RESUMEN
A phase 1b, randomized, placebo-controlled, double-blind, multiple ascending dose study (NCT02858973) was conducted to assess the safety, tolerability, and pharmacokinetics of the new antituberculosis agent telacebec (Q203). A total of 47 healthy adult subjects entered the study; 36 received telacebec, and 11 received placebo. Telacebec at doses of 20, 50, 100, 160, 250, and 320 mg was orally administered once daily with a standard meal for 14 days. Multiple oral doses of telacebec up to 320 mg daily for 14 days appeared to be safe and well tolerated by healthy adult subjects in this study. There were no deaths, serious adverse events, or subject discontinuations due to adverse events. Following oral doses of telacebec, the overall extent (AUCτ) and peak (Cmax) exposures of telacebec increased from 538.94 to 10,098.47 ng·h/mL and from 76.43 to 1502.33 ng/mL, respectively, with increasing telacebec doses from 20 mg to 320 mg. A steady state was achieved for plasma telacebec by day 12, and there was 1.9- to 3.1-fold accumulation in the extent of telacebec exposure after daily doses for 14 days. Analysis of plasma samples from the participants indicated that telacebec was the primary circulating entity with no significant metabolites. Three potential metabolites of telacebec have been identified, which may be relatively minimal compared to the parent drug. Consistent with findings from preclinical and previous single-dose clinical studies, these results also support the potential of telacebec for further development as a safe and effective agent for the treatment of tuberculosis.
Asunto(s)
Tuberculosis , Adulto , Humanos , Área Bajo la Curva , Tuberculosis/tratamiento farmacológico , Método Doble Ciego , Relación Dosis-Respuesta a Droga , Administración OralRESUMEN
Fosmanogepix (FMGX, APX001), a first-in-class, intravenous (i.v.) and oral (p.o.) antifungal prodrug candidate is currently in clinical development for the treatment of invasive fungal infections. Manogepix (MGX, APX001A), the active moiety of FMGX, interferes with cell wall synthesis by targeting fungal glycosylphosphatidylinositol-anchored cell wall transfer protein 1, thereby causing loss of cell viability. Data from two phase 1, placebo-controlled, single-ascending dose (SAD) and multiple-ascending dose (MAD) studies evaluating safety, tolerability, and pharmacokinetics of FMGX (doses up to 1,000 mg, i.v. and p.o.) are presented. Eligible participants were healthy adults (aged 18 to 55 years) randomized to receive either FMGX or placebo. Across both phase 1 studies, 151 of 154 participants (aged 23 to 35 years; FMGX: 116, placebo: 38) completed the study. Administration of FMGX i.v. demonstrated linear- and dose-proportional pharmacokinetics of MGX in terms of geometric mean maximum concentration of drug in serum (Cmax) (SAD: 0.16 to 12.0 µg/mL, dose: 10 to 1,000 mg; MAD: 0.67 to 15.4 µg/mL, dose: 50 to 600 mg) and area under the concentration-time curve (AUC) (SAD: 4.05 to 400, MAD: 6.39 to 245 µg · h/mL). With single and repeat p.o., dose-proportional increases in Cmax (SAD: 1.30 to 6.41 µg/mL, dose: 100 to 500 mg; MAD: 6.18 to 21.3 µg/mL, dose: 500 to 1,000 mg) and AUC (SAD: 87.5 to 205, MAD: 50.8 to 326 µg · h/mL) were also observed, with high oral bioavailability (90.6% to 101.2%). Administration of FMGX p.o. under post cibum conditions improved tolerability versus ante cibum conditions. No severe treatment-emergent adverse events (TEAEs), serious AEs, or withdrawals due to a drug-related TEAEs were reported with single or multiple i.v. and p.o. doses. Preclinical target exposures were achieved and were not accompanied by any serious/unexpected concerns with generally safe and well-tolerated dose regimens.
Asunto(s)
Antifúngicos , Infecciones Fúngicas Invasoras , Adulto , Humanos , Antifúngicos/efectos adversos , Voluntarios Sanos , Disponibilidad Biológica , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Área Bajo la Curva , Método Doble Ciego , Relación Dosis-Respuesta a DrogaRESUMEN
BACKGROUND: ACD856 is a positive allosteric modulator of tropomyosin receptor kinase (Trk) receptors which has shown to have pro-cognitive and anti-depressant-like effects in various animal models. It is currently in clinical development for the treatment of Alzheimer's disease and other disorders where cognition is impaired and is also considered for indications such as depression or other neuropsychiatric diseases. ACD856 has a novel mechanism of action modulating the activity of the Trk-receptors, resulting in increased stimulation of the neurotrophin signaling pathways. Previous studies applying single intravenous and oral doses of ACD856 indicate that ACD856 is safe and well-tolerated by healthy volunteer subjects, and that it has suitable safety and pharmacokinetic properties for further clinical development. OBJECTIVES: To investigate the safety and tolerability of 7 days of treatment with multiple ascending oral doses of ACD856 in healthy subjects, and to characterize its pharmacokinetic (PK) properties. In addition, pharmacodynamic effects of ACD856 using quantitative electroencephalography (qEEG) as an indicator for central target engagement were assessed. DESIGN: This was a prospective, phase I, double-blind, parallel-group, placebo-controlled, randomized study of the safety, tolerability, PK and pharmacodynamics of multiple ascending oral doses of ACD856 in healthy subjects. ACD856 or placebo were administered in 3 ascending dose cohorts of 8 subjects. Within each cohort, subjects were randomized to receive either ACD856 (n=6) or placebo (n=2). SETTING: The study was conducted at a First-in-Human unit in Sweden. PARTICIPANTS: Twenty-four healthy male and female subjects. INTERVENTION: The study medication was administered as an oral solution, with ACD856 or the same contents without the active ingredient (placebo). The dose levels ranged from 10 mg to 90 mg. ACD856 was administered once daily for 7 days, targeting steady state. MEASUREMENTS: Safety and tolerability assessments included adverse events, laboratory, vital signs, 12-lead electrocardiogram (ECG), physical examination, assessment of stool frequency and questionnaires to assess symptoms of anxiety, depression, as well as suicidal ideation and behavior. In addition, cardiodynamic ECGs were extracted to evaluate cardiac safety. PK parameters were calculated based on measured concentrations of ACD856 in plasma, urine, and cerebrospinal fluid (CSF) samples. Metabolite profiling, characterization and analysis was performed based on and urine samples. qEEG was recorded for patients in the two highest dose cohorts (30 and 90 mg/day) as a pharmacodynamic assessment to explore central target engagement. RESULTS: Treatment with ACD856 was well tolerated with no serious adverse events. No treatment emergent or dose related trends were observed for any of the safety assessments. ACD856 was rapidly absorbed and reached maximum plasma exposure at 30 to 45 minutes after administration. Steady state was reached before Day 6, with an elimination half-life at steady state of approximately 20 hours. At steady state, ACD856 exhibited accumulation ratios for Cmax and AUC of approximately 1.6 and 1.9 respectively. The exposure, Cmax and AUC0-24, increased proportionally with the dose. There was no unchanged ACD856 detected in urine. The metabolic pattern in urine and plasma was similar, and in alignment with the metabolites observed in preclinical toxicology studies. The level of ACD856 measured in CSF at steady state increased with dose, indicating Central Nervous System (CNS) exposure at relevant levels for pharmacodynamic effects. ACD856 demonstrated significant dose-dependent treatment-associated changes on qEEG parameters. Specifically, increase of the relative theta power and decrease of the fast alpha and beta power was observed, leading to an acceleration of the delta+theta centroid and an increase in the theta/beta ratio. CONCLUSIONS: ACD856 was well tolerated at the tested dose levels (10-90 mg/daily for 7 days) in healthy subjects. The compound has a robust pharmacokinetic profile, with rapid absorption and dose-dependent exposure. ACD856 was shown to pass the blood-brain-barrier, reach relevant exposure in the CNS and to induce dose-dependent treatment-related changes on qEEG parameters, indicating central target engagement.
Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Voluntarios Sanos , Estudios Prospectivos , Administración Oral , Método Doble CiegoRESUMEN
Preclinical studies in animal models of obesity and inflammation have shown that oral administration of ARD-101, a potential TAS2R agonist, reduced food intake and body weight and downregulated inflammatory cytokines. We present results from a first-in-human phase 1 randomized, placebo-controlled trial that evaluated safety, pharmacokinetics, and pharmacodynamics of single or multiple ascending doses of oral ARD-101 (40, 100, and 240 mg) in healthy adults. A total of 43 subjects were randomly assigned and dosed to ARD-101 or placebo with 42 subjects completing the study treatment. ARD-101 was found to be >99% restricted to the gut with minimal systemic exposure, demonstrated a favorable safety profile, and was well tolerated at all dose levels. Blood samples taken 1 hour after administration showed that subjects dosed with 240 mg of ARD-101 had elevated circulating levels of several gut peptide hormones. It is postulated that ARD-101 activates enteroendocrine cells to achieve its effects regulating metabolism and inflammation. The phase 1 clinical results demonstrated safety of ARD-101 and indicated activation of gut peptide hormone release in healthy adults. Further clinical trials will evaluate ARD-101 in patients with metabolic and inflammatory disorders.