Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(22): e2122975119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35609193

RESUMEN

SignificanceThin transparent semiconductors of two-dimensional materials are attractive for the practical applications in next-generation nanoelectronic and optoelectronic devices. Probing the electron states and electrical switching mechanisms of a molybdenum disulphide monolayer with atomic-scale thickness (6.5 Å) allows us to unlock the full technological potential of this nanomaterial. We introduced a plasmonic phase imaging method to uncover the underlying mechanism and detailed switching dynamics of an electrical-state switching event. This dramatic phase change can be attributed to the reversible switching of classical electromagnetic coupling and quantum coupling effects interplaying between a single metal nanoparticle and molybdenum disulphide monolayer, and the transient intermediate states during the switching event can be directly imaged by a plasmonic technique.

2.
Small ; 20(21): e2309112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38150610

RESUMEN

A sulfur vacancy-rich, Sn-doped as well as carbon-coated MoS2 composite (Vs-SMS@C) is rationally synthesized via a simple hydrothermal method combined with ball-milling reduction, which enhances the sodium storage performance. Benefiting from the 3D fast Na+ transport network composed of the defective carbon coating, Mo─S─C bonds, enlarged interlayer spacing, S-vacancies, and lattice distortion in the composite, the Na+ storage kinetics is significantly accelerated. As expected, Vs-SMS@C releases an ultrahigh reversible capacity of 1089 mAh g-1 at 0.1 A g-1, higher than the theoretical capacity. It delivers a satisfactory capacity of 463 mAh g-1 at a high current density of 10 A g-1, which is the state-of-the-art rate capability compared to other MoS2 based sodium ion battery anodes to the knowledge. Moreover, a super long-term cycle stability is achieved by Vs-SMS@C, which keeps 91.6% of the initial capacity after 3000 cycles under the current density of 5 A g-1 in the voltage of 0.3-3.0 V. The sodium storage mechanism of Vs-SMS@C is investigated by employing electrochemical methods and ex situ techniques. The synergistic effect between S-vacancies and doped-Sn is evidenced by DFT calculations. This work opens new ideas for seeking excellent metal sulfide anodes.

3.
Small ; 20(40): e2401537, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38822716

RESUMEN

Metallic 1T-MoS2 with high intrinsic electronic conductivity performs Pt-like catalytic activity for hydrogen evolution reaction (HER). However, obtaining pure 1T-MoS2 is challenging due to its high formation energy and metastable properties. Herein, an in situ SO4 2--anchoring strategy is reported to synthesize a thin layer of 1T-MoS2 loaded on commercial carbon. Single Pd atoms, constituting a substantial loading of 7.2 wt%, are then immobilized on the 1T-phase MoS2 via Pd─S bonds to modulate the electronic structure and ensure a stable active phase. The resulting Pd1/1T-MoS2/C catalyst exhibits superior HER performance, featuring a low overpotential of 53 mV at the current density of 10 mA cm-2, a small Tafel slope of 37 mV dec-1, and minimal charge transfer resistance in alkaline electrolyte. Moreover, the catalyst also demonstrates efficacy in acid and neutral electrolytes. Atomic structural characterization and theoretical calculations reveal that the high activity of Pd1/1T-MoS2/C is attributed to the near-zero hydrogen adsorption energy of the activated sulfur sites on the two adjacent shells of atomic Pd.

4.
Small ; 20(2): e2305143, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670210

RESUMEN

Molybdenum disulfide (MoS2 ), a metal dichalcogenide, is a promising channel material for highly integrated scalable transistors. However, intrinsic donor defect states, such as sulfur vacancies (Vs ), can degrade the channel properties and lead to undesired n-doping. A method for healing the donor defect states in monolayer MoS2 is proposed using oxygen plasma, with an aluminum oxide (Al2 O3 ) barrier layer that protects the MoS2 channel from damage by plasma treatment. Successful healing of donor defect states in MoS2 by oxygen atoms, even in the presence of an Al2 O3 barrier layer, is confirmed by X-ray photoelectron spectroscopy, photoluminescence, and Raman spectroscopy. Despite the decrease in 2D sheet carrier concentration (Δn2D = -3.82×1012 cm-2 ), the proposed approach increases the on-current and mobility by 18% and 44% under optimal conditions, respectively. Metal-insulator transition occurs at electron concentrations of 5.7×1012 cm-2 and reflects improved channel quality. Finally, the activation energy (Ea ) reduces at all the gate voltages (VG ) owing to a decrease in Vs , which act as a localized state after the oxygen plasma treatment. This study demonstrates the feasibility of plasma-assisted healing of defects in 2D materials and electrical property enhancement and paves the way for the development of next-generation electronic devices.

5.
Small ; : e2312256, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030979

RESUMEN

Polysulfide shuttle and sluggish sulfur redox kinetics remain key challenges in lithium-sulfur batteries. Previous researches have shown that introducing oxygen into transition metal sulfides helps to capture polysulfides and enhance their conversion kinetics. Based on this, further investigations are conducted to explore the impact of oxygen doping levels on the physical-chemical properties and electrocatalytic performance of MoS2. The findings reveal that MoS2 doped with high-content oxygen exhibits enhanced conductivity and polysulfides conversion kinetics compared to MoS2 with low-content oxygen doping, which can be attributed to the alteration of crystal structure from 2H-phase to the 1T-phase, the introduction of increased Li-O interactions, and the effect of defects resulting from high-oxygen doping. Consequently, the lithium-sulfur batteries using high-oxygen doped MoS2 as a catalyst deliver a high discharge capacity of 1015 mAh g-1 at 0.25C and maintain 78.5% capacity after 300 more cycles. Specifically, lithium-sulfur batteries employing paper-based electrodedemonstrate an areal capacity of 3.91 mAh cm-2 at 0.15C, even with sulfur loading of 4.1 mg cm-2 and electrolyte of 6.7 µL mg-1. These results indicate that oxygen doping levels can modify the properties of MoS2, and high-oxygen doped MoS2 shows promise as an efficient catalyst for lithium-sulfur batteries.

6.
Small ; 20(30): e2311587, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38385836

RESUMEN

Magnesium ion batteries (MIBs) are expected to be the promising candidates in the post-lithium-ion era with high safety, low cost and almost dendrite-free nature. However, the sluggish diffusion kinetics and strong solvation capability of the strongly polarized Mg2+ are seriously limiting the specific capacity and lifespan of MIBs. In this work, catalytic desolvation is introduced into MIBs for the first time by modifying vanadium pentoxide (V2O5) with molybdenum disulfide quantum dots (MQDs), and it is demonstrated via density function theory (DFT) calculations that MQDs can effectively lower the desolvation energy barrier of Mg2+, and therefore catalyze the dissociation of Mg2+-1,2-Dimethoxyethane (Mg2+-DME) bonds and release free electrolyte cations, finally contributing to a fast diffusion kinetics within the cathode. Meanwhile, the local interlayer expansion can also increase the layer spacing of V2O5 and speed up the magnesiation/demagnesiation kinetics. Benefiting from the structural configuration, MIBs exhibit superb reversible capacity (≈300 mAh g-1 at 50 mA g-1) and unparalleled cycling stability (15 000 cycles at 2 A g-1 with a capacity of ≈70 mAh g-1). This approach based on catalytic reactions to regulate the desolvation behavior of the whole interface provides a new idea and reference for the development of high-performance MIBs.

7.
Small ; : e2406683, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192470

RESUMEN

Magnesium-lithium-ion hybrid batteries (MLIBs) have gained significant attention since the combination of a dendrite-free and low-cost magnesium anode with lithium-ion storage cathodes. However, the lack of high-performance cathodes has severely hindered their development, limited by the lower operating voltages of electrolytes. Herein, vanadium molybdenum disulfide nanosheets anchoring on flexible carbon cloth (VMS@CC) are constructed as high-performance cathodes for MLIBs, which inherit the electrochemical properties of high-voltage VS2 and high-capacity MoS2, simultaneously. By adjusting the V and Mo atomic ratio, the VMS@CC cathode for MLIBs delivers a record maximum energy density of 275.5 Wh kg-1 with a high working voltage of 1.07 V at 50 mA g-1. Meanwhile, under the synergistic effects of the conductive carbon cloth matrix, abundant hetero-interfaces and defects, as well as expanded interlayer spacing, the VMS@CC cathode displays superior rate capability and long-term cycling stability. Ex situ analyses demonstrate the VMS nanosheets cathode exhibits a Li+/Mg2+ co-insertion/extraction mechanism in MLIBs, following the in situ insertion of organic species in the hybrid electrolyte during the aging process. The fabricated flexible cathode herein provides a new insight into the construction of high-energy density cathodes for MLIBs.

8.
FASEB J ; 37(5): e22924, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071462

RESUMEN

Beta-tricalcium phosphate (ß-TCP) is considered as one of the most promising biomaterials for bone reconstruction. This study generated a functional molybdenum disulfide (MoS2 )/polydopamine (PDA)/-bone morphogenetic protein 2 (BMP2)-insulin-like growth factor-1 (IGF-1) coating on the ß-TCP scaffold and analyzed the outcomes. The MoS2 /PDA-BMP2-IGF-1@ß-TCP (MPBI@ß-TCP) scaffold was prepared by 3D printing and physical adsorption, followed by characterization to validate its successful construction. The in vitro osteogenic effect of the MPBI@ß-TCP scaffold was evaluated. It was found that MPBI@ß-TCP augmented the adhesion, diffusion and proliferation of mesenchymal stem cells (MSCs). The alkaline phosphatase (ALP) activity, collagen secretion and extracellular matrix (ECM) mineralization along with the expression of Runx2, ALP and OCN were also enhanced in the presence of MPBI@ß-TCP. Additionally, MPBI@ß-TCP stimulated endothelial cells to secrete VEGF and promoted capillary-like tubule formation. We then confirmed the biocompatibility of MPBI@ß-TCP to macrophages and its anti-inflammatory effects. Furthermore, under near-infrared (NIR) laser irradiation, MPBI@ß-TCP produced photothermal effect to not only kill MG-63 osteosarcoma cells, but also enhance bone regeneration in vivo with biosafety. Overall, this work demonstrates that 3D-printed MPBI@ß-TCP with enhanced osteogenic activity under NIR laser irradiation has a vast potential in the field of tissue defects.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Molibdeno , Factor I del Crecimiento Similar a la Insulina/farmacología , Andamios del Tejido , Células Endoteliales , Regeneración Ósea , Osteogénesis , Osteosarcoma/radioterapia , Rayos Infrarrojos , Neoplasias Óseas/radioterapia
9.
Chemphyschem ; : e202400349, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177078

RESUMEN

Rate theory and DFT calculations of hydrogen evolution reaction (HER) on MoS2 with Co, Ni and Pt impurities show the significance of dihydrogen (H2*) complex where both hydrogen atoms are interacting with the surface. Stabilization of such a complex affects the competing Volmer-Heyrovsky (direct H2 release) and Volmer-Tafel (H2* intermediate) pathways. The resulting evolution proceeds with a very small overpotential for all dopants ( η ${\eta }$ =0.1 to 0.2 V) at 25 % edge substitution, significantly reduced from the already low η ${\eta }$ =0.27 V for the undoped edge. At full edge substitution, Co-MoS2 remains highly active ( η ${\eta }$ =0.18 V) while Ni- and Pt-MoS2 are deactivated ( η ${\eta }$ =0.4 to 0.5 V) due to unfavorable interaction with H2*. Instead of the single S-vacancy, the site of intrinsic activity in the basal plane was found to be the undercoordinated central Mo-atom in threefold S-vacancy configurations, enabling hydrogen evolution with η ${\eta }$ =0.52 V via a H2* intermediate. The impurity atoms interact favorably with the intrinsic sulfur vacancies on the basal plane, stabilizing but simultaneously deactivating the triple vacancy configuration. The calculated shifts in overpotential are consistent with reported measurements, and the dependence on doping level may explain variations in experimental observations.

10.
Nanotechnology ; 35(21)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38364265

RESUMEN

We report for the first time MoS2/CNT hybrid nanostructures for memristor applications on flexible and bio-degradable cellulose paper. In our approach, we varied two different weight percentages (10% and 20%) of CNT's in MoS2to improve the MoS2conductivity and investigate the memristor device characteristics. The device with 10% CNT shows a lowVSETvoltage of 2.5 V, which is comparatively small for planar devices geometries. The device exhibits a long data retention time and cyclic current-voltage stability of ∼104s and 102cycles, making it a potential candidate in flexible painted electronics. Along with good electrical performance, it also demonstrates a high mechanical stability for 1000 bending cycles. The conduction mechanism in the MoS2-CNT hybrid structure is corroborated by percolation and defect-induced filament formation. Additionally, the device displays synaptic plasticity performance, simulating potentiation and depression processes. Furthermore, such flexible and biodegradable cellulose-based paper electronics may pave the way to address the environmental pollution caused by electronic waste in the near future.

11.
Nanotechnology ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357528

RESUMEN

Molybdenum disulfide (MoS2) is a representative two-dimensional layered transition-metal dichalcogenide semiconductor. Layer-number-dependent electronic properties are attractive in the development of nanomaterial-based electronics for a wide range of applications including sensors, switches, and amplifiers. MoS2field-effect transistors (FETs) have been studied as promising future nanoelectronic devices with desirable features of atomic-level thickness and high electrical properties. When a naturally n-doped MoS2is contacted with metals, a strong Fermi-level pinning effect adjusts a Schottky barrier and influences its electronic characteristics significantly. In this study, we investigate multilayer MoS2Schottky barrier FETs (SBFETs), emphasizing the metal-contact impact on device performance via computational device modeling. We find that p-type MoS2 SBFETs may be built with appropriate metals and gate voltage control. Furthermore, we propose ambipolar multilayer MoS2 SBFETs with asymmetric metal electrodes, which exhibit gate-voltage dependent ambipolar transport behavior through optimizing metal contacts in MoS2 device. Introducing a dual-split gate geometry, the MoS2SBFETs can further operate in four distinct configurations: p - p, n - n, p - n, and n - p. Electrical characteristics are calculated, and improved performance of a high rectification ratio can be feasible as an attractive feature for efficient electrical and photonic devices.

12.
Nanotechnology ; 35(37)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38861936

RESUMEN

Lithium-ion batteries (LIBs) have revolutionized portable electronics, yet their conventional graphite anodes face capacity limitations. Integrating graphene and 3D molybdenum disulfide (MoS2) offers a promising solution. Ensuring a uniform distribution of 3D MoS2nanostructures within a graphene matrix is crucial for optimizing battery performance and preventing issues like agglomeration and capacity degradation. This study focuses on synthesizing a uniformly distributed paper wad structure by optimizing a composite of reduced graphene oxide RGO@MoS2through structural and morphological analyses. Three composites with varying graphene content were synthesized, revealing that the optimized sample containing 30 mg RGO demonstrates beneficial synergy between MoS2and RGO. The interconnected RGO network enhances reactivity and conductivity, addressing MoS2aggregation. Experimental results exhibit an initially superior capacity of 911 mAh g-1, retained at 851 mAh g-1even after 100 cycles at 0.1 A g-1current density, showcasing improved rate efficiency and long-term stability. This research underscores the pivotal role of graphene content in customizing RGO@MoS2composites for enhanced LIB performance.

13.
Nanotechnology ; 35(39)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955165

RESUMEN

Transition metal dichalcogenides have been extensively studied in recent years because of their fascinating optical, electrical, and catalytic properties. However, low-cost, scalable production remains a challenge. Aerosol-assisted chemical vapor deposition (AACVD) provides a new method for scalable thin film growth. In this study, we demonstrate the growth of molybdenum disulfide (MoS2) thin films using AACVD method. This method proves its suitability for low-temperature growth of MoS2thin films on various substrates, such as glass, silicon dioxide, quartz, silicon, hexagonal boron nitride, and highly ordered pyrolytic graphite. The as-grown MoS2shows evidence of substrate-induced strain. The type of strain and the morphology of the as-grown MoS2highly depend on the growth substrate's surface roughness, crystallinity, and chemical reactivity. Moreover, the as-grown MoS2shows the presence of both direct and indirect band gaps, suitable for exploitation in future electronics and optoelectronics.

14.
Environ Sci Technol ; 58(29): 13110-13119, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989600

RESUMEN

Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.


Asunto(s)
Mercurio , Metilación , Adsorción , Nanoestructuras/química , Contaminantes Químicos del Agua/química , Compuestos de Metilmercurio , Molibdeno/química
15.
J Fluoresc ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647960

RESUMEN

A selective and sensitive fluorometric assay was developed for specific determination of curcumin (Cur) based on fluorescence resonance energy transfer (FRET) between molybdenum disulfide quantum dots (MoS2 QDs) and Cur. The MoS2 QDs were prepared via a one-step hydrothermal protocol using sodium molybdate dihydrate, L-cysteine (Cys) as precursors, and sodium cholate (SC) as a modification agent. The as-prepared MoS2 QDs possessed maximum fluorescence emission at 460 nm with a 20% of fluorescence quantum yield (FQY). It was found that the fluorescence of MoS2 QDs could be quantitatively quenched by Cur through FRET mechanism. Therefore, Cur could be detected in the range of 0.1-20 µg mL- 1 with a detection limit of 5 ng mL- 1. Additionally, the developed MoS2 QDs based fluorescent assay has been successfully applied for real food sample analysis with satisfactory results.

16.
J Nanobiotechnology ; 22(1): 515, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198894

RESUMEN

Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.


Asunto(s)
Disulfuros , Molibdeno , Neoplasias , Nanomedicina Teranóstica , Molibdeno/química , Molibdeno/uso terapéutico , Humanos , Disulfuros/química , Nanomedicina Teranóstica/métodos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Animales , Sistemas de Liberación de Medicamentos/métodos , Técnicas Fotoacústicas/métodos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Imagen Multimodal/métodos
17.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886712

RESUMEN

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Asunto(s)
Celulosa , Disulfuros , Molibdeno , Regeneración Nerviosa , Células de Schwann , Andamios del Tejido , Regeneración Nerviosa/efectos de los fármacos , Animales , Ratas , Andamios del Tejido/química , Disulfuros/química , Disulfuros/farmacología , Células de Schwann/efectos de los fármacos , Molibdeno/química , Molibdeno/farmacología , Celulosa/química , Celulosa/farmacología , Celulosa/análogos & derivados , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/fisiología , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Masculino , Traumatismos de los Nervios Periféricos , Estereoisomerismo
18.
J Nanobiotechnology ; 22(1): 85, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429826

RESUMEN

BACKGROUND: Impaired collateral formation is a major factor contributing to poor prognosis in type 2 diabetes mellitus (T2DM) patients with atherosclerotic cardiovascular disease. However, the current pharmacological treatments for improving collateral formation remain unsatisfactory. The induction of endothelial autophagy and the elimination of reactive oxygen species (ROS) represent potential therapeutic targets for enhancing endothelial angiogenesis and facilitating collateral formation. This study investigates the potential of molybdenum disulfide nanodots (MoS2 NDs) for enhancing collateral formation and improving prognosis. RESULTS: Our study shows that MoS2 NDs significantly enhance collateral formation in ischemic tissues of diabetic mice, improving effective blood resupply. Additionally, MoS2 NDs boost the proliferation, migration, and tube formation of endothelial cells under high glucose/hypoxia conditions in vitro. Mechanistically, the beneficial effects of MoS2 NDs on collateral formation not only depend on their known scavenging properties of ROS (H2O2, •O2-, and •OH) but also primarily involve a molecular pathway, cAMP/PKA-NR4A2, which promotes autophagy and contributes to mitigating damage in diabetic endothelial cells. CONCLUSIONS: Overall, this study investigated the specific mechanism by which MoS2 NDs mediated autophagy activation and highlighted the synergy between autophagy activation and antioxidation, thus suggesting that an economic and biocompatible nano-agent with dual therapeutic functions is highly preferable for promoting collateral formation in a diabetic context, thus, highlighting their therapeutic potential.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Molibdeno/farmacología , Molibdeno/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peróxido de Hidrógeno/metabolismo , Autofagia
19.
Luminescence ; 39(1): e4675, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286603

RESUMEN

The coronavirus disease-2019 pandemic reflects the underdevelopment of point-of-care diagnostic technology. Nuclei acid (NA) detection is the "gold standard" method for the early diagnosis of the B.1.1.529 (Omicron) variant of severe acute respiratory syndrome-coronavirus disease-2. Polymerase chain reaction is the main method for NA detection but requires considerable manpower and sample processing taking ≥ 3 h. To simplify the operation processes and reduce the detection time, exonuclease III (Exo III)-aided MoS2 /AIE nanoprobes were developed for rapid and sensitive detection of the oligonucleotides of Omicron. Molybdenum disulfide (MoS2 ) nanosheets with excellent optical absorbance and distinguishable affinity to single-strand and duplex DNAs were applied as quenchers, and aggregation-induced emission (AIE) molecules with high luminous efficiency were designed as donor in fluorescence resonance energy transfer-based nanoprobes. Exo III with catalytic capability was used for signal amplification to increase the sensitivity of detection. The composite nanoprobes detected the mutated nucleocapsid (N)-gene and spike (S)-gene oligonucleotides of Omicron within 40 min with a limit of detection of 4.7 pM, and showed great potential for application in community medicine.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Exodesoxirribonucleasas , Humanos , Oligonucleótidos , SARS-CoV-2/genética , Molibdeno , Técnicas Biosensibles/métodos , COVID-19/diagnóstico
20.
Chem Biodivers ; 21(7): e202400634, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38726746

RESUMEN

Molybdenum disulfide nanoflowers (MoS2 NFs) were prepared by hydrothermal method. The prepared MoS2 NFs was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), specific surface areas, Raman and X-ray photoelectron spectroscopy (XPS). The characterization results show that the flower-like spherical MoS2 is composed of many ultra-thin nanosheets with an average diameter of about 300-400 nm. MoS2 NFs also exhibits excellent UV-vis absorption and high fluorescence intensity. In order to explore the biological behavior of MoS2 NFs, the interaction between MoS2 NFs and bovine serum albumin (BSA) was studied by UV-Vis absorption, fluorescence, synchronous fluorescence spectra, and cyclic voltammetry. The results of absorption and fluorescence show that MoS2 NFs and BSA interact strongly through the formation of complexes in the ground state, and the static quenching is the main mechanism. The Stern-Volmer constant and the quenching constant was calculated about 3.79×107 L mol-1 and 3.79×1015 L mol-1 s-1, respectively. The synchronous fluorescence implied that MoS2 in the complex may mainly bind to tryptophan residues of BSA. The cyclic voltammograms indicated that the addition of BSA makes electron reduction of MoS2 NFs more difficult than the corresponding free state. The results show that hydrophobic forces play a major role in the binding interaction between BSA and MoS2 NFs.


Asunto(s)
Disulfuros , Molibdeno , Nanoestructuras , Albúmina Sérica Bovina , Espectrometría de Fluorescencia , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Molibdeno/química , Disulfuros/química , Animales , Bovinos , Nanoestructuras/química , Espectrofotometría Ultravioleta , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA