Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.409
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2206975120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068259

RESUMEN

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Shewanella , Puntos Cuánticos/química , Compuestos de Cadmio/química , Hidrógeno/metabolismo , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Shewanella/metabolismo
2.
Annu Rev Phys Chem ; 75(1): 483-508, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941528

RESUMEN

Crystallographic analysis relies on the scattering of quanta from arrays of atoms that populate a repeating lattice. While large crystals built of lattices that appear ideal are sought after by crystallographers, imperfections are the norm for molecular crystals. Additionally, advanced X-ray and electron diffraction techniques, used for crystallography, have opened the possibility of interrogating micro- and nanoscale crystals, with edges only millions or even thousands of molecules long. These crystals exist in a size regime that approximates the lower bounds for traditional models of crystal nonuniformity and imperfection. Accordingly, data generated by diffraction from both X-rays and electrons show increased complexity and are more challenging to conventionally model. New approaches in serial crystallography and spatially resolved electron diffraction mapping are changing this paradigm by better accounting for variability within and between crystals. The intersection of these methods presents an opportunity for a more comprehensive understanding of the structure and properties of nanocrystalline materials.

3.
Nano Lett ; 24(32): 9983-9989, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078514

RESUMEN

The self-assembly of nanocrystals (NCs) into close-packed, ordered superlattices (SLs) is of broad, engineering interest. The coherent orientation of polyhedral nanocrystals within NC SLs enhances electronic, magnetic, and vibrational coupling, leading to a variety of emergent phenomena. Here, we show that coherent orientation of polyhedral NCs in many SLs can be understood simply by considering its effect on the conformational entropy of surface ligands. We report the predicted nanocrystal orientations and entropic driving force to orient for a broad range of nanocrystal shapes and superlattice unit cells, and we show that ligand entropy is sufficient to reproduce a host of reported experimental and computational observations. We additionally use this framework to predict the expected distribution of interstitial species such as solvent or unbound ligands in an oriented NC SL. This work offers intuition for understanding the orientation of NCs in superlattices and a future framework for analyzing multinary structures.

4.
Nano Lett ; 24(13): 4038-4043, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511834

RESUMEN

Specific heat capacity is one of the most fundamental thermodynamic properties of materials. In this work, we measured the specific heat capacity of PbSe nanocrystals with diameters ranging from 5 to 23 nm, and its value increases significantly from 0.2 to 0.6 J g-1 °C-1. We propose a mass assignment model to describe the specific heat capacity of nanocrystals, which divides it into four parts: electron, inner, surface, and ligand. By eliminating the contribution of ligand and electron specific heat capacity, the specific heat capacity of the inorganic core is linearly proportional to its surface-to-volume ratio, showing the size dependence. Based on this linear relationship, surface specific heat capacity accounts for 40-60% of the specific heat capacity of nanocrystals with size decreasing. It can be attributed to the uncoordinated surface atoms, which is evidenced by the appearance of extra surface phonons in Raman spectra and ab initio molecular dynamics (AIMD) simulations.

5.
Nano Lett ; 24(4): 1168-1175, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251890

RESUMEN

Unveiling materials' corrosion pathways is significant for understanding the corrosion mechanisms and designing corrosion-resistant materials. Here, we investigate the corrosion behavior of Sn@Ni3Sn4 and Sn nanocrystals in an aqueous solution in real time by using high-resolution liquid cell transmission electron microscopy. Our direct observation reveals an unprecedented level of detail on the corrosion of Sn metal with/without a coating of Ni3Sn4 at the nanometric and atomic levels. The Sn@Ni3Sn4 nanocrystals exhibit "pitting corrosion", which is initiated at the defect sites in the Ni3Sn4 protective layer. The early stage isotropic etching transforms into facet-dependent etching, resulting in a cavity terminated with low-index facets. The Sn nanocrystals under fast etching kinetics show uniform corrosion, and smooth surfaces are obtained. Sn nanocrystals show "creeping-like" etching behavior and rough surfaces. This study provides critical insights into the impacts of coating, defects, and ion diffusion on corrosion kinetics and the resulting morphologies.

6.
Nano Lett ; 24(21): 6320-6329, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38701381

RESUMEN

In an attempt to optimize the upconversion luminescence (UCL) output of a Nd3+-sensitized near-infrared (808 nm) upconverting core-shell (CS) nanocrystal through deliberate incorporation of lattice defects, a comprehensive analysis of microstrain both at the CS interface and within the core layer was performed using integral breadth calculation of high-energy synchrotron X-ray (λ = 0.568551 Å) diffraction. An atomic level interpretation of such microstrain was performed using pair distribution function analysis of the high-energy total scattering. The core NC developed compressive microstrain, which gradually transformed into tensile microstrain with the growth of the epitaxial shell. Such a reversal was rationalized in terms of a consistent negative lattice mismatch. Upon introduction of lattice defects into the CS systems upon incorporation of Li+, the corresponding UCL intensity was maximized at some specific Li+ incorporation, where the tensile microstrain of CS, compressive microstrain of the core, and atomic level disorders exhibited their respective extreme values irrespective of the activator ions.

7.
Nano Lett ; 24(7): 2125-2130, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38341872

RESUMEN

Semiconductor nanocrystals (NCs) with high elemental and structural complexity can be engineered to tailor for electronic, photovoltaic, thermoelectric, and battery applications etc. However, this greater complexity causes ambiguity in the atomic structure understanding. This in turn hinders the mechanistic studies of nucleation and growth, the theoretical calculations of functional properties, and the capability to extend functional design across complementary semiconductor nanocrystals. Herein, we successfully deciphered the atomic arrangements of 4 different nanocrystal domains in CuαZnßSnγSeδ (CZTSe) nanocrystals using crucial zone axis analysis on multiple crystals in different orientations. The results show that the essence of crystallographic progression from binary to multielemental semiconductors is actually the change of theoretical periodicity. This transition is caused by decreased symmetry in the crystal instead of previously assumed crystal deformation. We further reveal that these highly complex crystalline entities have highly ordered element arrangements as opposed to the previous understanding that their elemental orderings are random.

8.
Nano Lett ; 24(1): 61-66, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38113396

RESUMEN

The decay of excited states via radiative and nonradiative paths is well understood in molecules and bulk semiconductors but less so in nanocrystals. Here, we perform time-resolved photoluminescence (t-PL) experiments on CsPbBr3 metal-halide perovskite nanocrystals, with a time resolution of 3 ps, sufficient to observe the decay of both excitons and biexcitons as a function of temperature. The striking result is that the radiative rate constant of the single exciton increases at low temperatures with an exponential functional form, suggesting quantum coherent effects with dephasing at high temperatures. The opposing directions of the radiative and nonradiative decay rate constants enable enhanced brightening of PL from excitons to biexcitons due to quantum effects, promoting a faster approach to the quantum theoretical limits of light emission. Ab initio quantum dynamics simulations reproduce the experimental observations of radiation controlled by quantum spatial coherence enhanced at low temperatures.

9.
Nano Lett ; 24(34): 10554-10561, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39151058

RESUMEN

Low-dimensional metal halide perovskites have unique optical and electrical properties that render them attractive for the design of diluted magnetic semiconductors. However, the nature of dopant-exciton exchange interactions that result in spin-polarization of host-lattice charge carriers as a basis for spintronics remains unexplored. Here, we investigate Mn2+-doped CsPbCl3 nanocrystals using magnetic circular dichroism spectroscopy and show that Mn2+ dopants induce excitonic Zeeman splitting which is strongly dependent on the nature of the band-edge structure. We demonstrate that the largest splitting corresponds to exchange interactions involving the excited state at the M-point along the spin-orbit split-off conduction band edge. This splitting gives rise to an absorption-like C-term excitonic MCD signal, with the estimated effective g-factor (geff) of ca. 70. The results of this work help resolve the assignment of absorption transitions observed for metal halide perovskite nanocrystals and allow for a design of new diluted magnetic semiconductor materials for spintronics applications.

10.
Nano Lett ; 24(13): 3890-3897, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526426

RESUMEN

Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.

11.
Nano Lett ; 24(25): 7645-7653, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875704

RESUMEN

Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.

12.
Antimicrob Agents Chemother ; : e0154023, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687015

RESUMEN

Invasive mucormycosis (IM) is associated with high mortality and morbidity. MAT2203 is an orally administered lipid nanocrystal formulation of amphotericin B, which has been shown to be safe and effective against other fungal infections. We sought to compare the efficacy of MAT2203 to liposomal amphotericin B (LAMB) treatment in a neutropenic mouse model of IM due to Rhizopus arrhizus var. delemar or Mucor circinelloides f. jenssenii DI15-131. In R. arrhizus var. delemar-infected mice, 15 mg/kg of MAT2203 qd was as effective as 10 mg/kg of LAMB in prolonging median survival time vs placebo (13.5 and 16.5 days for MAT2203 and LAMB, respectively, vs 9 days for placebo) and enhancing overall survival vs placebo-treated mice (40% and 45% for MAT2203 and LAMB, respectively, vs 0% for placebo). A higher dose of 45 mg/kg of MAT2203 was not well tolerated by mice and showed no benefit over placebo. Similar results were obtained with mice infected with M. circinelloides. Furthermore, while both MAT2203 and LAMB treatment resulted in a significant reduction of ~1.0-2.0log and ~2.0-2.5log in Rhizopus delemar or M. circinelloides lung and brain burden vs placebo mice, respectively, LAMB significantly reduced tissue fungal burden in mice infected with R. delemar vs tissues of mice treated with MAT2203. These results support continued investigation and development of MAT2203 as a novel and oral formulation of amphotericin for the treatment of mucormycosis.

13.
Gastroenterology ; 164(6): 937-952.e13, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36657529

RESUMEN

BACKGROUND & AIMS: Tissue fibrosis results from uncontrolled healing responses leading to excessive mesenchymal cell activation and collagen and other extracellular matrix deposition. In the gastrointestinal tract, fibrosis leads to narrowing of the lumen and stricture formation. A drug treatment to prevent fibrosis and strictures in the gastrointestinal tract would be transformational for patient care. We aimed to develop a stricture treatment with the following characteristics and components: a small molecule with strong antifibrotic effects that is delivered locally at the site of the stricture to ensure correct lesional targeting while protecting the systemic circulation, and that is formulated with sustained-release properties to act throughout the wound healing processes. METHODS: A high-throughput drug screening was performed to identify small molecules with antifibrotic properties. Next, we formulated an antifibrotic small molecule for sustained release and tested its antifibrotic potential in 3 animal models of fibrosis. RESULTS: Sulconazole, a US Food and Drug Administration-approved drug for fungal infections, was found to have strong antifibrotic properties. Sulconazole was formulated as sulconazole nanocrystals for sustained release. We found that sulconazole nanocrystals provided superior or equivalent fibrosis prevention with less frequent dosing in mouse models of skin and intestinal tissue fibrosis. In a patient-like swine model of bowel stricture, a single injection of sulconazole nanocrystals prevented stricture formation. CONCLUSIONS: The current data lay the foundation for further studies to improve the management of a range of diseases and conditions characterized by tissue fibrosis.


Asunto(s)
Colágeno , Matriz Extracelular , Ratones , Animales , Porcinos , Constricción Patológica , Preparaciones de Acción Retardada , Matriz Extracelular/patología , Fibrosis
14.
Small ; : e2403969, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109568

RESUMEN

Quantifying the role of experimental parameters on the growth of metal nanocrystals is crucial when designing synthesis protocols that yield specific structures. Here, the effect of temperature on the growth kinetics of radiolytically-formed branched palladium (Pd) nanocrystals is investigated by tracking their evolution using liquid cell transmission electron microscopy (TEM) and applying a temperature-dependent radiolysis model. At early times, kinetics consistent with growth limited is measured by the surface reaction rate, and it is found that the growth rate increases with temperature. After a transition time, kinetics consistent with growth limited by Pd atom supply is measured, which depends on the diffusion rate of Pd ions and atoms and the formation rate of Pd atoms by reduction of Pd ions by hydrated electrons. Growth in this regime is not strongly temperature-dependent, which is attributed to a balance between changes in the reducing agent concentration and the Pd ion diffusion rate. The observations suggest that branched rough surfaces, generally attributed to diffusion-limited growth, can form under surface reaction-limited kinetics. It is further shown that the combination of liquid cell TEM and radiolysis calculations can help identify the processes that determine crystal growth, with prospects for strategies for control during the synthesis of complex nanocrystals.

15.
Small ; : e2402271, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030960

RESUMEN

The manipulation of crystal phases in metal-nonmetal interstitial alloy nanostructures has attracted considerable attention due to the formation of unique electronic structures and surface atomic arrangements, resulting in unprecedented catalytic performances. However, achieving simultaneous control over crystal phase and nonmetal elements in metal-nonmetal interstitial alloy nanostructures has remained a formidable challenge. Here, a novel synthesis approach is presented for Pd─B interstitial alloy nanocrystals (NCs) that allows investigation of the crystal-phase- and B-content-dependent catalytic performance. Through comparison of the oxygen reduction reaction (ORR) properties of Pd─BX interstitial alloy NCs with different crystal phases and B contents, achieved by precise control of reaction temperature and time, the influences of crystal phase and B contents in the Pd─BX interstitial alloy NCs on ORR are precisely investigated. The hexagonal closed packed (hcp) PdB0.5 NCs exhibit superior catalytic activity, with mass activities reaching 2.58 A mg-1, surpassing Pd/C by 10.3 times, attributed to synergistic effects by the hcp crystal phase and relatively high B contents. This study not only provides a novel approach to fabricate interstitial alloy nanostructures with unconventional crystal phases and finely controlled nonmetal elements but also elucidates the importance of crystal phase and nonmetal element content in optimizing electrocatalytic efficiency.

16.
Small ; 20(23): e2307032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38145359

RESUMEN

Perovskite nanocrystals (NCs) have emerged as a promising building block for the fabrication of optic-/optoelectronic-/electronic devices owing to their superior characteristics, such as high absorption coefficient, rapid ion mobilities, and tunable energy levels. However, their low structural stability and poor surface passivation have restricted their application to next-generation devices. Herein, a drug delivery system (DDS)-inspired post-treatment strategy is reported for improving their structural stability by doping of Ag into CsPbBr3 (CPB) perovskite NCs; delivery to damaged sites can promote their structural recovery slowly and uniformly, averting the permanent loss of their intrinsic characteristics. Ag NCs are designed through surface-chemistry tuning and structural engineering to enable their circulation in CPB NC dispersions, followed by their delivery to the CPB NC surface, defect-site recovery, and defect prevention. The perovskite-structure healing process through the DDS-type process (with Ag NCs as the drug) is analyzed by a combination of theoretical calculations (with density functional theory) and experimental analyses. The proposed DDS-inspired healing strategy significantly enhances the optical properties and stability of perovskite NCs, enabling the fabrication of white light-emitting diodes.

17.
Small ; 20(29): e2311058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38351656

RESUMEN

The design of smart stimuli-responsive photoluminescent materials capable of multi-level encryption and complex information storage is highly sought after in the current information era. Here, a novel adamantyl-capped CsPbBr3 (AD-CsPbBr3) perovskite NCs, along with its supramolecular host-guest assembly partner a modified ß-CD (mCD), mCD@AD-CsPbBr3, are designed and prepared. By dispersing these two materials in different solvents, namely, AD-CsPbBr3 in toluene, mCD@AD-CsPbBr3 in toluene, and mCD@AD-CsPbBr3 in methanol, the three solutions exhibit diverse photoluminescence (PL) turn-on/off or PL discoloration response upon supramolecular stimulus. Based on these responses, a proof-of-principle programmable Multi-Level Photoluminescence Encoding System (MPLES) is established. Three types of four-level and three types of three-level information encoding are achieved by the system. A layer-by-layer four-level information encryption and decryption as well as a two-level encrypted 3D code are successfully achieved.

18.
Small ; : e2402825, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990086

RESUMEN

The perovskite nanocrystals (PeNCs) are emerging as a promising emitter for light-emitting diodes (LEDs) due to their excellent optical and electrical properties. However, the ultrafast growth of PeNCs often results in large sizes exceeding the Bohr diameter, leading to low exciton binding energy and susceptibility to nonradiative recombination, while small-sized PeNCs exhibit a large specific surface area, contributing to an increased defect density. Herein, Zn2+ ions as a negative catalyst to realize quantum-confined FAPbBr3 PeNCs with high photoluminescence quantum yields (PL QY) over 90%. Zn2+ ions exhibit robust coordination with Br- ions is introduced, effectively retarding the participation of Br- ions in the perovskite crystallization process and thus facilitating PeNCs size control. Notably, Zn2+ ions neither incorporate into the perovskite lattice nor are absorbed on the surface of PeNCs. And the reduced growth rate also promotes sufficient octahedral coordination of PeNC that reduces defect density. The LEDs based on these optimized PeNCs exhibits an external quantum efficiency (EQE) of 21.7%, significantly surpassing that of the pristine PeNCs (15.2%). Furthermore, the device lifetime is also extended by twofold. This research presents a novel approach to achieving high-performance optoelectronic devices.

19.
Small ; 20(24): e2309457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150624

RESUMEN

Highly efficient and durable Pt electrocatalysts are the key to boost the performance of fuel cells. The high-index facets (HIF) Pt nanocrystals are regarded as excellent catalytic activity and stability catalysts. However, nucleation, growth and evolution of high-index facets Pt nanocrystals induced by defective sites is still a challenge. In this work, tetrahexahedron (THH) and hexactahedron (HOH) Pt nanocrystals are synthesized, which are loaded on the nitrogen-doped reduced graphene oxide (N-rGO) support of the integrated electrodes by the square wave pulse method. Experimental investigations and density functional theory (DFT) calculations are conducted to analyze the growth and evolution mechanism of HIF Pt nanocrystals on the graphene-derived carbon supports. It shows that the H adsorption on the N-rGO/CFP support can induce evolution of Pt nanocrystals. Moreover, the N-defective sites on the surface of N-rGO can lead to a slower growth of Pt nanocrystals than that on the surface of reduced graphene oxide (rGO). Pt/N-rGO/CFP (20 min) shows the highest specific activity in methanol oxidation, which is 1.5 times higher than that of commercial Pt/C. This research paves the way on the design and synthesis of HIF Pt nanocrystal using graphene-derived carbon materials as substrates in the future.

20.
Small ; 20(24): e2308970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155111

RESUMEN

Impedance matching modulation of the electromagnetic wave (EMW) absorbers toward broad effective absorption bandwidth (EAB) is the ultimate aim in EMW attenuation applications. Here, a Joule heating strategy is reported for preparation of the Co-loaded carbon (Co/C) absorber with tunable impedance characteristics. Typically, the size of the Co can be regulated to range from single-atoms to clusters, and to nanocrystals. The varied sizes of the Co combined with different graphitization degrees of carbon can result in different relative input impedances and electromagnetic loss, leading to the tunable EMW absorption properties of the Co/C absorber. By meticulously coalescing the different prepared Co/C, the working frequency can be easily tuned, covering Ku, X, and C bands. Furthermore, the Co/C demonstrates a high EMW attenuation due to its unique dielectric loss capability and magnetic loss characteristics. The abundant interfaces of Co/C can also contribute to the enhanced interfacial polarization for improving EMW attenuation. This work demonstrates the importance of optimizing the metal and carbon interaction to the impedance matching toward wide EAB of the EMW absorbers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA