Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.417
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2321498121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593077

RESUMEN

In recent decades, peptide amphiphiles (PAs) have established themselves as promising self-assembling bioinspired materials in a wide range of medical fields. Herein, we report a dual-therapeutic system constituted by an antimicrobial PA and a cylindrical protease inhibitor (LJC) to achieve broad antimicrobial spectrum and to enhance therapeutic efficacy. We studied two strategies: PA-LJC nanostructures (Encapsulation) and PA nanostructures + free LJC (Combination). Computational modeling using a molecular theory for amphiphile self-assembly captures and explains the morphology of PA-LJC nanostructures and the location of encapsulated LJC in agreement with transmission electron microscopy and two-dimensional (2D) NMR observations. The morphology and release profile of PA-LJC assemblies are strongly correlated to the PA:LJC ratio: high LJC loading induces an initial burst release. We then evaluated the antimicrobial activity of our nanosystems toward gram-positive and gram-negative bacteria. We found that the Combination broadens the spectrum of LJC, reduces the therapeutic concentrations of both agents, and is not impacted by the inoculum effect. Further, the Encapsulation provides additional benefits including bypassing water solubility limitations of LJC and modulating the release of this molecule. The different properties of PA-LJC nanostructures results in different killing profiles, and reduced cytotoxicity and hemolytic activity. Meanwhile, details in membrane alterations caused by each strategy were revealed by various microscopy and fluorescent techniques. Last, in vivo studies in larvae treated by the Encapsulation strategy showed better antimicrobial efficacy than polymyxin B. Collectively, this study established a multifunctional platform using a versatile PA to act as an antibiotic, membrane-penetrating assistant, and slow-release delivery vehicle.


Asunto(s)
Antiinfecciosos , Nanoestructuras , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Nanoestructuras/química
2.
Proc Natl Acad Sci U S A ; 121(29): e2309757121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990940

RESUMEN

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.


Asunto(s)
Genoma Bacteriano , Fenotipo , Color , Bacterias/genética , Bacterias/metabolismo , Proteobacteria/genética , Proteobacteria/metabolismo , Filogenia , Metagenoma , Estudio de Asociación del Genoma Completo , Bacteroidetes/genética , Bacteroidetes/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(4): e2219679120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649429

RESUMEN

The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.


Asunto(s)
Antibacterianos , Coinfección , Animales , Ratones , Antibacterianos/farmacología , Micelas , Staphylococcus aureus , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Biopelículas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa
4.
Proc Natl Acad Sci U S A ; 120(28): e2302142120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399399

RESUMEN

Harnessing the programmable nature of DNA origami for controlling structural features in crystalline materials affords opportunities to bring crystal engineering to a remarkable level. However, the challenge of crystallizing a single type of DNA origami unit into varied structural outcomes remains, given the requirement for specific DNA designs for each targeted structure. Here, we show that crystals with distinct equilibrium phases and shapes can be realized using a single DNA origami morphology with an allosteric factor to modulate the binding coordination. As a result, origami crystals undergo phase transitions from a simple cubic lattice to a simple hexagonal (SH) lattice and eventually to a face-centered cubic (FCC) lattice. After selectively removing internal nanoparticles from DNA origami building blocks, the body-centered tetragonal and chalcopyrite lattice are derived from the SH and FCC lattices, respectively, revealing another phase transition involving crystal system conversions. The rich phase space was realized through the de novo synthesis of crystals under varying solution environments, followed by the individual characterizations of the resulting products. Such phase transitions can lead to associated transitions in the shape of the resulting products. Hexagonal prism crystals, crystals characterized by triangular facets, and twinned crystals are observed to form from SH and FCC systems, which have not previously been experimentally realized by DNA origami crystallization. These findings open a promising pathway toward accessing a rich phase space with a single type of building block and wielding other instructions as tools to develop crystalline materials with tunable properties.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Nanopartículas del Metal/química , Magnesio , ADN/química , Cristalización , Transición de Fase , Nanotecnología , Conformación de Ácido Nucleico , Nanoestructuras/química
5.
Proc Natl Acad Sci U S A ; 120(32): e2306461120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523530

RESUMEN

Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one-pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h-1 mgcat-1 (64.47 mg h-1 mgRu-1) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nanoflowers with low-coordinated Ru sites are highly electroactive with an increased d-band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.

6.
Proc Natl Acad Sci U S A ; 119(38): e2201589119, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095191

RESUMEN

In this work, we investigate the anelastic deformation behavior of periodic three-dimensional (3D) nanolattices with extremely thin shell thicknesses using nanoindentation. The results show that the nanolattice continues to deform with time under a constant load. In the case of 30-nm-thick aluminum oxide nanolattices, the anelastic deformation accounts for up to 18.1% of the elastic deformation for a constant load of 500 µN. The nanolattices also exhibit up to 15.7% recovery after unloading. Finite element analysis (FEA) coupled with diffusion of point defects is conducted, which is in qualitative agreement with the experimental results. The anelastic behavior can be attributed to the diffusion of point defects in the presence of a stress gradient and is reversible when the deformation is removed. The FEA model quantifies the evolution of the stress gradient and defect concentration and demonstrates the important role of a wavy tube profile in the diffusion of point defects. The reported anelastic deformation behavior can shed light on time-dependent response of nanolattice materials with implication for energy dissipation applications.

7.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930828

RESUMEN

Recent advances in super-resolution microscopy revealed the previously unknown nanoscopic level of organization of endoplasmic reticulum (ER), one of the most vital intracellular organelles. Membrane nanostructures of 10- to 100-nm intrinsic length scales, which include ER tubular matrices, ER sheet nanoholes, internal membranes of ER exit sites (ERES), and ER transport intermediates, were discovered and imaged in considerable detail, but the physical factors determining their unique geometrical features remained unknown. Here, we proposed and computationally substantiated a common concept for mechanisms of all ER nanostructures based on the membrane intrinsic curvature as a primary factor shaping the membrane and ultra-low membrane tensions as modulators of the membrane configurations. We computationally revealed a common structural motif underlying most of the nanostructures. We predicted the existence of a discrete series of equilibrium configurations of ER tubular matrices and recovered the one corresponding to the observations and favored by ultra-low tensions. We modeled the nanohole formation as resulting from a spontaneous collapse of elements of the ER tubular network adjacent to the ER sheet edge and calculated the nanohole dimensions. We proposed the ERES membrane to have a shape of a super flexible membrane bead chain, which acquires random walk configurations unless an ultra-low tension converts it into a straight conformation of a transport intermediate. The adequacy of the proposed concept is supported by a close qualitative and quantitative similarity between the predicted and observed configurations of all four ER nanostructures.


Asunto(s)
Retículo Endoplásmico/metabolismo , Nanoestructuras/química , Retículo Endoplásmico/ultraestructura
8.
Proc Natl Acad Sci U S A ; 119(40): e2204666119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161954

RESUMEN

Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO2) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO2 batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO2 batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li+-mediated CO2 reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO2 pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.

9.
Nano Lett ; 24(7): 2250-2256, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329289

RESUMEN

Emergence of complex catalytic machinery via simple building blocks under non-equilibrium conditions can contribute toward the system level understanding of the extant biocatalytic reaction network that fuels metabolism. Herein, we report temporal (dis)assembly of peptide nanostructures in presence of a cofactor dictated by native multistep cascade transformations. The short peptide can form a dynamic covalent bond with the thermodynamically activated substrate and recruit cofactor hemin to access non-equilibrium catalytic nanostructures (positive feedback). The neighboring imidazole and hemin moieties in the assembled state rapidly converted the substrate to product(s) via a two-step cascade reaction (hydrolase-peroxidase like) that subsequently triggered the disassembly of the catalytic nanostructures (negative feedback). The feedback coupled reaction cycle involving intrinsic catalytic prowess of short peptides to realize the advanced trait of two-stage cascade degradation of a thermodynamically activated substrate foreshadows the complex non-equilibrium protometabolic networks that might have preceded the chemical emergence of life.


Asunto(s)
Hemina , Nanoestructuras , Hemina/química , Nanoestructuras/química , Péptidos/química , Catálisis , Biocatálisis
10.
Nano Lett ; 24(22): 6480-6487, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771966

RESUMEN

The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.


Asunto(s)
ADN , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , ADN/química , Resonancia por Plasmón de Superficie , Espectrometría Raman , Nanotecnología/métodos , Tamaño de la Partícula , Nanoestructuras/química , Propiedades de Superficie
11.
Nano Lett ; 24(20): 6078-6083, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723608

RESUMEN

Gamma-prefoldin (γPFD), a unique chaperone found in the extremely thermophilic methanogen Methanocaldococcus jannaschii, self-assembles into filaments in vitro, which so far have been observed using transmission electron microscopy and cryo-electron microscopy. Utilizing three-dimensional stochastic optical reconstruction microscopy (3D-STORM), here we achieve ∼20 nm resolution by precisely locating individual fluorescent molecules, hence resolving γPFD ultrastructure both in vitro and in vivo. Through CF647 NHS ester labeling, we first demonstrate the accurate visualization of filaments and bundles with purified γPFD. Next, by implementing immunofluorescence labeling after creating a 3xFLAG-tagged γPFD strain, we successfully visualize γPFD in M. jannaschii cells. Through 3D-STORM and two-color STORM imaging with DNA, we show the widespread distribution of filamentous γPFD structures within the cell. These findings provide valuable insights into the structure and localization of γPFD, opening up possibilities for studying intriguing nanoscale components not only in archaea but also in other microorganisms.


Asunto(s)
Methanocaldococcus , Chaperonas Moleculares , Chaperonas Moleculares/química , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos
12.
Nano Lett ; 24(19): 5746-5753, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701367

RESUMEN

Surface charging is ubiquitously observable during in situ transmission electron microscopy of nonconducting specimens as a result of electron beam/sample interactions or optical stimuli and often limits the achievable image stability and spatial or spectral resolution. Here, we report on the electron-optical imaging of surface charging on a nanostructured surface following femtosecond multiphoton photoemission. By quantitatively extracting the light-induced electrostatic potential and studying the charging dynamics on relevant time scales, we gain insights into the details of the multiphoton photoemission process in the presence of an electrostatic background field. We study the interaction of the charge distribution with the high-energy electron beam and secondary electrons and propose a simple model to describe the interplay of electron- and light-induced processes. In addition, we demonstrate how to mitigate sample charging by simultaneously optically illuminating the sample.

13.
Nano Lett ; 24(31): 9511-9519, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042397

RESUMEN

Electrohydrodynamic printing holds both ultrahigh-resolution fabrication capability and unmatched ink-viscosity compatibility yet fails on highly insulating thick/irregular substrates. Herein, we proposed a single-potential driven electrohydrodynamic printing process with submicrometer resolution on arbitrary nonconductive targets, regardless of their geometric shape or sizes, via precoating with an ultrathin dielectric nanoparticle layer. Benefiting from the favorable Maxwell-Wagner polarization, the reversely polarized spot brought about a significant drop (∼57% for ceramics) in the operation voltage as its induced electric field and a negligible residual charge accumulation. Thus, ordered micro/nanostructures with line widths down to 300 nm were directly written at a stage speed as low as 5 mm/s, and silver features with width of ∼2 µm or interval of ∼4 µm were achieved on insulating substrates separately. Flexible sensors and curved heaters were then high-precision printed and demonstrated successfully, presenting this technique with huge potential for fabricating flexible/conformal electronics on arbitrary 3D structures.

14.
Nano Lett ; 24(8): 2611-2618, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38357869

RESUMEN

Circularly polarized light (CPL) is a versatile tool to prepare chiral nanostructures, but the mechanism for inducing enantioselectivity is not well understood. This work shows that the energy and polarization of visible photons can initiate photodeposition at different sites on plasmonic nanocrystals. Here, CPL on achiral gold bipyramids (AuBPs) creates hot holes that oxidatively deposit PbO2 asymmetrically. We show for the first time that the location of PbO2 photodeposition and hence optical dissymmetry depends on the CPL wavelength. Specifically, 488 and 532 nm CPL induce PbO2 growth in the middle of AuBPs, whereas 660 nm CPL induces PbO2 growth at the tips. Our observations show that wavelength-dependent plasmonic field distributions are more important than surface lightning rod effects in localizing plasmon-mediated photochemistry. The largest optical dissymmetry occurs at excitation wavelengths between the transverse and longitudinal resonances of the AuBPs because higher-order modes are required to induce chiral electric fields.

15.
Nano Lett ; 24(5): 1611-1619, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38267020

RESUMEN

The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells. Our study emphasizes the significance of DNA-based platforms for the detailed investigation of the molecular mechanisms of cellular signaling cascades.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Humanos , ADN/química , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Ligandos , Transducción de Señal
16.
Nano Lett ; 24(8): 2429-2436, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363878

RESUMEN

DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.


Asunto(s)
Metales Pesados , Nanoestructuras , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Temperatura , Nanotecnología
17.
Nano Lett ; 24(22): 6813-6820, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781191

RESUMEN

Spintronic devices incorporating magnetic skyrmions have attracted significant interest recently. Such devices traditionally focus on controlling magnetic textures in 2D thin films. However, enhanced performance of spintronic properties through the exploitation of higher dimensionalities motivates the investigation of variable-thickness skyrmion devices. We report the demonstration of a skyrmion injection mechanism that utilizes charge currents to drive skyrmions across a thickness step and, consequently, a metastability barrier. Our measurements show that under certain temperature and field conditions skyrmions can be reversibly injected from a thin region of an FeGe lamella, where they exist as an equilibrium state, into a thicker region, where they can only persist as a metastable state. This injection is achieved with a current density of 3 × 108 A m-2, nearly 3 orders of magnitude lower than required to move magnetic domain walls. This highlights the possibility to use such an element as a skyrmion source/drain within future spintronic devices.

18.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38620021

RESUMEN

Dual heterostructures integrating noble-metal and copper chalcogenide nanoparticles have attracted a great deal of attention in nonlinear optics, because coupling of their localized surface plasmon resonances (LSPRs) substantially enhances light-matter interactions through local-field effects. Previously, enhanced cascaded third-harmonic generation was demonstrated in Au/CuS heterostructures mediated by harmonically coupled surface plasmon resonances. This suggests a promising approach for extending nonlinear enhancement to higher harmonics by adding an additional nanoparticulate material with higher-frequency harmonic resonances to the hybrid films. Here we report the first observation of enhanced cascaded fourth- and fifth-harmonic generation in Al/Au/CuS driven by coupled LSPRs at the fundamental (1050 nm), second harmonic (525 nm), and third harmonic (350 nm) of the pump frequency. An analytical model based on incoherent dipole-dipole interactions among plasmonic nanoparticles accounts for the observed enhancements. The results suggest a novel design for efficiently generating higher harmonics in resonant plasmonic structures by means of multiple sum-frequency cascades.

19.
Nano Lett ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225662

RESUMEN

Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field. These features can accelerate the hot electron generation in graphene, forming a directional diffusion current. Accordingly, the artificial GPDs exhibit a wavelength-dependence behavior covering the wavelength range from 0.8 to 1.6 µm, with three photoresponse maxima corresponding to the nanostructures' resonances. Additionally, the polarization-dependent GPDs can realize a responsivity of ∼25 mA/W and a noise equivalent power of ∼0.44 nW/Hz1/2 at zero bias when excited at the resonance of 1.4 µm. Overall, our study offers a new strategy for preparing compact and multifrequency infrared GPDs.

20.
Plant Mol Biol ; 114(2): 26, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459275

RESUMEN

Nano-interactions are well known for their positive as well as negative impacts on the morphological and physiological systems of plants. Keeping in mind, the conformational changes in plant proteins as one of the key mechanisms for stress adaptation responses, the current project was designed to explore the effect of glutathione-capped and uncapped zinc nano-entities on Catharanthus roseus shoot cultures. Zinc nanotreatment (0.05 µg/mL) significantly induced ester production in C. roseus shoots as detected by Gas Chromatography-Mass spectrometry. These nanotreated shoots were further subjected to peptide-centric nano-LC-MS/MS analysis. Mass spectrometry followed by a Heat map revealed a significant effect of zinc nanoparticles on 59 distinct classes of proteins as compared to control. Proteins involved in regulating stress scavenging, transport, and secondary metabolite biosynthesis were robustly altered under capped zinc nanotreatment. UniProt database identified majority of the localization of the abundantly altered protein in cell membranes and chloroplasts. STRING and Cytoscape analysis assessed inter and intra coordination of triosephosphate isomerase with other identified proteins and highlighted its role in the regulation of protein abundance under applied stress. This study highlights the understanding of complex underlying mechanisms and regulatory networks involved in proteomic alterations and interactions within the plant system to cope with the nano-effect.


Asunto(s)
Catharanthus , Nanopartículas del Metal , Catharanthus/metabolismo , Espectrometría de Masas en Tándem , Zinc/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA