Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(1): 773-787, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38248352

RESUMEN

The study of molecular drivers of cancer is an area of rapid growth and has led to the development of targeted treatments, significantly improving patient outcomes in many cancer types. The identification of actionable mutations informing targeted treatment strategies are now considered essential to the management of cancer. Traditionally, this information has been obtained through biomarker assessment of a tissue biopsy which is costly and can be associated with clinical complications and adverse events. In the last decade, blood-based liquid biopsy has emerged as a minimally invasive, fast, and cost-effective alternative, which is better suited to the requirement for longitudinal monitoring. Liquid biopsies allow for the concurrent study of multiple analytes, such as circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), from a single blood sample. Although ctDNA assays are commercially more advanced, there is an increasing awareness of the clinical significance of the transcriptome and proteome which can be analysed using CTCs. Herein, we review the literature in which the microfluidic, label-free Parsortix® system is utilised for CTC capture, harvest and analysis, alongside the analysis of ctDNA from a single blood sample. This detailed summary of the literature demonstrates how these two analytes can provide complementary disease information.

2.
Small ; 20(40): e2405892, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39113653

RESUMEN

Nanoparticle surfactants have been widely used to construct structured liquids in oil-water systems. Less attention, though, has been given in non-aqueous systems, for example, oil-oil systems, mainly due to the lack of suitable surfactants. Here, by using newly developed molecular brush surfactants (MBSs) that form at the DMSO-silicone oil interface, the construction of all-oil microfluidic devices is reported with advanced functions. Due to the high interfacial activity of MBSs, Plateau-Rayleigh instabilities of liquid jets can be completely suppressed, leading to the production of liquid threads with jammed MBSs at the interface. Taking advantage of the 3D printing technique, all-oil microfluidic devices with complex structures can be constructed, showing promising applications in mass transmission, chemical separation, and material synthesis.

3.
Chembiochem ; : e202400580, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183173

RESUMEN

Organ-On-a-Chip (OOC) is a multichannel 3D-microfluidic cell-culture system included in a chip that stimulates the behavior of an organ. This technology relies on a multidisciplinary science benefiting from and helping in the progress of many fields including microbiology, microfluidics, biomaterials, and bioengineering. This review article summarizes the progress and achievements of various organ-on-chip technologies. It highlights the significant advantages of this technology in terms of reducing animal testing and providing personalized medical responses. In addition, this paper demonstrates how OOC is becoming a promising and powerful tool in pharmaceutical research to combat diseases. It predicts not only the effects of drugs on the target organs but also, using body-on-a-chip systems, it may provide insights into the side effects of the drug delivery on the other organs. Likewise, the models used for the construction of various organ-on-a-chip are investigated along with the design and materials of microfluidic devices. For each OOC, the integrated monitoring devices within the chips (e.g., sensors and biosensors) are discussed. We also discussed the evolution of FDA regulations and the potential in the near future for integrating OOCs in protocols approval that support and reduce the need and the failure rates in preclinical and clinical studies.

4.
J Theor Biol ; 592: 111893, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-38944380

RESUMEN

The mechanisms underlying the formation of necrotic regions within avascular tumors are complex and poorly understood. In this paper, we investigate the formation of a necrotic core in a 3D tumor cell culture within a microfluidic device, considering oxygen, nutrients, and the microenvironment acidification by means of a computational-mathematical model. Our objective is to simulate cell processes, including proliferation and death inside a microfluidic device, according to the microenvironmental conditions. We employed approximation utilizing finite element models taking into account glucose, oxygen, and hydrogen ions diffusion, consumption and production, as well as cell proliferation, migration and death, addressing how tumor cells evolve under different conditions. The resulting mathematical model was examined under different scenarios, being capable of reproducing cell death and proliferation under different cell concentrations, and the formation of a necrotic core, in good agreement with experimental data reported in the literature. This approach not only advances our fundamental understanding of necrotic core formation but also provides a robust computational platform to study personalized therapeutic strategies, offering an important tool in cancer research and treatment design.


Asunto(s)
Dispositivos Laboratorio en un Chip , Modelos Biológicos , Necrosis , Neoplasias , Humanos , Neoplasias/patología , Simulación por Computador , Proliferación Celular , Microambiente Tumoral/fisiología
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875583

RESUMEN

Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/genética , Movimiento/fisiología , Alphaproteobacteria/fisiología , Bacterias/crecimiento & desarrollo , Biopelículas , Escherichia coli/fisiología , Flagelos/fisiología , Hidrodinámica , Microfluídica/métodos , Modelos Biológicos , Pseudomonas putida/fisiología , Vibrio/fisiología
6.
Artículo en Inglés | MEDLINE | ID: mdl-39067808

RESUMEN

Odorant transport is of fundamental and applied importance. Using computational simulations, we studied odorant transport in an anatomically accurate model of the nasal passage of a hagfish (probably Eptatretus stoutii). We found that ambient water is sampled widely, with a significant ventral element. Additionally, there is a bilateral element to olfactory flow, which enters the single nostril in two narrow, laminar streams that are then split prior to the nasal chamber by the anterior edge of the central olfactory lamella. An appendage on this lamella directs a small portion (10-14%) of the overall nasal flow to the olfactory sensory channels. Much of the remaining flow is diverted away from the sensory channels by two peripheral channels. The anterior edge of the central olfactory lamella, together with a jet-impingement mechanism, disperses flow over the olfactory surfaces. Diffusion of odorant from bulk water to the olfactory surfaces is facilitated by the large surface area:volume ratio of the sensory channels, and by a resistance-based hydrodynamic mechanism that leads to long residence times (up to 4.5 s) in the sensory channels. With increasing volumetric flow rate, the rate of odorant transfer to the olfactory surfaces increases, but the efficiency of odorant uptake decreases, falling in the range 2-6%. Odorant flux decreases caudally across the olfactory surfaces, suggesting in vivo a preponderance of olfactory sensory neurons on the anterior part of each olfactory surface. We conclude that the hagfish has a subtle anatomy for locating and capturing odorant molecules.


Asunto(s)
Anguila Babosa , Odorantes , Olfato , Animales , Anguila Babosa/fisiología , Anguila Babosa/metabolismo , Olfato/fisiología , Transporte Biológico , Simulación por Computador
7.
Mikrochim Acta ; 191(7): 383, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861005

RESUMEN

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Estradiol , Oro , Límite de Detección , Nanocompuestos , Sulfuros , Compuestos de Estaño , Compuestos de Estaño/química , Aptámeros de Nucleótidos/química , Nanocompuestos/química , Oro/química , Estradiol/análisis , Estradiol/sangre , Estradiol/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Sulfuros/química , Cadmio/química , Cadmio/análisis , Procesos Fotoquímicos , Dispositivos Laboratorio en un Chip
8.
Medicina (Kaunas) ; 60(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674166

RESUMEN

Thyroid cancer (TC) is the prevalent endocrine tumor with a rising incidence, particularly in higher-income countries, leading to an increased interest in its management and treatment. While overall, survival rates for TC are usually favorable, advanced cases, especially with metastasis and specific histotypes, pose challenges with poorer outcomes, advocating the need of systemic treatments. Targeted therapies have shown efficacy in both preclinical models and clinical trials but face issues of resistance, since they usually induce partial and transient response. These resistance phenomena are currently only partially addressed by traditional preclinical models. This review explores the limitations of traditional preclinical models and emphasizes the potential of three-dimensional (3D) models, such as transwell assays, spheroids, organoids, and organ-on-chip technology in providing a more comprehensive understanding of TC pathogenesis and treatment responses. We reviewed their use in the TC field, highlighting how they can produce new interesting insights. Finally, the advent of organ-on-chip technology is currently revolutionizing preclinical research, offering dynamic, multi-cellular systems that replicate the complexity of human organs and cancer-host interactions.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/terapia , Técnicas de Cultivo Tridimensional de Células/métodos , Organoides , Esferoides Celulares , Técnicas de Cultivo de Célula/métodos
9.
J Hepatol ; 78(5): 998-1006, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36738840

RESUMEN

BACKGROUND & AIMS: Drug-induced liver injury (DILI), both intrinsic and idiosyncratic, causes frequent morbidity, mortality, clinical trial failures and post-approval withdrawal. This suggests an unmet need for improved in vitro models for DILI risk prediction that can account for diverse host genetics and other clinical factors. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system. METHODS: HLOs were derived from three separate iPSC lines and benchmarked on two platforms for their ability to model in vitro liver function and identify hepatotoxic compounds using biochemical assays for albumin, ALT, AST, microscopy-based morphological profiling, and single-cell transcriptomics: i) HLOs dispersed in 384-well-formatted plates and exposed to a library of compounds; ii) HLOs adapted to a liver-on-chip system. RESULTS: Dispersed HLOs derived from the three iPSC lines had similar DILI predictive capacity as intact HLOs in a high-throughput screening format, allowing for measurable IC50 values of compound cytotoxicity. Distinct morphological differences were observed in cells treated with drugs exerting differing mechanisms of toxicity. On-chip HLOs significantly increased albumin production, CYP450 expression, and ALT/AST release when treated with known hepatoxic drugs compared to dispersed HLOs and primary human hepatocytes. On-chip HLOs were able to predict the synergistic hepatotoxicity of tenofovir-inarigivir and displayed steatosis and mitochondrial perturbation, via phenotypic and transcriptomic analysis, on exposure to fialuridine and acetaminophen, respectively. CONCLUSIONS: The high-throughput and liver-on-chip systems exhibit enhanced in vivo-like functions and demonstrate the potential utility of these platforms for DILI risk assessment. Tenofovir-inarigivr-associated hepatotoxicity was observed and correlates with the clinical manifestation of DILI observed in patients. IMPACT AND IMPLICATIONS: Idiosyncratic (spontaneous, patient-specific) drug-induced liver injury (DILI) is difficult to study due to the lack of liver models that function as human liver tissue and are adaptable for large-scale drug screening. Human liver organoids grown from patient stem cells respond to known DILI-causing drugs in both a high-throughput and on a physiological "chip" culture system. These platforms show promise for researchers in their use as predictive models for novel drugs before entering clinical trials and as a potential in vitro diagnostic tool. Our findings support further development of patient-derived liver organoid lines and their use in the context of DILI research.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Hígado/metabolismo , Hepatocitos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Organoides , Albúminas
10.
Photochem Photobiol Sci ; 22(10): 2259-2270, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37340217

RESUMEN

Visible light promoted photoredox catalyzed formation of α-amino radicals from cyclic tertiary amine compounds and their subsequent addition to Michael acceptors performed in flow conditions allowed access to a wide range of functionalized N-aryl-substituted tetrahydroisoquinolines (THIQs) and N-aryl-substituted tetrahydro-ß-carbolines (THBCs). Visible light in conjunction with Ru(bpy)3Cl2 photocatalyst allowed the formation and high reactivities of α-amino radicals in flow conditions at room temperature. These reactions gave valuable products with high efficiencies; some previously unavailable reaction pathways photo or thermal reaction conditions; i.e. direct synthesis of 1-substituted (THBCs) via α-amino radical path were successfully realized in flow. The use of custom-made FEP tube microreactor proved to be the key to succesfull α-amino-radical formation and overall reaction performance in flow. Three types of light transparent custom-made microfluidic devices were tested, among them glass/silicon and FEP type reactor showed very good results in the conversion of tested compounds. Plausible reaction mechanism is proposed in accordance with known principles of photo activation of tertiary amines. Visible light promoted C(sp3)-H functionalization of N-aryl-protected tetrahydroisoquinolines and N-aryl-protected tetrahydro-ß-carbolines in microflow conditions via a-amino radical pathway with various coupling partners in excellent yields and efficiencies.

11.
Mikrochim Acta ; 190(7): 276, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368054

RESUMEN

Paper-based electrochemical analytical devices (ePADs) have gained significant interest as promising analytical units in recent years because they can be fabricated in simple ways, are low-cost, portable, and disposable platforms that can be applied in various fields. In this sense, paper-based electrochemical biosensors are attractive analytical devices since they can promote diagnose several diseases and potentially allow decentralized analysis. Electrochemical biosensors are versatile, as the measured signal can be improved by using mainly molecular technologies and nanomaterials to attach biomolecules, resulting in an increase in their sensitivity and selectivity. Additionally, they can be implemented in microfluidic devices that drive and control the flow without external pumping and store reagents, and improve the mass transport of analytes, increasing sensor sensitivity. In this review, we focus on the recent developments in electrochemical paper-based devices for viruses' detection, including COVID-19, Dengue, Zika, Hepatitis, Ebola, AIDS, and Influenza, among others, which have caused impacts on people's health, especially in places with scarce resources. Also, we discuss the advantages and disadvantages of the main electrode's fabrication methods, device designs, and biomolecule immobilization strategies. Finally, the perspectives and challenges that need to be overcome to further advance paper-based electrochemical biosensors' applications are critically presented.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanoestructuras , Infección por el Virus Zika , Virus Zika , Humanos , COVID-19/diagnóstico , Nanoestructuras/química , Técnicas Biosensibles/métodos , Dispositivos Laboratorio en un Chip , Prueba de COVID-19
12.
Sensors (Basel) ; 23(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37837121

RESUMEN

Exosomes have gained recognition in cancer diagnostics and therapeutics. However, most exosome isolation methods are time-consuming, costly, and require bulky equipment, rendering them unsuitable for point-of-care (POC) settings. Microfluidics can be the key to solving these challenges. Here, we present a double filtration microfluidic device that can rapidly isolate exosomes via size-exclusion principles in POC settings. The device can efficiently isolate exosomes from 50-100 µL of plasma within 50 min. The device was compared against an already established exosome isolation method, polyethylene glycol (PEG)-based precipitation. The findings showed that both methods yield comparable exosome sizes and purity; however, exosomes isolated from the device exhibited an earlier miRNA detection compared to exosomes obtained from the PEG-based isolation. A comparative analysis of exosomes collected from membrane filters with 15 nm and 30 nm pore sizes showed a similarity in exosome size and miRNA detection, with significantly increased sample purity. Finally, TEM images were taken to analyze how the developed devices and PEG-based isolation alter exosome morphology and to analyze exosome sizes. This developed microfluidic device is cost-efficient and time-efficient. Thus, it is ideal for use in low-resourced and POC settings to aid in cancer and disease diagnostics and therapeutics.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , Humanos , Sistemas de Atención de Punto , Microfluídica
13.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175677

RESUMEN

Extracellular vesicles (EV) have many attributes important for biomedicine; however, current EV isolation methods require long multi-step protocols that generally involve bulky equipment that cannot be easily translated to clinics. Our aim was to design a new cyclic olefin copolymer-off-stoichiometry thiol-ene (COC-OSTE) asymmetric flow field fractionation microfluidic device that could isolate EV from high-volume samples in a simple and efficient manner. We tested the device with large volumes of urine and conditioned cell media samples, and compared it with the two most commonly used EV isolation methods. Our device was able to separate particles by size and buoyancy, and the attained size distribution was significantly smaller than other methods. This would allow for targeting EV size fractions of interest in the future. However, the results were sample dependent, with some samples showing significant improvement over the current EV separation methods. We present a novel design for a COC-OSTE microfluidic device, based on bifurcating asymmetric flow field-flow fractionation (A4F) technology, which is able to isolate EV from large volume samples in a simple, continuous-flow manner. Its potential to be mass-manufactured increases the chances of implementing EV isolation in a clinical or industry-friendly setting, which requires high repeatability and throughput.


Asunto(s)
Vesículas Extracelulares , Fraccionamiento de Campo-Flujo , Polímeros , Fraccionamiento Químico , Dispositivos Laboratorio en un Chip , Medios de Cultivo Condicionados
14.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768623

RESUMEN

The detection of circulating tumor cells (CTCs) is an emerging strategy for the early detection, prognostication, and identification of recurrent cancer. The clinical utility of CTC detection has been established, but few studies have employed this strategy for the detection of gynecologic cancers. Here, we present a novel, biochip-based microfluidic device for the detection of CTCs in gynecologic cancers. The study cohort included three patients with cervical cancer, eight with endometrial cancer, two with ovarian cancer, two with breast cancer, and one with vaginal small cell carcinoma. Four cancer type-specific molecular markers (PanCK, GATA3, HER2, and HE4), as well as CD13, were used for prognostication and recurrence detection, along with downstream genomic analysis. GATA3 and HER2 were markedly expressed in the patients with cervical cancer, and this expression was strongly correlated with the early detection of recurrent disease. All four molecular markers were expressed preoperatively in the patients with endometrial cancer, and the re-expression of different markers was observed at follow-up before recurrence was confirmed. CD13 was identified as an alternative prognostic marker for both cervical and endometrial cancer. Our pilot study indicated that the novel CTC detection system can be used for prognostication and early detection of disease recurrence, which needed further investigation.


Asunto(s)
Neoplasias de la Mama , Neoplasias Endometriales , Neoplasias de los Genitales Femeninos , Células Neoplásicas Circulantes , Neoplasias del Cuello Uterino , Humanos , Femenino , Células Neoplásicas Circulantes/patología , Microfluídica , Proyectos Piloto , Recurrencia Local de Neoplasia/diagnóstico , Neoplasias de los Genitales Femeninos/diagnóstico , Neoplasias de la Mama/metabolismo , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/patología , Biomarcadores de Tumor
15.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36674508

RESUMEN

The purpose of the present review is to try to highlight recent advances in the application of microfluidic technology on non-invasive prenatal diagnosis (NIPD). The immunoaffinity based microfluidic technology is the most common approach for NIPD, followed by size-based microfluidic methods. Immunoaffinity microfluidic methods can enrich and isolate circulating fetal extravillous trophoblasts (fEVTs) or fetal nucleated red blood cells (fnRBCs) for NIPD by using specific antibodies, but size-based microfluidic systems are only applied to isolate fEVTs. Most studies based on the immunoaffinity microfluidic system gave good results. Enough fetal cells were obtained for chromosomal and/or genetic analysis in all blood samples. However, the results from studies using size-based microfluidic systems for NIPD are less than ideal. In conclusion, recent advances in microfluidic devices make the immunoaffinity based microfluidic system potentially a powerful tool for cell-based NIPD. However, more clinical validation is needed.


Asunto(s)
Microfluídica , Diagnóstico Prenatal , Embarazo , Femenino , Humanos , Diagnóstico Prenatal/métodos , Feto , Dispositivos Laboratorio en un Chip , Anticuerpos
16.
Biochem Biophys Res Commun ; 626: 72-78, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35973377

RESUMEN

Poliovirus (PV) can spread through neural pathway to the central nervous system and replicates in motor neurons, which leads to poliomyelitis. Enterovirus 71 (EV71), which is closely related to PV, is one of the causative agents of hand-foot-and-mouth disease and can cause severe neurological diseases similar to poliomyelitis. Since PV is similar to EV71 in its motor neurotoxicity, we tried to understand if the results obtained with PV are of general applicability to EV71 and other viruses with similar characteristics. Using microfluidic devices, we demonstrated that both PV capsid and the PV genome undergo axonal retrograde transport with human PV receptor (hPVR), and the transported virus replicated in the soma of hPVR-expressing motor neurons. Similar to PV in hPVR-transgenic (Tg) mice, neural pathway ensuring spreading of EV71 has been shown in adult human scavenger receptor class B, member 2 (hSCARB2)-Tg mice. We have validated this finding in microfluidic devices by showing that EV71 is retrogradely transported together with hSCARB2 to the cell body where it replicates in an hSCARB2-dependent manner.


Asunto(s)
Enterovirus Humano A , Enterovirus , Poliomielitis , Poliovirus , Animales , Transporte Axonal/fisiología , Enterovirus Humano A/fisiología , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras , Poliovirus/metabolismo
17.
Electrophoresis ; 43(13-14): 1476-1520, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452525

RESUMEN

Accurate manipulation of fluids in microfluidic devices is an important factor affecting their functions. Since the emergence of microfluidic technology to transport fluids in microchannels, the electric field has been utilized as an effective dynamic pumping mechanism. This review attempts to provide a fundamental insight of the various electric-driven flows in microchannels and their working mechanisms as micropumps for microfluidic devices. Different electrokinetic mechanisms implemented in electrohydrodynamic-, electroosmosis-, electrothermal, and dielectrophoresis-based micropumps are discussed. A detailed description of different mechanisms is presented to provide a comprehensive overview on the key parameters used in electric micropumps. Furthermore, electrode configurations and their shapes in different micropumps are explored and categorized to provide conclusive information for the selection of efficient, simple, and affordable strategies to transport fluids in microfluidic devices. In this paper, recent theoretical, numerical and experimental investigations are covered to provide a better insight both on the operational mechanisms and strategies for lab-on-chip applications.


Asunto(s)
Electroósmosis , Técnicas Analíticas Microfluídicas , Electricidad , Electrodos , Microfluídica
18.
Rev Med Virol ; 31(1): 1-11, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844526

RESUMEN

There is a long way to go before the coronavirus disease 2019 (Covid-19) outbreak comes under control. qRT-PCR is currently used for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Covid-19, but it is expensive, time-consuming, and not as sensitive as it should be. Finding a rapid, easy-to-use, and cheap diagnostic method is necessary to help control the current outbreak. Microfluidic systems provide a platform for many diagnostic tests, including RT-PCR, RT-LAMP, nested-PCR, nucleic acid hybridization, ELISA, fluorescence-Based Assays, rolling circle amplification, aptamers, sample preparation multiplexer (SPM), Porous Silicon Nanowire Forest, silica sol-gel coating/bonding, and CRISPR. They promise faster, cheaper, and easy-to-use methods with higher sensitivity, so microfluidic devices have a high potential to be an alternative method for the detection of viral RNA. These devices have previously been used to detect RNA viruses such as H1N1, Zika, HAV, HIV, and norovirus, with acceptable results. This paper provides an overview of microfluidic systems as diagnostic methods for RNA viruses with a focus on SARS-CoV-2.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Dispositivos Laboratorio en un Chip , ARN Viral/genética , Humanos , SARS-CoV-2/genética
19.
Anal Bioanal Chem ; 414(22): 6431-6440, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879425

RESUMEN

Extracellular miRNAs are promising targets for developing new assays for the early diagnosis and prognosis of diseases based on liquid biopsy. The detection of miRNAs in liquid biopsies is challenged by their short sequence length, low concentration, and interferences with bodily fluid components. Isothermal circular strand displacement polymerization has emerged as a convenient method for nucleic acid amplification and detection. Herein, we describe an innovative strategy for microRNA detection directly from biological fluids based on hairpin probe-assisted isothermal amplification reaction. We designed and optimized the assay to detect target analytes in 1 µL of the complex media's biological matrix using a microfluidic device for the straightforward analysis of multiple samples. We validated the assay to detect circulating miR-127-5p in synovial fluid, recently indicated as a predictive biomarker for osteoarthritis disease. The combined use of a mutant polymerase operating with high yield and a primer incorporating locked nucleic acid nucleosides allowed detection of miR-127-5p with 34 fmol L-1 LOD. We quantified circulating miR-127-5p directly in synovial fluid, thus demonstrating that the assay may be employed for the convenient detection of 4.3 ± 0.5 pmol L-1 concentrated miRNAs in liquid biopsy samples.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Bioensayo , Técnicas Biosensibles/métodos , Biopsia Líquida , MicroARNs/análisis , Técnicas de Amplificación de Ácido Nucleico/métodos , Polimerizacion
20.
Macromol Rapid Commun ; 43(5): e2100776, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34825435

RESUMEN

The transportation of sweat in an epidermal sweat sensor is critical for the monitoring of biochemical compositions of human sweat. However, it is still a challenge to engineer microfluidic devices with super-wetting channels for such epidermal sweat sensors. Herein, a zwitterionic poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) modified microfluidic device with super-wetting and good liquid transport ability via an azo coupling reaction of PMPC onto the surface of polydimethylsiloxane microfluidic devices is reported. The obtained PMPC-modified microfluidic device can be integrated with flexible electrochemical sensor to measure the ion compositions of human sweat in real-time. The super-hydrophilic zwitterionic polymer surface modification can greatly facilitate the transportation of body fluids in microfluidic sensors for the detection of various biomarkers. Such microfluidic sensors have great potential for next-generation personalized healthcare.


Asunto(s)
Microfluídica , Sudor , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Dispositivos Laboratorio en un Chip , Polímeros/análisis , Sudor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA