Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.989
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38733990

RESUMEN

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Asunto(s)
Bulbo Raquídeo , Médula Espinal , Sistema Nervioso Simpático , Animales , Masculino , Ratones , Locomoción/fisiología , Bulbo Raquídeo/fisiología , Ratones Endogámicos C57BL , Neuronas Motoras/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Conducta Animal , Recuento de Células , Músculo Esquelético
2.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306983

RESUMEN

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Asunto(s)
Movimiento , Neuronas , Encéfalo/fisiología , Movimiento/fisiología , Neuronas/fisiología , Tálamo/fisiología , Memoria
3.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38521060

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Corteza Prefrontal , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Perfilación de la Expresión Génica , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Análisis de Expresión Génica de una Sola Célula
4.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608651

RESUMEN

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Asunto(s)
Movimiento , Neuronas , Ratones , Animales , Movimiento/fisiología , Neuronas/fisiología , Miembro Anterior/fisiología , Tronco Encefálico
5.
Cell ; 186(14): 3062-3078.e20, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37343561

RESUMEN

Seemingly simple behaviors such as swatting a mosquito or glancing at a signpost involve the precise coordination of multiple body parts. Neural control of coordinated movements is widely thought to entail transforming a desired overall displacement into displacements for each body part. Here we reveal a different logic implemented in the mouse gaze system. Stimulating superior colliculus (SC) elicits head movements with stereotyped displacements but eye movements with stereotyped endpoints. This is achieved by individual SC neurons whose branched axons innervate modules in medulla and pons that drive head movements with stereotyped displacements and eye movements with stereotyped endpoints, respectively. Thus, single neurons specify a mixture of endpoints and displacements for different body parts, not overall displacement, with displacements for different body parts computed at distinct anatomical stages. Our study establishes an approach for unraveling motor hierarchies and identifies a logic for coordinating movements and the resulting pose.


Asunto(s)
Fijación Ocular , Movimientos Sacádicos , Animales , Ratones , Movimientos Oculares , Neuronas/fisiología , Colículos Superiores/fisiología , Rombencéfalo , Movimientos de la Cabeza/fisiología
6.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36738734

RESUMEN

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Animales , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoplasma , Neuronas Motoras , Proteínas con Motivos de Reconocimiento de ARN/metabolismo
7.
Cell ; 185(2): 328-344.e26, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063074

RESUMEN

Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.


Asunto(s)
Locomoción/fisiología , Mamíferos/fisiología , Neuronas Motoras/citología , Tractos Espinocerebelares/citología , Animales , Axones/fisiología , Fenómenos Electrofisiológicos , Uniones Comunicantes/metabolismo , Silenciador del Gen , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Vértebras Lumbares/metabolismo , Ratones , Propiocepción , Natación , Sinapsis/fisiología , Factores de Transcripción/metabolismo
8.
Cell ; 185(6): 1065-1081.e23, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35245431

RESUMEN

Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.


Asunto(s)
Corteza Motora , Movimiento , Tálamo , Animales , Mesencéfalo , Ratones , Corteza Motora/fisiología , Neuronas/fisiología , Tálamo/fisiología
9.
Cell ; 185(26): 4971-4985.e16, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36462505

RESUMEN

Intraflagellar transport (IFT) trains are massive molecular machines that traffic proteins between cilia and the cell body. Each IFT train is a dynamic polymer of two large complexes (IFT-A and -B) and motor proteins, posing a formidable challenge to mechanistic understanding. Here, we reconstituted the complete human IFT-A complex and obtained its structure using cryo-EM. Combined with AlphaFold prediction and genome-editing studies, our results illuminate how IFT-A polymerizes, interacts with IFT-B, and uses an array of ß-propeller and TPR domains to create "carriages" of the IFT train that engage TULP adaptor proteins. We show that IFT-A⋅TULP carriages are essential for cilia localization of diverse membrane proteins, as well as ICK-the key kinase regulating IFT train turnaround. These data establish a structural link between IFT-A's distinct functions, provide a blueprint for IFT-A in the train, and shed light on how IFT evolved from a proto-coatomer ancestor.


Asunto(s)
Cilios , Cinesinas , Humanos , Cilios/metabolismo , Transporte Biológico , Cinesinas/metabolismo , Dineínas/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Flagelos/metabolismo
10.
Cell ; 185(26): 5011-5027.e20, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563666

RESUMEN

To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.


Asunto(s)
Neuronas , Pez Cebra , Animales , Pez Cebra/fisiología , Neuronas/fisiología , Rombencéfalo/fisiología , Encéfalo/fisiología , Natación/fisiología , Homeostasis , Mamíferos
11.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400916

RESUMEN

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Asunto(s)
Envejecimiento/fisiología , Drosophila melanogaster/ultraestructura , Microscopía Electrónica de Transmisión , Neuronas Motoras/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Animales , Automatización , Conectoma , Extremidades/inervación , Nervios Periféricos/ultraestructura , Sinapsis/ultraestructura
12.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214470

RESUMEN

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Asunto(s)
Movimiento/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Cerebelo/fisiología , Sincronización Cortical , Miembro Anterior/fisiología , Interneuronas/fisiología , Aprendizaje , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Actividad Motora/fisiología , Núcleo Olivar/fisiología , Optogenética , Células de Purkinje/fisiología , Conducta Estereotipada , Análisis y Desempeño de Tareas
13.
Cell ; 184(17): 4564-4578.e18, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34302739

RESUMEN

The mesencephalic locomotor region (MLR) is a key midbrain center with roles in locomotion. Despite extensive studies and clinical trials aimed at therapy-resistant Parkinson's disease (PD), debate on its function remains. Here, we reveal the existence of functionally diverse neuronal populations with distinct roles in control of body movements. We identify two spatially intermingled glutamatergic populations separable by axonal projections, mouse genetics, neuronal activity profiles, and motor functions. Most spinally projecting MLR neurons encoded the full-body behavior rearing. Loss- and gain-of-function optogenetic perturbation experiments establish a function for these neurons in controlling body extension. In contrast, Rbp4-transgene-positive MLR neurons project in an ascending direction to basal ganglia, preferentially encode the forelimb behaviors handling and grooming, and exhibit a role in modulating movement. Thus, the MLR contains glutamatergic neuronal subpopulations stratified by projection target exhibiting roles in action control not restricted to locomotion.


Asunto(s)
Locomoción/fisiología , Mesencéfalo/anatomía & histología , Animales , Ganglios Basales/metabolismo , Conducta Animal , Femenino , Integrasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Optogenética , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Médula Espinal/metabolismo , Transgenes , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
14.
Cell ; 184(10): 2665-2679.e19, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33882274

RESUMEN

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.


Asunto(s)
Flagelos/fisiología , Flagelos/ultraestructura , Salmonella typhimurium/fisiología , Microscopía por Crioelectrón , Conformación Proteica , Torque
15.
Cell ; 184(4): 912-930.e20, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571430

RESUMEN

Electrical stimulation is a promising tool for modulating brain networks. However, it is unclear how stimulation interacts with neural patterns underlying behavior. Specifically, how might external stimulation that is not sensitive to the state of ongoing neural dynamics reliably augment neural processing and improve function? Here, we tested how low-frequency epidural alternating current stimulation (ACS) in non-human primates recovering from stroke interacted with task-related activity in perilesional cortex and affected grasping. We found that ACS increased co-firing within task-related ensembles and improved dexterity. Using a neural network model, we found that simulated ACS drove ensemble co-firing and enhanced propagation of neural activity through parts of the network with impaired connectivity, suggesting a mechanism to link increased co-firing to enhanced dexterity. Together, our results demonstrate that ACS restores neural processing in impaired networks and improves dexterity following stroke. More broadly, these results demonstrate approaches to optimize stimulation to target neural dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Conducta Animal/fisiología , Fenómenos Biomecánicos/fisiología , Estimulación Eléctrica , Haplorrinos , Corteza Motora/fisiopatología , Redes Neurales de la Computación , Neuronas/fisiología , Análisis y Desempeño de Tareas , Factores de Tiempo
16.
Annu Rev Cell Dev Biol ; 38: 49-74, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35512258

RESUMEN

Cilia and mitotic spindles are microtubule (MT)-based, macromolecular machines that consecutively assemble and disassemble during interphase and M phase of the cell cycle, respectively, and play fundamental roles in how eukaryotic cells swim through a fluid, sense their environment, and divide to reproduce themselves. The formation and function of these structures depend on several types of cytoskeletal motors, notably MT-based kinesins and dyneins, supplemented by actin-based myosins, which may function independently or collaboratively during specific steps in the pathway of mitosis or ciliogenesis. System-specific differences in these pathways occur because, instead of conforming to a simple one motor-one function rule, ciliary and mitotic motors can be deployed differently by different cell types. This reflects the well-known influence of natural selection on basic molecular processes, creating diversity at subcellular scales. Here we review our current understanding of motor function and cooperation during the assembly-disassembly, maintenance, and functions of cilia and mitotic spindles.


Asunto(s)
Dineínas , Cinesinas , Actinas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Mitosis , Miosinas/metabolismo , Huso Acromático/metabolismo
17.
Cell ; 183(2): 537-548.e12, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33064989

RESUMEN

Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.


Asunto(s)
Pinzones/fisiología , Prosencéfalo/fisiología , Vocalización Animal/fisiología , Comunicación Animal , Animales , Axones , Masculino , Corteza Motora/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología
18.
Cell ; 183(1): 244-257.e16, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931735

RESUMEN

Many bacteria use the flagellum for locomotion and chemotaxis. Its bidirectional rotation is driven by a membrane-embedded motor, which uses energy from the transmembrane ion gradient to generate torque at the interface between stator units and rotor. The structural organization of the stator unit (MotAB), its conformational changes upon ion transport, and how these changes power rotation of the flagellum remain unknown. Here, we present ~3 Å-resolution cryoelectron microscopy reconstructions of the stator unit in different functional states. We show that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining structural data with mutagenesis and functional studies, we identify key residues involved in torque generation and present a detailed mechanistic model for motor function and switching of rotational direction.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Flagelos/ultraestructura , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón/métodos , Flagelos/metabolismo , Conformación Proteica , Torque
19.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035452

RESUMEN

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Asunto(s)
Músculo Esquelético/metabolismo , Miosinas del Músculo Esquelético/efectos de los fármacos , Miosinas del Músculo Esquelético/genética , Adulto , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Masculino , Ratones , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Espasticidad Muscular/genética , Espasticidad Muscular/fisiopatología , Músculo Esquelético/fisiología , Miosinas/efectos de los fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratas , Ratas Wistar , Miosinas del Músculo Esquelético/metabolismo
20.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32220308

RESUMEN

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Asunto(s)
Lóbulo Frontal/fisiología , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Adulto , Mapeo Encefálico , Lóbulo Frontal/anatomía & histología , Cuerpo Humano , Humanos , Corteza Motora/metabolismo , Movimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA