles of air-liquid interface cultures of airway epithelia (bronchi, nasal cells, and nasal polyps) samples from patients with CF and non-CF controls were obtained by deep sequencing. Compared with non-CF controls, several miRNAs were deregulated in CF samples; for instance, miR-181a-5p and the miR-449 family were upregulated. Moreover, mature miRNAs often showed variations (i.e. isomiRs) relative to their reference sequence, such as miR-101, suggesting that miRNAs consist of heterogeneous repertoires of multiple isoforms with different effects on gene expression. Analysis of miR-181a-5p and miR-101-3p roles indicated that they regulate the expression of WISP1, a key component of cell proliferation/migration programs. We showed that miR-101 and miR-181a-5p participated in aberrant recapitulation of wound healing programs by controlling WISP1 mRNA and protein level. Our miRNA expression data bring new insights into CF physiopathology and define new potential therapeutic targets in CF. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas CCN de Señalización Intercelular/genética , Fibrosis Quística/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas/genética , Movimiento Celular , Proliferación Celular , Fibrosis Quística/patología , Fibrosis Quística/terapia , Expresión Génica , Genes Reporteros , Humanos , ARN Mensajero/genética , Análisis de Matrices Tisulares , Regulación hacia Arriba
13.
J Biochem Mol Toxicol ; 36(2): e22959, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34766670

RESUMEN

Long noncoding RNAs (LncRNAs) have been reported to play a vital role in the development of oesophageal squamous cell carcinoma (OSCC). Our previous study revealed that the significant upregulation of the LncRNA small nucleolar RNA host gene 6 (SNHG6) in OSCC promotes OSCC tumourigenesis. However, the mechanisms underlying the dynamics of SNHG6 expression in OSCC have rarely been studied. In this study, we verified the tumour-promoting effect of SNHG6 through sponging miR-101-3p, and their levels were negatively correlated in human samples of OSCC. In addition, miR-101-3p overexpression reversed the effect of SNHG6. Moreover, we confirmed that SNHG6/miR-101-3p affects OSCC by regulating the expression of the enhancer of zeste 2 (EZH2). The effect of EZH2 silencing resembled closely that of SNHG6 knockdown. EZH2 silencing inhibited the expression of protein cyclin D1 and ß-catenin, but in contrast, it enhanced the expression of E-cadherin. These findings demonstrated the oncogenic role of SNHG6, which promotes OSCC progression by regulating the expression of EZH2 through its interaction with miR-101-3p. These findings may help in improving the diagnosis and treatment methods of OSCC.


Asunto(s)
Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2/biosíntesis , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , MicroARNs/biosíntesis , Proteínas de Neoplasias/biosíntesis , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Humanos , MicroARNs/genética , Proteínas de Neoplasias/genética , ARN Largo no Codificante/genética , ARN Neoplásico/genética
14.
BMC Urol ; 22(1): 193, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434587

RESUMEN

BACKGROUND: NEAT1 has been shown to play an oncogenic role in many kinds of cancers. However, detailed roles of NEAT1 in bladder cancer are largely unknown. METHODS: In the present study, the expression of NEAT1, miR-101 and VEGF-C was detected in human bladder cancer samples. The relationship between NEAT1 and the prognosis of patients with bladder cancer was analysed. In vitro experiments explored the effects of NEAT1 on biological behaviours of bladder cancer T24 and 5637 cells. Bioinformatics prediction and luciferase assays were used to assay the regulatory mechanism of action of NEAT1 and miR-101. Loss and gain of the expression of miR-101 and VEGF-C were used to explore the effects of the NEAT1/miR-101/VEGF-C pathway on T24 and 5637 cells. The effect of NEAT1 on the growth of bladder cancer in vivo was explored using an orthotopic tumourigenesis model. RESULTS: NEAT1 and VEGF-C were significantly upregulated in bladder cancer samples, and miR-101 was significantly downregulated. NEAT1 upregulation was associated with poorer recurrence-free survival of patients with bladder cancer. Overexpression of NEAT1 promoted the proliferation, migration and invasion of bladder cancer cells. The results of the luciferase assay indicated that miR-101 was a target of NEAT1. The promoting effects of NEAT1 on bladder cancer cells were reversed by miR-101 upregulation, and inhibition of miR-101 enhanced the effects of NEAT1. Overexpression of VEGF-C had a clear synergistic effect with the action of NEAT1. Overexpression of NEAT1 increased tumour growth and induced the development of liver metastasis. CONCLUSIONS: In conclusion, our data indicated that NEAT1 was expressed at high levels in bladder cancer patients and correlated with unfavourable prognosis. NEAT1 promoted malignant development of bladder cancer in vitro and in vivo by regulating the miR-101/VEGF-C pathway.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Carcinogénesis/genética
15.
Clin Exp Hypertens ; : 1-7, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047533

RESUMEN

OBJECTIVES: This study explored the miR-101 clinical significance in hypertensive disorder complicating pregnancy (HDCP). METHODS: Pregnant women with gestational hypertension (GH)/mild preeclampsia (mPE)/severe preeclampsia (sPE) were included. The miR-101 levels were measured. Correlation between miR-101 and soluble fmslike tyrosine kinase-1 (sFlt-1), miR-101 predictive value, and factors influencing HDCP grade were evaluated. RESULTS: Serum miR-101 was down-regulated and negatively correlated with sFlt-1. miR-101 was an independent risk factor for HDCP and decreased with HDCP severity. The area under the curve of miR-101 in differentiating GH from mPE and mPE from sPE was 0.7764 and 0.8529. CONCLUSION: Serum miR-101 level may be a biomarker for grading HDCP.

16.
Drug Dev Res ; 83(4): 891-899, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35080031

RESUMEN

Verbascoside is a kind of phenylpropanoid glycoside derived from multiple medicinal plants, exerting anti-tumor effects in diverse human malignancies. However, the function of Verbascoside on the radiosensitivity of hepatocellular carcinoma (HCC) cells remains unknown. Human Huh7 and HepG2 cell lines were treated with Verbascosideis, and cell viability was detected with cell counting kit-8 (CCK-8) assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect miR-101-3p expression, and Western blot was used to quantify the expression of WEE1 G2 checkpoint kinase (WEE1). Then, CCK-8 and flow cytometry assays were used to detect the proliferation and apoptosis of HCC cells after Verbascoside and X-ray combined treatment, and the expressions of WEE1 and apoptosis-related proteins Bax and Bcl-2 were detected by Western blot. Verbascoside could improve the radiosensitivity of HCC cells in a dose-dependent manner. Verbascoside increased the expression of miR-101-3p but reduced WEE1 expression in HCC cells. Additionally, WEE1 was identified as a target of miR-101-3p. MiR-101-3p inhibition or WEE1 overexpression could reverse the effect of Verbascoside on the viability and apoptosis of HCC cells. Verbascoside increases the radiosensitivity of hepatocellular carcinoma cells via modulating miR-101-3p/WEE1 axis.


Asunto(s)
Carcinoma Hepatocelular , Glucósidos , Neoplasias Hepáticas , MicroARNs , Fenoles , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucósidos/farmacología , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , MicroARNs/genética , Fenoles/farmacología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Tolerancia a Radiación
17.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36613908

RESUMEN

Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. In the early phase of OC detection, the current treatment and diagnostic methods are not efficient and sensitive enough. Therefore, it is crucial to explore the mechanisms of OC metastasis and discover valuable factors for early diagnosis of female cancers and novel therapeutic strategies for metastasis. Exosomes are known to be involved in the development, migration, and invasion of cancer cells, and their cargo could be useful for the non-invasive biopsy development. CD151- and Tspan8-positive exosomes are known to support the degradation of the extracellular matrix, and are involved in stroma remodeling, angiogenesis and cell motility, as well as the association of miR-24 and miR-101 with these processes. The objective of this study was to explore the relationship of these components of exosomal cargo, in patients with OC, to clarify the clinical significance of these markers in liquid biopsies. The levels of tetraspanins Tspan8+ and CD151+ exosomes were significantly higher in plasma exosomes of OC patients compared with healthy females (HFs). The relative levels of miR-24 and miR-101 in plasma exosomes of HFs were significantly higher than in plasma exosomes of OC patients, while the levels of these microRNAs in exosomes from plasma and ascites of ill females showed no difference. Our study revealed a strong direct correlation between the change in the ascites exosomes CD151+Tspan8+ subpopulation level and the expression levels of the ascites (R = 0.81, p < 0.05) and plasma exosomal miR-24 (R = 0.74, p < 0.05) in OC patients, which confirms the assumption that exosomal cargo act synergistically to increase cellular motility, affecting cellular processes and signaling. Bioinformatics analysis confirmed the involvement of CD151 and Tspan8 tetraspanins and genes controlled by miR-24-3p and miR-101 in signaling pathways, which are crucial for carcinogenesis, demonstrating that these tetraspanins and microRNAs are potential biomarkers for OC screening, and predictors of poor clinicopathological behavior in tumors.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , MicroARNs/metabolismo , Exosomas/metabolismo , Líquido Ascítico/metabolismo , Ascitis/genética , Ascitis/metabolismo , Neoplasias Ováricas/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
18.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012615

RESUMEN

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encodes for a chloride channel defective in Cystic Fibrosis (CF). Accordingly, upregulation of its expression might be relevant for the development of therapeutic protocols for CF. MicroRNAs are deeply involved in the CFTR regulation and their targeting with miRNA inhibitors (including those based on Peptide Nucleic Acids, PNAs)is associated with CFTR upregulation. Targeting of miR-145-5p, miR-101-3p, and miR-335-5p with antisense PNAs was found to be associated with CFTR upregulation. The main objective of this study was to verify whether combined treatments with the most active PNAs are associated with increased CFTR gene expression. The data obtained demonstrate that synergism of upregulation of CFTR production can be obtained by combined treatments of Calu-3 cells with antisense PNAs targeting CFTR-regulating microRNAs. In particular, highly effective combinations were found with PNAs targeting miR-145-5p and miR-101-3p. Content of mRNAs was analyzed by RT-qPCR, the CFTR production by Western blotting. Combined treatment with antagomiRNAs might lead to maximized upregulation of CFTR and should be considered in the development of protocols for CFTR activation in pathological conditions in which CFTR gene expression is lacking, such as Cystic Fibrosis.


Asunto(s)
Antagomirs , Fibrosis Quística , MicroARNs , Ácidos Nucleicos de Péptidos , Regiones no Traducidas 3' , Antagomirs/farmacología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , MicroARNs/genética , Ácidos Nucleicos de Péptidos/farmacología
19.
Breast Cancer Res Treat ; 187(3): 695-713, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34041621

RESUMEN

PURPOSE: Extravasation of triple-negative (TN) metastatic breast cancer (BC) cells through the brain endothelium (BE) is a critical step in brain metastasis (BM). During extravasation, metastatic cells induce alteration in the inter-endothelial junctions and transmigrate through the endothelial barrier. Transmigration of metastatic cells is mediated by the upregulation of cyclooxygenase-2 (COX-2) that induces matrix metalloproteinase-1 (MMP-1) capable of degrading inter-endothelial junctional proteins. Despite their important role in BM, the molecular mechanisms upregulating COX-2 and MMP-1 in TNBC cells remain poorly understood. In this study, we unraveled a synergistic effect of a pair of micro-RNAs (miR-26b-5p and miR-101-3p) on COX-2 expression and the brain transmigration ability of BC cells. METHODS: Using a gain-and-loss of function approach, we modulated levels of miR-26b-5p and miR-101-3p in two TNBC cell lines (the parental MDA-MB-231 and its brain metastatic variant MDA-MB-231-BrM2), and examined the resultant effect on COX-2/MMP-1 expression and the transmigration of cancer cells through the BE. RESULTS: We observed that the dual inhibition of miR-26b-5p and miR-101-3p in BC cells results in higher increase of COX-2/MMP-1 expression and a higher trans-endothelial migration compared to either micro-RNA alone. The dual restoration of both micro-RNAs exerted a synergistic inhibition on COX-2/MMP-1 by targeting COX-2 and potentiated the suppression of trans-endothelial migration compared to single micro-RNA. CONCLUSION: These findings provide new insights on a synergism between miR-26-5p and miR-101-3p in regulating COX-2 in metastatic TNBC cells and shed light on miR-26-5p and miR-101-3p as prognostic and therapeutic targets that can be exploited to predict or prevent BM.


Asunto(s)
Ciclooxigenasa 2 , MicroARNs , Neoplasias de la Mama Triple Negativas , Encéfalo/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
20.
Neurochem Res ; 46(5): 1119-1128, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33559830

RESUMEN

This study aimed to explore the effects and function of microRNA-101a-3p (miR-101a-3p) in epilepsy. Rat model of pilocarpine-induced epilepsy was established and the seizure frequency was recorded. Expression of miR-101a-3p and c-Fos in hippocampus tissues of Rat models were detected by qRT-PCR and western blot. Besides, we established a hippocampal neuronal culture model of acquired epilepsy using Mg2+ free medium to evaluate the effects of miR-101a-3p and c-Fos in vitro. Cells were transfected with miR-101a-3p mimic, si-c-FOS, miR-101a-3p + c-FOS and its corresponding controls. MTT assay was used to detect cell viability upon transfection. Flow cytometry was performed to determine the apoptosis rate. Western blot was performed to measure the protein expression of apoptosis-related proteins (Bcl-2, Bax, and cleaved caspase 3), autophagy-related proteins (LC3 and Beclin1) and c-FOS. The targeting relationship between miR-101a-3p and c-FOS was predicted and verified by TargetScan software and dual-luciferase reporter assay. The role of miR-101a-3p was validated using epilepsy rat models in vivo. Another Rat models of pilocarpine-induced epilepsy with miR-NC or miR-101a-3p injection were established to evaluate the effect of miR-101a-3p overexpression on epilepsy in vivo. MiR-101a-3p was downregulated while c-FOS was increased in hippocampus tissues of Rat model of pilocarpine-induced epilepsy. Overexpression of miR-101a-3p or c-FOS depletion promoted cell viability, inhibited cell apoptosis and autophagy. C-FOS was a target of miR-101a-3p and miR-101a-3p negatively regulated c-FOS expression to function in epilepsy. Overexpression of miR-101a-3p attenuated pilocarpine-induced epilepsy in Rats in vivo. This study indicated that miR-101a-3p could attenuate pilocarpine-induced epilepsy by repressing c-Fos expression.


Asunto(s)
Epilepsia/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Supervivencia Celular/fisiología , Regulación hacia Abajo/fisiología , Epilepsia/inducido químicamente , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Pilocarpina , Ratas Sprague-Dawley , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA