Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Commun Signal ; 21(1): 366, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129877

RESUMEN

BACKGROUND: Macrophages and neutrophils are rapidly recruited around Schistosome eggs to form granulomas. Extracellular traps (ETs) of macrophages and neutrophils are part of the pathogen clearance armamentarium of leukocytes. Schistosome eggs possess the ability to resist attack by the host's immune cells and survive by employing various immune evasion mechanisms, including the release of extracellular vesicles (EVs). However, the specific mechanisms by which Schistosome egg-derived EVs (E-EVs) evade the immune response and resist attack from macrophage and neutrophil ETs remain poorly understood. In this study, we aimed to investigate the association between E-EVs and macrophage/neutrophil ETs. METHODS: EVs were isolated from the culture supernatant of S. japonicum eggs and treated macrophages and neutrophils with E-EVs and Sja-miR-71a. The formation of ETs was then observed. Additionally, we infected mice with S. japonicum, administered HBAAV2/9-Sja-miR-71a, and the formation of macrophage ETs (METs) and neutrophil ETs (NETs) in the livers was measured. Sema4D-knockout mice, RNA sequencing, and trans-well assay were used to clarify Sja-miR-71a in E-EVs inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. RESULTS: Our findings revealed that E-EVs were internalized by macrophages and neutrophils, leading to the inhibition of METs and NETs formation. The highly expressed Sja-miR-71a in E-EVs targeted Sema4D, resulting in the up-regulation of IL-10 and subsequent inhibition of METs and NETs formation. Sema4D knockout up-regulated IL-10 expression and inhibited the formation of METs and NETs. Furthermore, we further demonstrated that Sja-miR-71a inhibits METs and NETs formation via the Sema4D/ PPAR-γ/ IL-10 axis. CONCLUSIONS: In summary, our findings provide new insights into the immune evasion abilities of Schistosome eggs by demonstrating their ability to inhibit the formation of METs and NETs through the secretion of EVs. This study enhances our understanding of the host-pathogen interaction and may have implications for the development of novel therapeutic approaches. Video Abstract.


Asunto(s)
Trampas Extracelulares , Vesículas Extracelulares , MicroARNs , Schistosoma japonicum , Ratones , Animales , Schistosoma japonicum/genética , Interleucina-10 , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Neutrófilos , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos
2.
Exp Parasitol ; 251: 108551, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37257717

RESUMEN

Cystic Echinococcosis (CE) is a common zoonotic disease seen in human and animals worldwide, caused by the larval form of Echinococcus granulosus. In this study, E. granulosus s.l. species and haplotypes were determined in hydatid cysts isolated from cattle and sheep, and the expression levels of egr-miR-7, egr-miR-71 and egr-miR-96 miRNAs were compared in different cyst structures. A total of 82 (cattle, n = 41; sheep, n = 41) hydatid cyst isolates (germinal membranes and/or protoscoleces) were collected from a slaughterhouse in Elazig province of Turkey. After mt-CO1 gene sequences were made, 81 out of 82 hydatid cyst isolates were determined as E. granulosus s.s. (G1 and G3), while an isolate of cattle origin was determined as Echinococcus canadensis (G6/7). A total of 26 nucleotide polymorphisms and 29 haplotype groups were identified in the samples. miRNA expressions in germinal membranes of sterile cysts and germinal membrane and protoscoleces of fertile cysts were investigated by qRT-PCR and Real Time PCR analyses. It was determined that miRNAs were expressed at high levels in 79.31% of the 29 haplotype groups and at low levels in the remaining 10.34%. In 10 fertile samples of sheep origin, egr-miR-7, egr-miR-71 and egr-miR-96 miRNAs were found to be 44, 168, and 351-fold higher in expression, respectively, in the germinal membrane compared to the protoscoleces. Especially egr-miR-96 may have the potential to be used as biomarkers in the diagnosis of active CE.


Asunto(s)
Enfermedades de los Bovinos , Quistes , Equinococosis , Echinococcus granulosus , Echinococcus , MicroARNs , Enfermedades de las Ovejas , Humanos , Animales , Bovinos , Ovinos/genética , Echinococcus granulosus/genética , Turquía , Equinococosis/veterinaria , Equinococosis/diagnóstico , Echinococcus/genética , MicroARNs/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Genotipo
3.
Parasitol Res ; 121(12): 3619-3625, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36266590

RESUMEN

Cystic echinococcosis (CE) is a neglected helminthic zoonosis in many parts of the world. Some CE cysts in the intermediate host are non-fertile. Considering the function of microRNAs in many biological processes such as embryonic development, cell proliferation, and apoptosis, this study investigated the function and comparison of miR-71 and let-7 in fertile and non-fertile CE cysts. Here, we determined the expression level of the miRNAs for 33 animal cysts and 16 human cysts (Echinococcus granulosus sensu stricto (G1). The quantitative real-time PCR method was conducted for the expression evaluation of miR-71 and let-7. The expression of both miRNAs in all samples was determined using the following formula: [ΔCT = CT (target) - CT (internal control)]. A comparison of Δct of miR-71 and let-7 in fertile and non-fertile cysts did not show a significant difference (P = 0.911 and 0.354). In cattle, sheep, and humans, Δct of miR-71, and let-7 were higher, respectively. Therefore, the mean expression of miR-71 and let-7 indicates an increase in humans compared to other intermediate hosts. Also, statistical results show a significant difference in the expression of these miRNAs in sheep, cattle, and human cysts (P = 0.025 and 0.01). The lower expression of these miRNAs in cattle cysts and their common infertility might be associated with the hypothesis and function of miRNAs in the fertility of CE cysts. So we should not ignore the function and role of miRNAs in this subject due to the importance of infertility in E. granulosus epidemiology.


Asunto(s)
Quistes , Equinococosis , MicroARNs , Animales , Bovinos , Humanos , Enfermedades de los Bovinos/epidemiología , Quistes/parasitología , Equinococosis/genética , Equinococosis/veterinaria , Echinococcus granulosus , MicroARNs/genética , Ovinos
4.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499019

RESUMEN

A rhabditid entomopathogenic nematode (EPN), Oscheius chongmingensis, has a stable symbiotic relationship with the bacterial strain Serratia nematodiphila S1 harbored in its intestines and drastically reduced viability when associated with a non-native strain (186) of the same bacterial species. This nematode is thus a good model for understanding the molecular mechanisms and interactions involved between a nematode host and a member of its intestinal microbiome. Transcriptome analysis and RNA-seq data indicated that expression levels of the majority (8797, 87.59%) of mRNAs in the non-native combination of O. chongmingensis and S. nematodiphila 186 were downregulated compared with the native combination, including strain S1. Accordingly, 88.84% of the total uniq-sRNAs mapped in the O. chongmingensis transcriptome were specific between the two combinations. Six DEGs, including two transcription factors (oc-daf-16 and oc-goa-1) and four kinases (oc-pdk-1, oc-akt-1, oc-rtk, and oc-fak), as well as an up-regulated micro-RNA, oc-miR-71, were found to demonstrate the regulatory mechanisms underlying diminished host viability induced by a non-native bacterial strain. Oc-rtk and oc-fak play key roles in the viability regulation of O. chongmingensis by positively mediating the expression of oc-daf-16 to indirectly impact its longevity and stress tolerances and by negatively regulating the expression of oc-goa-1 to affect the olfactory chemotaxis and fecundity. In response to the stress of invasion by the non-native strain, the expression of oc-miR-71 in the non-native combination was upregulated to downregulate the expression of its targeting oc-pdk-1, which might improve the localization and activation of the transcription factor DAF-16 in the nucleus to induce longevity extension and stress resistance enhancement to some extent. Our findings provide novel insight into comprehension of how nematodes deal with the stress of encountering novel potential bacterial symbionts at the physiological and molecular genetic levels and contribute to improved understanding of host-symbiont relationships generally.


Asunto(s)
MicroARNs , Nematodos , Animales , Análisis de Secuencia de ADN , Simbiosis , Nematodos/fisiología , Intestinos
5.
RNA ; 24(2): 159-172, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29114017

RESUMEN

Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1/Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica , MicroARNs/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Longevidad/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
6.
Exp Parasitol ; 183: 1-5, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29037783

RESUMEN

Echinococcus multilocularis metacestodes are a causative pathogen for alveolar echinococcosis in human beings, and have been found to express miRNAs including emu-miR-71. miR-71 is evolutionarily conserved and highly expressed across platyhelminths, but little is known about its role. Here it was shown that emu-miR-71 was differentially expressed in protoscoleces and was unlikely to be expressed in neoblasts. The results of the luciferase assay indicated that emu-miR-71 was able to bind in vitro to the 3'-UTR of emu-nlk, encoding a key regulator of cell division, causing significant downregulation of luciferase activity (p < 0.01) compared to the negative control and the construct with mutations in the binding site. Consistent with the decreased luciferase activity, transfection of emu-miR-71 mimics into protoscoleces notably repressed emu-NLK (p < 0.05). These results demonstrate the suppression of emu-nlk by emu-miR-71, potentially involved in the protoscolex development.


Asunto(s)
Echinococcus multilocularis/genética , MicroARNs/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regiones no Traducidas 3'/inmunología , Animales , Anticuerpos Antihelmínticos/metabolismo , Regulación hacia Abajo , Echinococcus multilocularis/enzimología , Echinococcus multilocularis/crecimiento & desarrollo , Echinococcus multilocularis/inmunología , Regulación de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Luciferasas/metabolismo , Ratones , Ratones Endogámicos DBA , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/inmunología , Plásmidos , ARN de Helminto/aislamiento & purificación , Conejos
7.
Noncoding RNA ; 9(4)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37624033

RESUMEN

MicroRNAs (miRNAs) perform a pivotal role in the regulation of gene expression across the animal kingdom. As negative regulators of gene expression, miRNAs have been shown to function in the genetic pathways that control many biological processes and have been implicated in roles in human disease. First identified as an aging-associated gene in C. elegans, miR-71, a miRNA, has a demonstrated capability of regulating processes in numerous different invertebrates, including platyhelminths, mollusks, and insects. In these organisms, miR-71 has been shown to affect a diverse range of pathways, including aging, development, and immune response. However, the exact mechanisms by which miR-71 regulates these pathways are not completely understood. In this paper, we review the identified functions of miR-71 across multiple organisms, including identified gene targets, pathways, and the conditions which affect regulatory action. Additionally, the degree of conservation of miR-71 in the evaluated organisms and the conservation of their predicted binding sites in target 3' UTRs was measured. These studies may provide an insight on the patterns, interactions, and conditions in which miR-71 is able to exert genotypic and phenotypic influence.

8.
Int J Parasitol ; 53(13): 699-710, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37699506

RESUMEN

Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.


Asunto(s)
Cestodos , Infecciones por Cestodos , Mesocestoides , MicroARNs , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cestodos/genética , Infecciones por Cestodos/veterinaria , Infecciones por Cestodos/parasitología , Mesocestoides/metabolismo , Estadios del Ciclo de Vida
9.
Parasite ; 30: 55, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084936

RESUMEN

Cystic echinococcosis (CE) is a global zoonotic disease caused by Echinococcus granulosus, posing a great threat to human and animal health. MiRNAs are small regulatory noncoding RNA involved in the pathogenesis of parasitic diseases, possibly via exosomes. Egr-miR-71 has been identified as one of the miRNAs in the blood of CE patients, but its secretory characteristics and functions remains unclear. Herein, we studied the secretory and biological activity of exosomal egr-miR-71 and its immunoregulatory functions in sheep peripheral blood mononuclear cells (PBMCs). Our results showed that egr-miR-71 was enriched in the exosome secreted by protoscoleces with biological activity. These egr-miR-71-containing exosomes were easily internalized and then induced the dysregulation of cytokines (IL-10 and TNF-α), nitric oxide (NO) and key components (CD14 and IRF5) in the LPS/TLR4 pathway in the coincubated sheep PBMCs. Similarly, egr-miR-71 overexpression also altered the immune functions but exhibited obvious differences in regulation of the cytokines and key components, preferably inhibiting proinflammatory cytokines (IL-1α, IL-1ß and TNF-α). These results demonstrate that exosomal egr-miR-71 is bioactive and capacity of immunomodulation of PBMCs, potentially being involved in immune responses during E. granulosus infection.


Title: Caractérisation comparative du microARN-71 des exosomes d'Echinococcus granulosus. Abstract: L'échinococcose kystique (EK) est une maladie zoonotique mondiale causée par Echinococcus granulosus, représentant une grande menace pour la santé humaine et animale. Les miARN sont des petits ARN régulateurs non codants impliqués dans la pathogenèse des maladies parasitaires, éventuellement via les exosomes. Egr-miR-71 a été identifié comme l'un des miARN présents dans le sang des patients atteints d'EK, mais ses caractéristiques et fonctions sécrétoires restent floues. Ici, nous avons étudié l'activité sécrétoire et biologique du egr-miR-71 exosomal et ses fonctions immunorégulatrices dans les cellules mononucléées du sang périphérique (CMSP) de mouton. Nos résultats ont montré qu'egr-miR-71 était enrichi dans l'exosome sécrété par les protoscolex ayant une activité biologique. Ces exosomes contenant egr-miR-71 ont été facilement internalisés et ont ensuite induit la dérégulation des cytokines (IL-10 et TNF-α), de l'oxyde nitrique (NO) et des composants clés (CD14 et IRF5) de la voie LPS/TLR4 dans les CMSP de mouton co-incubées. De même, la surexpression d'egr-miR-71 a également modifié les fonctions immunitaires mais a montré des différences évidentes dans la régulation des cytokines et des composants clés, inhibant de préférence les cytokines pro-inflammatoires (IL-1α, IL-1ß et TNF-α). Ces résultats démontrent que l'egr-miR-71 exosomal est bioactif et possède une capacité d'immunomodulation des CMSP, potentiellement impliquée dans les réponses immunitaires lors d'une infection à E. granulosus.


Asunto(s)
Equinococosis , Echinococcus granulosus , Exosomas , MicroARNs , Animales , Humanos , Citocinas/genética , Equinococosis/veterinaria , Equinococosis/parasitología , Echinococcus granulosus/genética , Exosomas/metabolismo , Leucocitos Mononucleares , MicroARNs/genética , Ovinos , Factor de Necrosis Tumoral alfa
10.
Mol Biochem Parasitol ; 254: 111556, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36739092

RESUMEN

Cyst echinococcosis, caused by Echinococcus granulosus, remains a zoonotic disease posing a great threat to public health and meat production industry. Sheep infected with E. granulosus show relatively high abundance of egr-miR-71 in the sera, but its role is unknown. Using bioinformatics and cell migration and Transwell assays, we comparatively analyzed the proteomes and cell invasion of sheep PBMCs in response to egr-miR-71 overexpression. The results showed that the egr-miR-71 induced a total of 157 proteins being differentially expressed and mainly involved in immune responses. In sheep PBMCs, egr-miRNA-71 overexpression induced significant downregulation of macrophage migration inhibitory factor (MIF) and accordingly promoted cell migration and invasion compared with the control. The results will provide a clue for further investigation of a role of circulating egr-miR-71 in immune responses during E. granulosus infection.


Asunto(s)
Equinococosis , Echinococcus granulosus , MicroARNs , Enfermedades de las Ovejas , Animales , Ovinos , Echinococcus granulosus/genética , MicroARNs/genética , Leucocitos Mononucleares , Zoonosis
11.
J Mol Neurosci ; 72(3): 459-467, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34510374

RESUMEN

This study investigates the association between the C14orf119 gene rs6736 polymorphism and ischemic stroke (IS) susceptibility, and explores the influence of the rs6736 polymorphism on the binding between miR-7-1 and the C14orf119 gene. mRNA expression levels were determined in 45 IS patients and 45 matched controls via real-time quantitative PCR. A total of 774 IS patients and 793 matched controls were recruited from a Han Chinese population for genotyping, performed with the Sequenom MassARRAY iPLEX platform. A dual-luciferase reporter assay was used for the analysis of miRNA-mRNA binding. The results showed that the mRNA expression of C14orf119 differed significantly between IS patients and controls (t = -2.235, P = 0.030). Significant associations were noted between the C14orf119 gene rs6736 polymorphism and IS susceptibility in Han Chinese individuals under the additive model [ORadj (95% CI) = 0.87 (0.76-1.00) Padj = 0.048] and dominant model [ORadj (95% CI) = 0.76 (0.61-0.94), Padj = 0.014], with adjustment for age and sex. Mutations in the rs6736 polymorphism disrupted the binding of miR-7-1 and the C14orf119 gene. The results of this study show that the rs6736 polymorphism in the 3'-untranslated region of the C14orf119 gene not only is associated with IS but also modifies the binding between miR-7-1 and the C14orf119 gene. The C14orf119 gene may participate in the relationship between IS and miR-7-1.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Isquemia Encefálica/genética , Estudios de Casos y Controles , China/epidemiología , Predisposición Genética a la Enfermedad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/genética
12.
Genetics ; 218(2)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33755114

RESUMEN

Studying the evolutionary processes that shaped aging offers a path for understanding the causes of aging. The antagonistic pleiotropy theory for the evolution of aging proposes that the inverse correlation between age and natural selection strength allows positive selection of gene variants with early-life beneficial contributions to fitness despite detrimental late-life consequences. However, mechanistic understanding of how this principle manifests in aging is still lacking. We previously identified antagonistic pleiotropy in the function of the Caenorhabditis elegans JNK homolog KGB-1, which provided stress protection in developing larvae, but sensitized adults to stress and shortened their lifespan. To a large extent, KGB-1's contributions depended on age-dependent and opposing regulation of the stress-protective transcription factor DAF-16, but the underlying mechanisms remained unknown. Here, we describe a role for the microRNA miR-71 in mediating effects of KGB-1 on DAF-16 and downstream phenotypes. Fluorescent imaging along with genetic and survival analyses revealed age-dependent regulation of mir-71 expression by KGB-1-upregulation in larvae, but downregulation in adults-and showed that mir-71 was required both for late-life effects of KGB-1 (infection sensitivity and shortened lifespan), as well as for early life resistance to cadmium. While mir-71 disruption did not compromise development under protein-folding stress (known to depend on KGB-1), disruption of the argonaute gene alg-1, a central component of the microRNA machinery, did. These results suggest that microRNAs play a role in mediating age-dependent antagonistic contributions of KGB-1 to survival, with mir-71 playing a central role and additional microRNAs potentially contributing redundantly.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Longevidad/genética , MicroARNs/metabolismo , Animales , Animales Modificados Genéticamente , Regulación hacia Abajo , Pleiotropía Genética , Larva/crecimiento & desarrollo , MicroARNs/genética , Estrés Fisiológico/genética , Regulación hacia Arriba
13.
Int Immunopharmacol ; 34: 259-262, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26995025

RESUMEN

The microRNAs (miRNAs) are a class of small regulatory non-coding RNA that contributes to the activation of host-pathogen cross-talk during infection. In helminthes, miR-71 is highly conserved and it has recently been detected in nematode exosomes, as well as in the sera and/or fluids of infected humans and mice. However, the role of miR-71 during infection remains poorly characterized. Herein, we show that Ago1 and Ago4, which encode key components of the small RNA-induced silencing complex (RISC), were up-regulated in murine macrophage RAW264.7 cells transfected by Echinococcus multilocularis miR-71 (emu-miR-71) mimics. Using a miRNA PCR array, none of the 84 miRNAs involved in inflammation or autoimmunity were significantly up- or down-regulated in the transfected cells (p>0.05). Although it did not influence IL-10 production by the treated cells (p>0.05), the mimics significantly repressed the production of NO 12 h after treatment with LPS and IFN-γ (p<0.01), identifying another potential mechanism whereby parasites can carefully regulate host levels of NO. These findings indicate that the release of parasite-derived miR-71 into hosts can affect the functions of macrophages, and possibly represents an exciting direction for studies of the interplay between parasites and hosts.


Asunto(s)
Proteínas Argonautas/metabolismo , Echinococcus multilocularis/genética , Factores Eucarióticos de Iniciación/metabolismo , Macrófagos/fisiología , MicroARNs/inmunología , ARN de Helminto/inmunología , Animales , Proteínas Argonautas/genética , Autoinmunidad/genética , Mimetismo Biológico , Línea Celular , Factores Eucarióticos de Iniciación/genética , Regulación de la Expresión Génica/genética , Inflamación/genética , Lipopolisacáridos/inmunología , Ratones , MicroARNs/genética , Óxido Nítrico/metabolismo , ARN de Helminto/genética
14.
Methods Mol Biol ; 1366: 359-372, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26585150

RESUMEN

Protection of motoneurons is an important therapeutic goal in the treatment of neurological disorders. Recent reports have suggested that specific microRNAs (miRs) could modulate the expression of particular proteins for significant alterations in the pathogenesis of different neurological disorders. Thus, combination of overexpression of a specific neuroprotective miR and treatment with a neuroprotective agent could be a novel strategy for functional protection of motoneurons. The protocols described herein demonstrate that miR-7-1, a neuroprotective miR, can enhance the functional neuroprotective effects of estrogen receptor agonists such as 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), Way 200070 (WAY), and estrogen (E2) in preventing apoptosis in A23187 calcium ionophore (CI) exposed VSC4.1 motoneurons. This article describes the protocols for the cell viability assay, transfection of VSC4.1 motoneurons with miRs, Annexin V/propidium iodide staining for apoptosis, Western blotting, patch-clamp recording of whole-cell membrane potential, and JC-1 staining for detection of mitochondrial membrane potential. Taken together, these protocols are used to demonstrate that miR-7-1 caused significant enhancement of the efficacy of estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons.


Asunto(s)
Estrógenos/farmacología , Terapia Genética/métodos , MicroARNs/metabolismo , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores de Estrógenos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Ionóforos de Calcio/toxicidad , Fusión Celular , Línea Celular , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Citoprotección , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Ratones , MicroARNs/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Técnicas de Placa-Clamp , Ratas , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transfección , Flujo de Trabajo
15.
Neuroscience ; 256: 322-33, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24157932

RESUMEN

Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERß agonist), and estrogen (EST, ERα and ERß agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERß, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIß) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI.


Asunto(s)
MicroARNs/farmacología , Neuronas Motoras/efectos de los fármacos , Neuroprostanos/farmacología , Receptores de Estrógenos/agonistas , Médula Espinal/citología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cloruros/farmacología , Relación Dosis-Respuesta a Droga , Complejo IV de Transporte de Electrones/metabolismo , Embrión de Mamíferos , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ginsenósidos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Oxazoles/farmacología , Fenoles/farmacología , Ratas , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Sapogeninas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA