RESUMEN
Mitochondria are highly dynamic organelles that continuously grow, divide, and fuse. The division of mitochondria is crucial for human health. During mitochondrial division, the mechano-guanosine triphosphatase (GTPase) dynamin-related protein (Drp1) severs mitochondria at endoplasmic reticulum (ER)-mitochondria contact sites, where peripheral ER tubules interact with mitochondria. Here, we report that Drp1 directly shapes peripheral ER tubules in human and mouse cells. This ER-shaping activity is independent of GTP hydrolysis and located in a highly conserved peptide of 18 amino acids (termed D-octadecapeptide), which is predicted to form an amphipathic α helix. Synthetic D-octadecapeptide tubulates liposomes in vitro and the ER in cells. ER tubules formed by Drp1 promote mitochondrial division by facilitating ER-mitochondria interactions. Thus, Drp1 functions as a two-in-one protein during mitochondrial division, with ER tubulation and mechano-GTPase activities.
Asunto(s)
Dinaminas/metabolismo , Dinaminas/fisiología , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Animales , Dinaminas/genética , Retículo Endoplásmico/efectos de los fármacos , GTP Fosfohidrolasas/genética , Humanos , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales , Oligopéptidos/farmacologíaRESUMEN
The apoptotic executioner protein BAX and the dynamin-like protein DRP1 co-localize at mitochondria during apoptosis to mediate mitochondrial permeabilization and fragmentation. However, the molecular basis and functional consequences of this interplay remain unknown. Here, we show that BAX and DRP1 physically interact, and that this interaction is enhanced during apoptosis. Complex formation between BAX and DRP1 occurs exclusively in the membrane environment and requires the BAX N-terminal region, but also involves several other BAX surfaces. Furthermore, the association between BAX and DRP1 enhances the membrane activity of both proteins. Forced dimerization of BAX and DRP1 triggers their activation and translocation to mitochondria, where they induce mitochondrial remodeling and permeabilization to cause apoptosis even in the absence of apoptotic triggers. Based on this, we propose that DRP1 can promote apoptosis by acting as noncanonical direct activator of BAX through physical contacts with its N-terminal region.
Asunto(s)
Apoptosis , Dinaminas , Apoptosis/fisiología , Dinaminas/genética , Dinaminas/metabolismo , Mitocondrias/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismoRESUMEN
LncRNA PRR34-AS1 overexpression promotes the proliferation and invasion of hepatocellular carcinoma (HCC) cells, but whether it affects HCC energy metabolism remains unclear. Mitochondrial division and glycolytic reprogramming play important roles in tumor development. In this study, the differential expression of PRR34-AS1 is explored via TCGA analysis, and higher levels of PRR34-AS1 are detected in patients with liver cancer than in healthy individuals. A series of experiments, such as CCK-8, PCR, and immunofluorescence staining, reveal that the proliferation, invasion, glycolysis, and mitochondrial division of PRR34-AS1-overexpressing hepatoma cells are significantly promoted. TCGA analysis and immunohistochemistry reveal high expression of the mitochondrial dynamin MIEF2 in liver cancer tissues. Dual-luciferase reporter assays confirm that miR-498 targets and binds to mitochondrial elongation factor 2 (MIEF2). In addition, we show that PRR34-AS1 can sponge miR-498. Therefore, we further investigate the effects of the lncRNA PRR34-AS1/miR-498/MIEF2 axis on the growth, glucose metabolism, and mitochondrial division in hepatocellular carcinoma cells. A series of experiments are performed on hepatocellular carcinoma cells after different treatments. The results show that the proliferative activity, invasive ability, and glycolytic level of hepatocellular carcinoma cells are decreased in HCC cells with low PRR34-AS1 expression, and the miR-498 expression level is increased in these cells. Inhibition of miR-498 or overexpression of MIEF2 restored the proliferative activity, invasive ability, glycolysis, and mitochondrial division in hepatocellular carcinoma cells. Thus, PRR34-AS1 regulates MIEF2 by sponging miR-498, thereby promoting mitochondrial division, mediating glycolytic reprogramming and ultimately driving the growth and invasion of HCC cells. Furthermore, in vivo mouse experiments yield results similar to those of the in vitro experiments, verifying the above results.
RESUMEN
Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/patología , Estrés Oxidativo , Mitocondrias/metabolismo , Antioxidantes/metabolismoRESUMEN
Golgi-derived PI4P-containing vesicles play important roles in mitochondrial division, which is essential for maintaining cellular homeostasis. However, the mechanism of the PI4P-containing vesicle effect on mitochondrial division is unclear. Here, we found that actin appeared to polymerize at the contact site between PI4P-containing vesicles and mitochondria, causing mitochondrial division. Increasing the content of PI4P derived from the Golgi apparatus increased actin polymerization and reduced the length of the mitochondria, suggesting that actin polymerization through PI4P-containing vesicles is involved in PI4P vesicle-related mitochondrial division. Collectively, our results support a model in which PI4P-containing vesicles derived from the Golgi apparatus cooperate with actin filaments to participate in mitochondrial division by contributing to actin polymerization, which regulates mitochondrial dynamics. This study enriches the understanding of the pathways that regulate mitochondrial division and provides new insight into mitochondrial dynamics.
Asunto(s)
Actinas , Dinámicas Mitocondriales , Actinas/metabolismo , Aparato de Golgi/metabolismo , Citoesqueleto de Actina/metabolismo , Orgánulos/metabolismoRESUMEN
PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.
Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Mitofagia , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Qa-SNARE/metabolismo , Transducción de Señal , Autofagosomas/metabolismo , Dinaminas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas/genética , Metaloproteasas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Fosfoproteínas Fosfatasas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteolisis , Proteínas Qa-SNARE/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Zinc oxide nanoparticles (ZnO NPs) have exhibited excellent anti-tumor properties; the present study aimed to elucidate the underlying mechanism of ZnO NPs induced apoptosis in acute myeloid leukemia (AML) cells by regulating mitochondrial division. THP-1 cells, an AML cell line, were first incubated with different concentrations of ZnO NPs for 24 hr. Next, the expression of Drp-1, Bcl-2, Bax mRNA, and protein was detected, and the effects of ZnO NPs on the levels of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), apoptosis, and ATP generation in THP-1 cells were measured. Moreover, the effect of Drp-1 inhibitor Mdivi-1 and ZnO NPs on THP-1 cells was also detected. The results showed that the THP-1 cells survival rate decreased with the increment of ZnO NPs concentration and incubation time in a dose- and time-dependent manner. ZnO NPs can reduce the cell Δψm and ATP levels, induce ROS production, and increase the levels of mitochondrial division and apoptosis. In contrast, the apoptotic level was significantly reduced after intervention of Drp-1 inhibitor, suggesting that ZnO NPs can induce the apoptosis of THP-1 cells by regulating mitochondrial division. Overall, ZnO NPs may provide a new basis and idea for treating human acute myeloid leukemia in clinical practice.
Asunto(s)
Leucemia Mieloide Aguda , Nanopartículas , Óxido de Zinc , Adenosina Trifosfato/metabolismo , Apoptosis , Supervivencia Celular , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Óxido de Zinc/farmacologíaRESUMEN
Previously we found that acute liver injury (ALI) with inflammation caused by carbon tetrachloride (CCl4) was associated with the activation of the 5-HT degradation system (5DS), which includes monoamine oxidase A (MAO-A), the 5-HT2A receptor, and 5-HT synthases in hepatocytes. This study aimed to determine the role of 5DS in mitochondrial damage and apoptosis. In hepatocyte LO2 cells, CCl4 activated 5-HT2A receptor at the gene level, and then 5-HT2A receptor mediated the expression of 5-HT synthase and MAO-A at the gene level. Suppression of 5DS with the 5-HT2A receptor antagonist, MAO-A inhibitor, or gene silencing MAO-A significantly reduced the CCl4-induced production of mitochondrial reactive oxygen species (ROS). The ROS-associated upregulation of mitochondrial division proteins (FIS1 and DRP1); downregulation of mitochondrial fusion-associated protein 1, respiratory chain proteins (ND1 and CYTB), and ATP6; and decrease of ATP levels were reversed. Moreover, ROS-associated abnormal levels of caspase pathway-associated proteins (Bcl-2, Bax, cleaved-caspase3 and cleaved-caspase9) and apoptosis were suppressed. Notably, a combination of 5-HT2A receptor antagonist and MAO-A inhibitor almost abolished CCl4 cytotoxicity; abolished mitochondrial membrane potential (MMP) depolarization, mitochondrial structural abnormality, and high mitochondrial pH, with low pH states of the nucleus and cytoplasm. The effects of both were more significant than either alone. LO2 cells exposed to H2O2 or depleted mitochondrial ROS showed that ROS induced mitochondrial division and apoptosis and inhibited the levels of respiratory chain proteins. CCl4-induced abnormalities of ATP generation and MMP were dependent on both ROS and other 5DS-associated factors, probably NH3. Investigation of CCl4-induced ALI mice showed that hepatic injury and apoptosis occur at the site of 5DS activation and are significantly inhibited by the 5-HT2A receptor antagonist and 5-HT synthetic inhibitor in a synergistic manner, as well as mitochondrial damage. Together, we revealed the close relationship between CCl4-induced activation of 5DS and mitochondrial damage, abnormal intracellular [H+], and apoptosis in hepatocytes.
Asunto(s)
Tetracloruro de Carbono , Serotonina , Animales , Apoptosis , Tetracloruro de Carbono/toxicidad , Transporte de Electrón , Hepatocitos , Peróxido de Hidrógeno/farmacología , Ratones , Dinámicas Mitocondriales , Especies Reactivas de Oxígeno/metabolismo , Serotonina/metabolismoRESUMEN
BACKGROUND: The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. RESULTS: We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. CONCLUSION: Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established.
Asunto(s)
Giardia lamblia , Bases de Datos Genéticas , Giardia lamblia/genética , Mitocondrias/genética , Dinámicas Mitocondriales , OrgánulosRESUMEN
Mitochondrial fission is important in physiological processes, including coordination of mitochondrial and nuclear division during mitosis, and pathologic processes, such as the production of reactive oxygen species (ROS) during cardiac ischemia-reperfusion injury (IR). Mitochondrial fission is mainly mediated by dynamin-related protein 1 (Drp1), a large GTPase. The GTPase activity of Drp1 is essential for its fissogenic activity. Therefore, we aimed to identify Drp1 inhibitors and evaluate their anti-neoplastic and cardioprotective properties in five cancer cell lines (A549, SK-MES-1, SK-LU-1, SW 900, and MCF7) and an experimental cardiac IR injury model. Virtual screening of a chemical library revealed 17 compounds with high predicted affinity to the GTPase domain of Drp1. In silico screening identified an ellipticine compound, Drpitor1, as a putative, potent Drp1 inhibitor. We also synthesized a congener of Drpitor1 to remove the methoxymethyl group and reduce hydrolytic lability (Drpitor1a). Drpitor1 and Drpitor1a inhibited the GTPase activity of Drp1 without inhibiting the GTPase of dynamin 1. Drpitor1 and Drpitor1a have greater potency than the current standard Drp1 GTPase inhibitor, mdivi-1, (IC50 for mitochondrial fragmentation are 0.09, 0.06, and 10 µM, respectively). Both Drpitors reduced proliferation and induced apoptosis in cancer cells. Drpitor1a suppressed lung cancer tumor growth in a mouse xenograft model. Drpitor1a also inhibited mitochondrial ROS production, prevented mitochondrial fission, and improved right ventricular diastolic dysfunction during IR injury. In conclusion, Drpitors are useful tools for understanding mitochondrial dynamics and have therapeutic potential in treating cancer and cardiac IR injury.
Asunto(s)
Dinaminas , Inhibidores Enzimáticos , Daño por Reperfusión Miocárdica , Neoplasias , Células A549 , Animales , Dinaminas/antagonistas & inhibidores , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Mitochondria maintain their function by the process of mitochondrial dynamics, which involves repeated fusion and fission. It is thought that the failure of mitochondrial dynamics, especially excessive fission, is related to the progression of several diseases. A previous study demonstrated that mitochondrial fragmentation occurs in the retinal pigmented epithelial (RPE) cells of patients with non-exudative age-related macular degeneration (AMD). We predicted that the suppression of mitochondrial fragmentation offers a novel therapeutic strategy for non-exudative AMD. We investigated whether the inhibition of mitochondrial fission was effective against the oxidative stress-induced damage of ARPE-19 cells. The treatment of ARPE-19 cells with H2O2 caused mitochondrial fragmentation, but treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed fragmentation. Additionally, Mdivi-1 protected ARPE-19 cells against H2O2-induced damage, and suppressed the release of cytochrome c from the mitochondria. Mitochondrial function was evaluated by staining with JC-1 and measuring the production of reactive oxygen species (ROS), which revealed that mitochondrial function improved in the Mdivi-1-treated group. These findings indicated that the inhibition of mitochondrial fission would be a novel therapeutic target for non-exudative AMD.
Asunto(s)
Degeneración Macular/tratamiento farmacológico , Degeneración Macular/etiología , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico , Epitelio Pigmentado de la Retina/patología , Células Cultivadas , Citocromos c/metabolismo , Humanos , Degeneración Macular/patología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.
Asunto(s)
Glicosiltransferasas/metabolismo , Biogénesis de Organelos , Proteínas de Plantas/metabolismo , Rhodophyta/metabolismo , Glucanos/metabolismo , Glicosiltransferasas/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Proteínas de Plantas/genética , Rhodophyta/ultraestructuraRESUMEN
Purpose: Evidence has shown that propofol may cause widespread apoptotic neurodegeneration. Hypoxic preconditioning has been demonstrated to provide neuroprotection and brain recovery from both acute and chronic neurodegeneration in several cellular and animal models. However, the mechanism has not been well elucidated. Therefore, the present study was designed to investigate the expression of glucose transporters (GLUT1 and GLUT3) and mitochondrial division and fusion (Drp1 and Mfn2) proteins in rats exposed to hypoxic preconditioning to attenuate propofol neurotoxicity.Methods: Propofol (100 mg/kg) was given to 7-day-old Sprague-Dawley rats; in some rats, hypoxic preconditioning was administered before intraperitoneal propofol injection by subjecting rats to five cycles of 10 min of hypoxia (8% O2) and 10 min of normoxia (21% O2). Then, the rats were allowed to breathe room air for 2 h. Neuronal mitochondrial morphology was observed by transmission electron microscopy. ATP content was detected using an ATP assay kit. The expression levels of GLUT1, GLUT3, pDrp1, Drp1 and Mfn2 were detected by Western blot, and the expression levels of GLUT1 and GLUT3 were further examined by immunohistochemistry.Results: Propofol damaged mitochondria, and decreased ATP content and GLUT3 and pDrp1 protein expression. However, our results suggested that hypoxic preconditioning could attenuate propofol neurotoxicity by reducing mitochondrial damage and increasing ATP content and pDrp1, GLUT1 and GLUT3 protein expression.Conclusion: Hypoxic preconditioning reduced propofol-induced damage in the hippocampus of neonatal rats by attenuating the increase in mitochondrial division and decrease in GLUT3 expression.
Asunto(s)
Dinaminas , GTP Fosfohidrolasas , Transportador de Glucosa de Tipo 1 , Transportador de Glucosa de Tipo 3 , Hipocampo , Hipnóticos y Sedantes/toxicidad , Hipoxia Encefálica , Mitocondrias , Proteínas Mitocondriales , Neuronas , Síndromes de Neurotoxicidad/prevención & control , Propofol/toxicidad , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Dinaminas/efectos de los fármacos , Dinaminas/metabolismo , GTP Fosfohidrolasas/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , Transportador de Glucosa de Tipo 1/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/efectos de los fármacos , Transportador de Glucosa de Tipo 3/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipnóticos y Sedantes/administración & dosificación , Hipoxia Encefálica/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Propofol/administración & dosificación , Ratas , Ratas Sprague-DawleyRESUMEN
Mitochondria and peroxisomes are ubiquitous subcellular organelles that are highly dynamic and possess a high degree of plasticity. These organelles proliferate through division of pre-existing organelles. Studies on yeast, mammalian cells, and unicellular algae have led to a surprising finding that mitochondria and peroxisomes share the components of their division machineries. At the heart of the mitochondrial and peroxisomal division machineries is a GTPase dynamin-like protein, Dnm1/Drp1, which forms a contractile ring around the neck of the dividing organelles. During division, Dnm1/Drp1 functions as a motor protein and constricts the membrane. This mechanochemical work is achieved by utilizing energy from GTP hydrolysis. Over the last two decades, studies have focused on the structure and assembly of Dnm1/Drp1 molecules around the neck. However, the regulation of GTP during the division of mitochondrion and peroxisome is not well understood. Here, we review the current understanding of Dnm1/Drp1-mediated divisions of mitochondria and peroxisomes, exploring the mechanisms of GTP regulation during the Dnm1/Drp1 function, and provide new perspectives on their potential contribution to mitochondrial and peroxisomal biogenesis.
Asunto(s)
GTP Fosfohidrolasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Motoras Moleculares/genética , Peroxisomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , División Celular/genética , Dinaminas/genética , Humanos , Dinámicas MitocondrialesRESUMEN
Matrine, an alkaloid compound isolated from Sophora flavescens Ait, has been shown to exert cancer-killing actions in a variety of tumors; however, its anticancer mechanism in colorectal cancer (CRC) is not clear. The goal of our study was to characterize the anticancer effects and molecular mechanisms of matrine in SW480 CRC cells in vitro. Matrine treatment reduced mitochondrial metabolic function and ATP levels, repressed mitochondrial membrane potential, evoked mitochondrial reactive oxygen species accumulation, and promoted cyt-c-related mitochondrial apoptosis activation. In addition, we found that matrine treatment activated mitochondrial fission through upregulating mitochondrial elongation factor 1 (MIEF1); silencing of MIEF1 prevented matrine-mediated mitochondrial damage and reversed the decrease in SW480 cell viability. Moreover, matrine treatment affected MIEF1 expression via the large tumor suppressor-2 (LATS2)-Hippo axis, and LATS2 deficiency suppressed the anticancer actions exerted by matrine on SW480 cancer cells. In summary, we show for the first time that matrine inhibits SW480 cell survival by activating MIEF1-related mitochondrial division via the LATS2-Hippo pathway. These findings explain the anticancer mechanisms of matrine in CRC and also identify the LATS2-MIEF1 signaling pathway as an effective target for the treatment of CRC.
Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinolizinas/farmacología , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética , MatrinasRESUMEN
Chloroplasts (plastids) and mitochondria evolved from endosymbiotic bacteria. These organelles perform vital functions in photosynthetic eukaryotes, such as harvesting and converting energy for use in biological processes. Consistent with their evolutionary origins, plastids and mitochondria proliferate by the binary fission of pre-existing organelles. Here, I review the structures and functions of the supramolecular machineries driving plastid and mitochondrial division, which were discovered and first studied in the primitive red alga Cyanidioschyzon merolae. In the past decade, intact division machineries have been isolated from plastids and mitochondria and examined to investigate their underlying structure and molecular mechanisms. A series of studies has elucidated how these division machineries assemble and transform during the fission of these organelles, and which of the component proteins generate the motive force for their contraction. Plastid- and mitochondrial-division machineries have important similarities in their structures and mechanisms despite sharing no component proteins, implying that these division machineries evolved in parallel. The establishment of these division machineries might have enabled the host eukaryotic ancestor to permanently retain these endosymbiotic organelles by regulating their binary fission and the equal distribution of resources to daughter cells. These findings provide key insights into the establishment of endosymbiotic organelles and have opened new avenues of research into their evolution and mechanisms of proliferation.
Asunto(s)
Orgánulos/ultraestructura , Rhodophyta/ultraestructura , Simbiosis , División Celular , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Orgánulos/fisiología , Plastidios/fisiología , Plastidios/ultraestructura , Rhodophyta/fisiologíaRESUMEN
PURPOSE: To investigate the combination effect of methylprednisolone (MP) and mitochondrial division inhibitor-1 (Mdivi-1) on the neurological function recovery of rat spinal cord injury (SCI) model. METHODS: The weight-drop method was used to establish the rat SCI model; then, rats were randomized into sham group, SCI group, MP group, Mdivi-1 group and MP+Mdivi-1 group. Motor function scores were quantified to evaluate locomotor ability; HE staining was used to assess spinal cord histopathology; tissue water content, oxidative stress, tissue mitochondrial function, neurons apoptosis, and apoptosis-related protein expression were detected. RESULTS: From the third day after SCI, BBB score of the MP+Mdivi-1 group was obviously higher than the other experimental groups (p < 0.05). Compared with the SCI group, tissue water content of the Mdivi-1 group and MP+Mdivi-1 group reduced obviously (p < 0.05), mitochondrial membrane potential (MMP) level and ATP content in the Mdivi-1 group and MP+Mdivi-1 group were both higher (p < 0.05). Meanwhile, three kinds of treatment all reduced apoptosis significantly, while MP plus Mdivi-1 exhibited the best inhibition effect on apoptosis (p < 0.05). The expression levels of Drp1, cytochrome c, and caspase-3 were all upregulated obviously; Mdivi-1 could inhibit Drp1 upregulation induced by SCI; for the upregulation of cytochrome c and caspase-3, the inhibition effect of Mdivi-1 approached MP. When MP combined with Mdivi-1, there was the best inhibition effect. CONCLUSIONS: MP combined with Mdivi-1 may produce better neurological function recovery, through improving functional status of mitochondria and inhibiting lipid peroxidation in damaged tissue of SCI rats, and thus alleviating apoptosis.
Asunto(s)
Antiinflamatorios/administración & dosificación , Metilprednisolona/administración & dosificación , Quinazolinonas/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Evaluación Preclínica de Medicamentos/métodos , Quimioterapia Combinada , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patologíaRESUMEN
Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
Asunto(s)
Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , ADN Bacteriano/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Bacterias/citología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , División Celular , Bases de Datos Genéticas , Dictyostelium/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia , Plastidios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid) more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.
Asunto(s)
Cloroplastos/metabolismo , Biogénesis de Organelos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/fisiología , Dinaminas/química , Dinaminas/genética , Dinaminas/metabolismoRESUMEN
The number, size and shape of polymorphic plant mitochondria are determined at least partially by mitochondrial fission. Arabidopsis mitochondria divide through the actions of a dynamin-related protein, DRP3A. Another plant-specific factor, ELM1, was previously shown to localize DRP3A to mitochondrial fission sites. Here, we report that mitochondrial fission is not completely blocked in the Arabidopsis elm1 mutant and that it is strongly manifested in response to cold treatment. Arabidopsis has an ELM1 paralogue (ELM2) that seems to have only a limited role in mitochondrial fission in the elm1 mutant. Interestingly, cold-induced mitochondrial fragmentation was also observed in the wild-type, but not in a drp3a mutant, suggesting that cold-induced transient mitochondrial fragmentation requires DRP3A but not ELM1 or ELM2. DRP3A: GFP localized from the cytosol to mitochondrial fission sites without ELM1 after cold treatment. Together, these results suggest that Arabidopsis has a novel, cold-induced type of mitochondrial fission in which DRP3A localizes to mitochondrial fission sites without the involvement of ELM1 or ELM2.