Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Biol Sci ; 291(2018): 20240314, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471549

RESUMEN

North Atlantic right whales are Critically Endangered and declining, with entanglements in fishing gear a key contributor to their decline. Entanglement events can result in lethal and sub-lethal (i.e. increased energetic demands and reduced foraging ability) impacts, with the latter influencing critical life-history states, such as reproduction. Using a multi-event framework, we developed a Bayesian mark-recapture model to investigate the influence of entanglement severity on survival and recruitment for female right whales. We used information from 199 known-aged females sighted between 1977 and 2018, combined with known entanglements of varying severity that were classified as minor, moderate or severe. Severe entanglements resulted in an average decline in survival of 27% for experienced non-breeders, 9% for breeders and 26% for pre-breeding females compared with other entanglements and unentangled individuals. Surviving individuals with severe entanglements had low transitional probabilities to breeders, but surprisingly, individuals with minor entanglements had the lowest transitional probabilities, contrary to expectations underpinning current management actions. Management actions are needed to address the lethal and sub-lethal impacts of entanglements, regardless of severity classification.


Asunto(s)
Reproducción , Ballenas , Humanos , Animales , Femenino , Anciano , Teorema de Bayes , Cruzamiento , Océano Atlántico
2.
Sensors (Basel) ; 23(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37514814

RESUMEN

In event-driven wireless sensor networks (WSNs), a reliable, efficient, and scalable routing solution is required for the reliable delivery of sensory data to the base station (BS). However, existing routing algorithms rarely address the issue of energy efficiency under multi-path conflicts for multi-event-driven scenarios. In order to maximize energy efficiency while maintaining a manageable conflict probability, this paper investigates a cross-layer design of routing and power control for multi-event-driven WSNs. We first develop a mathematical characterization of the conflict probability in multi-path routing, and we then formulate the energy efficiency maximization problem as a non-convex combinatorial fractional optimization problem subject to a maximum conflict probability constraint. By utilizing non-linear fractional programming and dual decomposition, an iterative search algorithm was used to obtain near-optimal power allocation and routing solutions. Extensive results demonstrate that our proposed algorithm achieved a gain of 9.09% to 35.05% in energy efficiency compared to other routing algorithms, thus indicating that our proposed algorithm can avoid unnecessary control overhead from multi-path conflicts with a lower conflict probability and can ensure maximum energy efficiency through routing and power control design.

3.
Proc Biol Sci ; 288(1951): 20210404, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34004132

RESUMEN

Quantifying temporal variation in sex-specific selection on key ecologically relevant traits, and quantifying how such variation arises through synergistic or opposing components of survival and reproductive selection, is central to understanding eco-evolutionary dynamics, but rarely achieved. Seasonal migration versus residence is one key trait that directly shapes spatio-seasonal population dynamics in spatially and temporally varying environments, but temporal dynamics of sex-specific selection have not been fully quantified. We fitted multi-event capture-recapture models to year-round ring resightings and breeding success data from partially migratory European shags (Phalacrocorax aristotelis) to quantify temporal variation in annual sex-specific selection on seasonal migration versus residence arising through adult survival, reproduction and the combination of both (i.e. annual fitness). We demonstrate episodes of strong and strongly fluctuating selection through annual fitness that were broadly synchronized across females and males. These overall fluctuations arose because strong reproductive selection against migration in several years contrasted with strong survival selection against residence in years with extreme climatic events. These results indicate how substantial phenotypic and genetic variation in migration versus residence could be maintained, and highlight that biologically important fluctuations in selection may not be detected unless both survival selection and reproductive selection are appropriately quantified and combined.


Asunto(s)
Migración Animal , Reproducción , Animales , Aves , Femenino , Masculino , Dinámica Poblacional , Estaciones del Año , Selección Genética
4.
Sensors (Basel) ; 21(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924194

RESUMEN

Performance of systems for optical detection depends on the choice of the right detector for the right application. Designers of optical systems for ranging applications can choose from a variety of highly sensitive photodetectors, of which the two most prominent ones are linear mode avalanche photodiodes (LM-APDs or APDs) and Geiger-mode APDs or single-photon avalanche diodes (SPADs). Both achieve high responsivity and fast optical response, while maintaining low noise characteristics, which is crucial in low-light applications such as fluorescence lifetime measurements or high intensity measurements, for example, Light Detection and Ranging (LiDAR), in outdoor scenarios. The signal-to-noise ratio (SNR) of detectors is used as an analytical, scenario-dependent tool to simplify detector choice for optical system designers depending on technologically achievable photodiode parameters. In this article, analytical methods are used to obtain a universal SNR comparison of APDs and SPADs for the first time. Different signal and ambient light power levels are evaluated. The low noise characteristic of a typical SPAD leads to high SNR in scenarios with overall low signal power, but high background illumination can saturate the detector. LM-APDs achieve higher SNR in systems with higher signal and noise power but compromise signals with low power because of the noise characteristic of the diode and its readout electronics. Besides pure differentiation of signal levels without time information, ranging performance in LiDAR with time-dependent signals is discussed for a reference distance of 100 m. This evaluation should support LiDAR system designers in choosing a matching photodiode and allows for further discussion regarding future technological development and multi pixel detector designs in a common framework.

5.
J Anim Ecol ; 89(10): 2279-2289, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654115

RESUMEN

Understanding components of interspecific competition has long been a major goal in ecological studies. Classical models of competition typically consider equal responses of all individuals to the density of competitors, however responses may differ both among individuals from the same population, and between populations. Based on individual long-term monitoring of two chamois populations in sympatry with red deer, we built a multi-event capture-recapture model to assess how vital rates of the smaller chamois are affected by competition from the larger red deer. In both populations, mortality and breeding probabilities of female chamois depend on age and in most cases, breeding status the preceding year. Successful breeders always performed better the next year, indicating that some females are of high quality. In one population where there was high spatial overlap between the two species, the survival of old female chamois that were successful breeders the preceding year (high-quality) was negatively related to an index of red deer population size suggesting that they tend to skip reproduction instead of jeopardizing their own survival when the number of competitors increases. The breeding probability of young breeders (ages 2 and 3) was similarly affected by red deer population size. In contrast, in the second site with low spatial overlap between the two species, the vital rates of female chamois were not related to red deer population size. We provide evidence for population-specific responses to interspecific competition and more generally, for context-, age- and state-dependent effects of interspecific competition. Our results also suggest that the classical assumption of equal responses of all individuals to interspecific competition should be relaxed, and emphasize the need to move towards more mechanistic approaches to better understand how natural populations respond to changes in their environment.


Asunto(s)
Ciervos , Rupicapra , Animales , Ecología , Femenino , Densidad de Población , Reproducción
6.
Biol Lett ; 16(4): 20200075, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32264780

RESUMEN

Quantifying how key life-history traits respond to climatic change is fundamental in understanding and predicting long-term population prospects. Age at first reproduction (AFR), which affects fitness and population dynamics, may be influenced by environmental stochasticity but has rarely been directly linked to climate change. Here, we use a case study from the highly seasonal and stochastic environment in High-Arctic Svalbard, with strong temporal trends in breeding conditions, to test whether rapid climate warming may induce changes in AFR in barnacle geese, Branta leucopsis. Using long-term mark-recapture and reproductive data (1991-2017), we developed a multi-event model to estimate individual AFR (i.e. when goslings are produced). The annual probability of reproducing for the first time was negatively affected by population density but only for 2 year olds, the earliest age of maturity. Furthermore, advanced spring onset (SO) positively influenced the probability of reproducing and even more strongly the probability of reproducing for the first time. Thus, because climate warming has advanced SO by two weeks, this likely led to an earlier AFR by more than doubling the probability of reproducing at 2 years of age. This may, in turn, impact important life-history trade-offs and long-term population trajectories.


Asunto(s)
Gansos , Thoracica , Migración Animal , Animales , Regiones Árticas , Preescolar , Servicios de Planificación Familiar , Humanos , Reproducción , Estaciones del Año , Svalbard
7.
Oecologia ; 193(3): 557-569, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32596799

RESUMEN

As top or mesopredators, carnivores play a key role in food webs. Their survival and reproduction are usually thought to be influenced by prey availability. However, simultaneous monitoring of prey and predators is difficult, making it challenging to evaluate the impacts of prey on carnivores' demography. Using 13 years of field data on arctic foxes Vulpes lagopus in the Canadian High Arctic and a capture-recapture multi-event statistical approach, we investigated the hypothesis that increases in lemming abundance (a cyclic and unpredictable food source) and goose colony proximity (a stable but spatially and temporally limited food source) would be associated with increased apparent survival and reproduction probabilities of adults. Adult apparent survival varied greatly across years (0.13-1.00) but was neither affected by lemming nor goose variations in abundance. However, reproduction probabilities were strongly influenced by both lemming abundance and access to the goose colony. A fox breeding in the best conditions of food availability (year of high lemming density inside the goose colony) had a reproduction probability four times higher than one experiencing the worst conditions (year of low lemming density outside the goose colony). Breeding status of individuals also played a role, with breeders having a 10-20% higher probability of survival and 30% higher probability of reproduction the following year than non-breeders. As the Arctic ecosystem changes due to increased temperatures and species ranges, this study will allow better predictions of predator responses to management or environmental changes and a better understanding of ecosystem functioning.


Asunto(s)
Ecosistema , Zorros , Animales , Regiones Árticas , Canadá , Cadena Alimentaria , Dinámica Poblacional
8.
Ecol Appl ; 29(1): e01826, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601594

RESUMEN

We developed a Hidden Markov mark-recapture model (R package marked) to examine sex-specific demography in Magellanic Penguins (Spheniscus magellanicus). Our model was based on 33 yr of resightings at Punta Tombo, Argentina, where we banded ~44,000 chicks from 1983 to 2010. Because we sexed only 57% of individuals over their lifetime, we treated sex as an uncertain state in our model. Our goals were to provide insight into the population dynamics of this declining colony, to inform conservation of this species, and to highlight the importance of considering sex-specific vital rates in demographic seabird studies. Like many other seabirds, Magellanic Penguins are long-lived, serially monogamous, and exhibit obligate biparental care. We found that the non-breeding-season survival of females was lower than that of males and that the magnitude of this bias was highest for juveniles. Biases in survival accumulated as cohorts aged, leading to increasingly skewed sex ratios. The survival bias was greatest in years when overall survival was low, that is, females fared disproportionality worse when conditions were unfavorable. Our model-estimated survival patterns are consistent with independent data on carcasses from the species' non-breeding grounds, showing that mortality is higher for juveniles than for adults and higher for females than for males. Juveniles may be less efficient foragers than adults are and, because of their smaller size, females may show less resilience to food scarcity than males. We used perturbation analysis of a population matrix model to determine the impact of sex-biased survival on adult sex ratio and population growth rate at Punta Tombo. We found that adult sex ratio and population growth rate have the greatest proportional response, that is, elasticity, to female pre-breeder and adult survival. Sex bias in juvenile survival (i.e., lower survival of females) made the greatest contribution to population declines from 1990 to 2009. Because starvation is a leading cause of morality in juveniles and adults, precautionary fisheries and spatial management in the region could help to slow population decline. Our data add to growing evidence that knowledge of sex-specific demography and sex ratios are necessary for accurate assessment of seabird population trends.


Asunto(s)
Spheniscidae , Animales , Argentina , Femenino , Explotaciones Pesqueras , Masculino , Dinámica Poblacional , Sexismo
9.
J Anim Ecol ; 88(5): 746-756, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737781

RESUMEN

Trade-offs between survival and reproduction are at the core of life-history theory, and essential to understanding the evolution of reproductive tactics as well as population dynamics and stability. Factors influencing these trade-offs are multiple and often addressed in isolation. Further problems arise as reproductive states and survival in wild populations are estimated based on imperfect and potentially biased observation processes, which might lead to flawed conclusions. In this study, we aimed at elucidating trade-offs between current reproduction (both pregnancy and lactation), survival and future reproduction, including the specific costs of first reproduction, in long-lived, income breeding small mammals, an under-studied group. We developed a novel statistical framework that encapsulates the breeding life cycle of females, and accounts for incomplete information on female pregnancy and lactation and imperfect and biased recapture rates. We applied this framework to longitudinal data on two sympatric, closely related bat species (Myotis daubentonii and M. nattereri). We revealed the existence of several, to our knowledge previously unknown, trends in survival and breeding of these closely related, sympatric species and detected remarkable differences in their age and costs of first reproduction, as well as their survival-reproduction trade-offs. Our results indicate that species with this type of life history exhibit a mixture of patterns expected for long-lived and short-lived animals, and between income and capital breeders. Thus, we call for more studies to be conducted in similar study systems, increasing our ability to fully understand the evolutionary origin and fitness effects of trade-offs and senescence.


Asunto(s)
Quirópteros , Reproducción , Animales , Cruzamiento , Femenino , Lactancia , Embarazo , Simpatría
10.
Ecology ; 99(5): 1150-1163, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29460431

RESUMEN

Dispersal is a key process in ecological and evolutionary dynamics. Spatiotemporal variation in habitat availability and characteristics has been suggested to be one of the main cause involved in dispersal evolution and has a strong influence on metapopulation dynamics. In recent decades, the study of dispersal has led to the development of capture-recapture (CR) models that allow movement between sites to be quantified, while handling imperfect detection. For studies involving numerous recapture sites, Lagrange et al. () proposed a multievent CR model that allows dispersal to be estimated while omitting site identity by distinguishing between individuals that stay and individuals that move. More recently, Cayuela et al. () extended this model to allow survival and dispersal probabilities to differ for the different types of habitat represented by several sites within a study area. Yet in both of these modeling systems, the state of sites is assumed to be static over time, which is not a realistic assumption in dynamic landscapes. For that purpose, we generalized the multievent CR model proposed by Cayuela et al. () to allow the estimation of dispersal, survival and recapture probabilities when a site may appear or disappear over time (MODEL 1) or when the characteristics of a site fluctuate over space and time (MODEL 2). This paper first presents these two new modeling systems, and then provides an illustration of their efficacy and usefulness by applying them to simulated CR data and data collected on two metapopulations of amphibians. MODEL 1 was tested using CR data recorded on a metapopulation of yellow-bellied toads (Bombina variegata). In this first empirical case, we examined whether the drying-out dynamics of ponds and the past dispersal status of an individual might affect dispersal behavior. Our study revealed that the probability of facultative dispersal (i.e., from a pond group that remained available/flooded) fluctuated between years and was higher in individuals that had previously dispersed. MODEL 2 was tested using CR data collected on a metapopulation of great crested newts (Triturus cristatus). In this second empirical example, we investigated whether the density of alpine newts (Ichthyosaura alpestris), a potential competitor, might affect the dispersal and survival of the crested newt. Our study revealed that the departure rate was lower in ponds with a high density of heterospecifics than in ponds with a low density of heterospecifics at both inter-annual and intra-annual scales. Moreover, annual survival was slightly higher in ponds with a high density of heterospecifics. Overall, our findings indicate that these multievent CR models provide a highly flexible means of modeling dispersal in dynamic landscapes.


Asunto(s)
Ecología , Ecosistema , Animales , Anuros , Estanques , Dinámica Poblacional
11.
Oecologia ; 188(2): 451-464, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29980844

RESUMEN

Population dynamics can be regulated through intra- and interspecific density dependence. In species with close ecological requirements, interspecific competition for resources may add to intraspecific density, or even exceed its effect; it may impact single or multiple traits. However, the relative impact of intra- and interspecific densities on demographic parameters has been rarely empirically assessed. We analyzed 18 years of capture-mark-recapture data from brown trout (Salmo trutta) coexisting with Atlantic salmon (Salmo salar) during the juvenile freshwater phase in the Oir River (France) to estimate the relative effects of intra- and interspecific density on trout early life. In trout, a species with optional migration, we estimated the migration probability of young-of-the-year trout out of their natal site, survival probability during the first winter, as well as body size, in relation to both intra- and interspecific density. Trout density correlated negatively with body size and with winter survival in resident trout but not with trout migration. Salmon density correlated positively with trout migration, but no impact was detected on trout body size or survival. Our study highlighted contrasting effects of intra- and interspecific density on trout early life, and the need to account for both factors when studying population dynamics in coexisting species. In particular, by affecting trout migration decision, salmon density may drive trout life history.


Asunto(s)
Rasgos de la Historia de Vida , Trucha , Animales , Francia , Ríos , Estaciones del Año
12.
Glob Chang Biol ; 23(8): 3012-3029, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28231421

RESUMEN

Fisheries have an enormous economic importance, but reconciling their socio-economic features with the conservation and sustainability of marine ecosystems presents major challenges. Bycatch mortality from fisheries is clearly among the most serious global threats for marine ecosystems, affecting a wide range of top predators. Recent estimates report ca. 200,000 seabirds killed annually by bycatch in European waters. However, there is an urgent need to rigorously estimate actual mortality rates and quantify effects of bycatch on populations. The Mediterranean Sea is one of the most impacted regions. Here, we estimate for the first time both bycatch mortality rates and their population-level effects on three endemic and vulnerable Mediterranean taxa: Scopoli's shearwater, Mediterranean shag, and Audouin's gull, that die in different types of fishing gears: longlines, gillnets and sport trolling, respectively. We use multi-event capture-recapture modelling to estimate crucial demographic parameters, including the probabilities of dying in different fishing gears. We then build stochastic demography models to forecast the viability of the populations under different management scenarios. Longline bycatch was particularly severe for adults of Scopoli's shearwaters and Audouin's gulls (ca. 28% and 23% of total mortality, respectively) and also for immature gulls (ca. 90% of mortality). Gillnets had a lower impact, but were still responsible for ca. 9% of juvenile mortality on shags, whereas sport trolling only slightly influenced total mortality in gulls. Bycatch mortality has high population-level impacts in all three species, with shearwaters having the highest extinction risk under current mortality rates. Different life-history traits and compensatory demographic mechanisms between the three species are probably influencing the different bycatch impact: for shearwaters, urgent conservation actions are required to ensure the viability of their populations. Results will be very useful for guiding future seabird conservation policies and moving towards an ecosystem-based approach to sustainable fisheries management.


Asunto(s)
Charadriiformes , Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Animales , Demografía , Mar Mediterráneo , Dinámica Poblacional
13.
J Anim Ecol ; 86(3): 683-693, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28127765

RESUMEN

Understanding how individuals and populations respond to fluctuations in climatic conditions is critical to explain and anticipate changes in ecological systems. Most such studies focus on climate impacts on single populations without considering inter- and intra-population heterogeneity. However, comparing geographically dispersed populations limits the risk of faulty generalizations and helps to improve ecological and demographic models. We aimed to determine whether differences in migration tactics among and within populations would induce inter- or intra-population heterogeneity in survival in relation to winter climate fluctuations. Our study species was the Common eider (Somateria mollissima), a marine duck with a circumpolar distribution, which is strongly affected by climatic conditions during several phases of its annual cycle. Capture-mark-recapture data were collected in two arctic (northern Canada and Svalbard) and one subarctic (northern Norway) population over a period of 18, 15, and 29 years respectively. These three populations have different migration tactics and experience different winter climatic conditions. Using multi-event and mixture modelling, we assessed the association between adult female eider survival and winter conditions as measured by the North Atlantic Oscillation (NAO) index. We found that winter weather conditions affected the survival of female eiders from each of these three populations. However, different mechanisms seemed to be involved. Survival of the two migrating arctic populations was impacted directly by changes in the NAO, whereas the subarctic resident population was affected by the NAO with time lags of 2-3 years. Moreover, we found evidence for intra-population heterogeneity in the survival response to the winter NAO in the Canadian eider population, where individuals migrate to distinct wintering areas. Our results illustrate how individuals and populations of the same species can vary in their responses to climate variation. We suspect that the found variation in the survival response of birds to winter conditions is partly explained by differences in migration tactic. Detecting and accounting for inter- and intra-population heterogeneity will improve our predictions concerning the response of wildlife to global changes.


Asunto(s)
Cambio Climático , Patos/fisiología , Longevidad , Animales , Femenino , Noruega , Nunavut , Dinámica Poblacional , Estaciones del Año , Svalbard
14.
Ecology ; 97(12): 3494-3502, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912002

RESUMEN

Spatial segregation of animals by class (i.e., maturity or sex) within a population due to differential rates of temporary emigration (TE) from study sites can be an important life history feature to consider in population assessment and management. However, such rates are poorly known; new quantitative approaches to address these knowledge gaps are needed. We present a novel application of multi-event models that takes advantage of two sources of detections to differentiate temporary emigration from apparent absence to quantify class segregation within a study population of double-marked (photo-identified and tagged with coded acoustic transmitters) white sharks (Carcharodon carcharias) in central California. We use this model to test if sex-specific patterns in TE result in disparate apparent capture probabilities (po ) between male and female white sharks, which can affect the observed sex ratio. The best-supported model showed a contrasting pattern of Pr(TE) from coastal aggregation sites between sexes (for males Pr[TE] = 0.015 [95% CI = 0.00, 0.31] and Pr[TE]= 0.57 [0.40, 0.72] for females), but not maturity classes. Additionally, by accounting for Pr(TE) and imperfect detection, we were able to estimate class-specific values of true capture probability (p* ) for tagged and untagged sharks. The best-supported model identified differences between maturity classes but no difference between sexes or tagging impacts (tagged mature sharks p*  = 0.55 (0.46-0.63) and sub-adult sharks p*  = 0.36 (0.25, 0.50); and untagged mature sharks p*  = 0.50 (0.39-0.61) and sub-adults p*  = 0.18 (0.10, 0.31). Estimated sex-based differences in po were linked to sex-specific differences in Pr(TE) but not in p* ; once the Pr(TE) is accounted for, the p* between sexes was not different. These results indicate that the observed sex ratio is not a consequence of unequal detectability and sex-specific values of Pr(TE) are important drivers of the observed male-dominated sex ratio. Our modeling approach reveals complex class-specific patterns in Pr(TE) and p* in a mark-recapture data set, and highlights challenges for the population modeling and conservation of white sharks in central California. The model we develop here can be used to estimate rates of temporary emigration and class segregation when two detection methods are used.


Asunto(s)
Envejecimiento/fisiología , Migración Animal/fisiología , Modelos Biológicos , Tiburones/fisiología , Animales , California , Femenino , Masculino , Océano Pacífico , Factores de Tiempo
15.
J Anim Ecol ; 85(1): 85-96, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433114

RESUMEN

Extreme climatic events (ECEs) are predicted to become more frequent as the climate changes. A rapidly increasing number of studies - though few on animals - suggest that the biological consequences of ECEs can be severe. However, ecological research on the impacts of ECEs has been limited by a lack of cohesiveness and structure. ECEs are often poorly defined and have often been confusingly equated with climatic variability, making comparison between studies difficult. In addition, a focus on short-term studies has provided us with little information on the long-term implications of ECEs, and the descriptive and anecdotal nature of many studies has meant it is still unclear what the key research questions are. Synthesizing the current state of work is essential to identify ways to make progress. We conduct a synthesis of the literature and discuss conceptual and practical challenges faced by research on ECEs. We consider three steps to advance research. First, we discuss the importance of choosing an ECE definition and identify the pros and cons of 'climatological' and 'biological' definitions of ECEs. Secondly, we advocate research beyond short-term descriptive studies to address questions concerning the long-term implications of ECEs, focussing on selective pressures and phenotypically plastic responses and how they might differ from responses to a changing climatic mean. Finally, we encourage a greater focus on multi-event studies that help us understand the implications of changing patterns of ECEs, through the combined use of modelling, experimental and observational field studies. This study aims to open a discussion on the definitions, questions and methods currently used to study ECEs, which will lead to a more cohesive approach to future ECE research.


Asunto(s)
Evolución Biológica , Cambio Climático , Ecología/métodos , Animales , Plantas , Terminología como Asunto
16.
Proc Biol Sci ; 282(1818): 20151529, 2015 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-26511053

RESUMEN

Positive covariations between survival and reproductive performance (S-R covariation) are generally interpreted in the context of fixed or dynamic demographic heterogeneity (i.e. persistent differences between individuals, or dynamic variation in resource acquisition), but the processes underlying covariations are still unknown. We used multi-event modelling to investigate how environmental and individual features influence S-R covariation patterns in a long-lived seabird, the Monteiro's storm petrel (Oceanodroma monteiroi). Our analysis reveals that a strong positive association between individual breeding success and subsequent survival occurs only when conditions are favourable to reproduction (in favourable years, in high-quality nests and in nest-faithful breeders). This finding reflects differences in the main causes of breeding failure and mortality under favourable and unfavourable conditions, which in turn lead to distinct patterns of S-R covariation. We suggest, in particular, that resource-related sources of demographic heterogeneity do not generate a strong S-R covariation, in contrast with hidden and unpredictable sources of variation.


Asunto(s)
Aves/fisiología , Ambiente , Longevidad , Comportamiento de Nidificación , Reproducción/fisiología , Animales , Azores , Femenino , Masculino , Modelos Biológicos
17.
Biol Lett ; 11(10)2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26510674

RESUMEN

Inter-seasonal events are believed to connect and affect reproductive performance (RP) in animals. However, much remains unknown about such carry-over effects (COEs), in particular how behaviour patterns during highly mobile life-history stages, such as migration, affect RP. To address this question, we measured at-sea behaviour in a long-lived migratory seabird, the Manx shearwater (Puffinus puffinus) and obtained data for individual migration cycles over 5 years, by tracking with geolocator/immersion loggers, along with 6 years of RP data. We found that individual breeding and non-breeding phenology correlated with subsequent RP, with birds hyperactive during winter more likely to fail to reproduce. Furthermore, parental investment during one year influenced breeding success during the next, a COE reflecting the trade-off between current and future RP. Our results suggest that different life-history stages interact to influence RP in the next breeding season, so that behaviour patterns during winter may be important determinants of variation in subsequent fitness among individuals.


Asunto(s)
Migración Animal/fisiología , Aves/fisiología , Reproducción/fisiología , Estaciones del Año , Animales , Estadios del Ciclo de Vida , Telemetría
18.
Oecologia ; 179(3): 753-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26169393

RESUMEN

In social species, the hierarchical status of an individual has important consequences for its fitness. While many studies have focused on individual condition to explain access to dominance, very few have investigated the influence of the social environment, especially during early life. Yet it is known that environmental conditions early in life may influence several traits at adulthood. Here, we examine the influence of early social environment on accession to dominance by investigating the influence of litter size and sex composition on survival and the probability of ascending to dominance later in life using a 20-year dataset from a wild population of Alpine marmots (Marmota marmota). Although litter size had no effect on the fate of individuals, litter sex composition affected male juvenile survival and both male and female probabilities of reaching dominant status when adult. Male juveniles incur lower survival when the number of male juveniles in the litter increases, and individuals of both sexes from male-biased litters are more likely to become dominant than individuals from female-biased litters. However, the absolute number of sisters in the litter, rather than the sex ratio, seems to be an important predictor of the probability of acquiring dominant status: pups having more sisters are less likely to become dominant. Several potential mechanisms to explain these results are discussed.


Asunto(s)
Jerarquia Social , Marmota/fisiología , Razón de Masculinidad , Animales , Ambiente , Femenino , Humanos , Tamaño de la Camada , Masculino , Factores Sexuales
19.
ISA Trans ; 150: 148-165, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729907

RESUMEN

Denial of services (DoS) attacks exist in wind integrated power system. DoS attacks can cause network-induced delay and packages loss in information transmission. Meanwhile, considering the parameter perturbation of controller and system model uncertainty in wind integrated power system, these may cause the system dynamic performances degradation or even instability. Based on the above considerations, the joint non-fragile automatic generation robust control of wind integrated power system under DoS attacks is studied in this paper. In order to ensure the expected system performance and more effectively utilize the limited network communication resources under DoS attacks, a novel dynamic multi-event driven mechanism based joint non-fragile H∞ automatic generation control method is proposed. By constructing a suitable Lyapunov-Krasovskii functional and utilizing the Shur complement lemma to handle nonlinear matrix inequality, the sufficient conditions are derived to guarantee the asymptotic stability of wind integrated power system under DoS attacks. Furthermore, the performance of the proposed non-fragile regulator is demonstrated through a four-area wind integrated power system to show the feasibility and applicability. The analysis result indicates that the proposed scheme provides stronger robustness, higher wind energy utilization efficiency and more efficient communication mechanism.

20.
Curr Biol ; 33(17): 3766-3774.e3, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597520

RESUMEN

An exceptional highly pathogenic avian influenza (HPAI) outbreak due to H5N1 virus genotypes belonging to clade 2.3.4.4.b has been affecting birds worldwide since autumn 2021.1,2,3 Mortality caused by viral infection has been well documented in poultry and more recently in wild birds, especially in seabird-breeding colonies.4,5,6 However, there is a critical lack of knowledge about how terrestrial birds deal with HPAI virus infections in terms of behavior and space use, especially during the breeding season.7,8,9 Understanding how birds move when they are infected could help evaluate the risk of spreading the virus at a distance among other populations of wild or domestic birds, this latter risk being especially important for commensal bird species. Through long-term GPS tracking, we described the changes in daily movement patterns of 31 adult griffon vultures Gyps fulvus in two French sites in 2022 compared with 3 previous years. In spring 2022, 21 vultures at both sites showed periods of immobility at the nest, during 5.6 days on average. Positive serological status of 2 individuals confirmed that they had been infected by HPAI viruses. Death was recorded for 3 of the 31 tracked individuals, whereas all others recovered and returned quickly to their foraging routine, although at least 9 birds failed breeding. Such immobility patterns and death rates were never observed in previous years and were not related to weather conditions. The high immobility behavior of infected birds could reduce the risks of transmission. The observed vulnerability to HPAI viruses questions the resistance of endangered vulture species worldwide if infected.


Asunto(s)
Falconiformes , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Humanos , Adulto , Animales , Cruzamiento , Especies en Peligro de Extinción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA