Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(2): 243-255.e15, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30827682

RESUMEN

Mammals cannot see light over 700 nm in wavelength. This limitation is due to the physical thermodynamic properties of the photon-detecting opsins. However, the detection of naturally invisible near-infrared (NIR) light is a desirable ability. To break this limitation, we developed ocular injectable photoreceptor-binding upconversion nanoparticles (pbUCNPs). These nanoparticles anchored on retinal photoreceptors as miniature NIR light transducers to create NIR light image vision with negligible side effects. Based on single-photoreceptor recordings, electroretinograms, cortical recordings, and visual behavioral tests, we demonstrated that mice with these nanoantennae could not only perceive NIR light, but also see NIR light patterns. Excitingly, the injected mice were also able to differentiate sophisticated NIR shape patterns. Moreover, the NIR light pattern vision was ambient-daylight compatible and existed in parallel with native daylight vision. This new method will provide unmatched opportunities for a wide variety of emerging bio-integrated nanodevice designs and applications. VIDEO ABSTRACT.


Asunto(s)
Nanopartículas/uso terapéutico , Células Fotorreceptoras de Vertebrados/fisiología , Visión Ocular/fisiología , Animales , Femenino , Rayos Infrarrojos , Inyecciones/métodos , Luz , Masculino , Mamíferos/fisiología , Ratones , Ratones Endogámicos C57BL , Opsinas/metabolismo , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/genética
2.
Ann Surg Oncol ; 31(2): 1116-1124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957502

RESUMEN

BACKGROUND: The aim of this study is to define standards for the use of near-infrared autofluorescence (NIRAF)-based overlay imaging via EleVision IR (Medtronic, Dublin, Ireland) and to evaluate its clinical applicability. PATIENTS AND METHODS: This prospective study included 189 patients who had undergone open thyroid and/or parathyroid surgery and in whom EleVision IR was applied to visualize at least one parathyroid gland (PG) between January 2021 and May 2022 in a tertiary referral care center. Whether the PGs were first localized by the surgeon or by overlay imaging was noted. Handling of the device, application time and duration, distance, infrared intensity (IR%), and the angle of each measurement were analyzed. In thyroidectomies, the specimens were subsequently scanned for further PGs. NIRAF patterns and intensities were described. RESULTS: Overall, 543 PGs were analyzed in 158 (83.6%) surgeries of thyroid glands (TGs) and in 49 (25.9%) surgeries for hyperparathyroidism. In 111 (58.7%) patients, identical numbers of PGs were detected by the surgeon and by overlay imaging. While a larger number of PGs was identified by the surgeon in 48 (25.4%) patients, overlay imaging served to detect more PGs in 30 (15.9%) cases. In four (2.1%) patients, PGs were visualized post-thyroidectomy due to their autofluorescence on the specimen. NIRAF-based overlay imaging was applied to depict the PGs early on after exposure by the surgeon. The ideal distance for the measurement ranged between 8 and 12 cm with an angle of 90° and a mean IR% of 34.5% (± 17.6). CONCLUSIONS: Considering the standard operating procedures, NIRAF-based overlay imaging can be used as an adjunct tool for intraoperative localization.


Asunto(s)
Glándulas Paratiroides , Paratiroidectomía , Humanos , Glándulas Paratiroides/diagnóstico por imagen , Glándulas Paratiroides/cirugía , Paratiroidectomía/métodos , Estudios Prospectivos , Estudios de Factibilidad , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos , Tiroidectomía/métodos
3.
Chemistry ; 30(29): e202400401, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38488227

RESUMEN

Although second near-infrared (NIR-II, 1000-1500 nm) light has attracted considerable attention, especially for life sciences applications, the development of organic dyes with NIR-II absorption remains a formidable challenge. Herein we report the design, synthesis, and electronic properties of 20π-electron antiaromatic benziphthalocyanines (BPcs) that exhibit intense absorption bands in the NIR region. The strong, low-energy absorption of the antiaromatic BPcs is attributed to electric-dipole-allowed HOMO-LUMO transitions with narrow band gaps, enabled by the reduced structural symmetry of BPc compared with regular porphyrins and phthalocyanines. The combination of peripheral substituents and a central metal decreases the HOMO-LUMO energy gaps, leading to the extension of the absorption bands into the NIR-II region (reaching 1100 nm) under reductive conditions.

4.
J Am Acad Dermatol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307144

RESUMEN

Photobiomodulation (PBM) is an emerging treatment modality in dermatology with increasing office and home-based use. PBM is the use of various light sources in the red light (620-700 nm) and near-infrared (700-1440 nm) spectrum as a form of light therapy. PBM is often administered through low-level lasers or light-emitting diodes. Studies show that PBM can be used effectively to treat conditions secondary to cancer therapies, alopecia, ulcers, herpes simplex virus, acne, skin rejuvenation, wounds, and scars. PBM offers patients many benefits compared to other treatments. It is noninvasive, cost-effective, convenient for patients, and offers a favorable safety profile. PBM can be used as an alternative or adjuvant to other treatment modalities including pharmacotherapy. It is important for dermatologists to gain a better clinical understanding of PBM for in-office administration and to counsel patients on proper application for home-use devices to best manage safety and expectations as this technology develops. PBM wavelengths can induce varied biological effects in diverse skin types, races, and ethnicities; therefore, it is also important for dermatologists to properly counsel their skin of color patients who undergo PBM treatments. Future clinical trials are necessary to produce standardized recommendations across conditions and skin types.

5.
J Nanobiotechnology ; 22(1): 311, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831332

RESUMEN

Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.


Asunto(s)
Verde de Indocianina , Rayos Infrarrojos , Oligopéptidos , Terapia Trombolítica , Trombosis , Animales , Terapia Trombolítica/métodos , Oligopéptidos/química , Verde de Indocianina/química , Trombosis/diagnóstico por imagen , Trombosis/tratamiento farmacológico , Nanopartículas/química , Fluorocarburos/química , Dióxido de Silicio/química , Humanos , Ratones , Masculino , Conejos , Ultrasonografía/métodos , Pentanos
6.
Alzheimers Dement ; 20(6): 4032-4042, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38700095

RESUMEN

INTRODUCTION: Delirium is associated with mortality and new onset dementia, yet the underlying pathophysiology remains poorly understood. Development of imaging biomarkers has been difficult given the challenging nature of imaging delirious patients. Diffuse optical tomography (DOT) offers a promising approach for investigating delirium given its portability and three-dimensional capabilities. METHODS: Twenty-five delirious and matched non-delirious patients (n = 50) were examined using DOT, comparing cerebral oxygenation and functional connectivity in the prefrontal cortex during and after an episode of delirium. RESULTS: Total hemoglobin values were significantly decreased in the delirium group, even after delirium resolution. Functional connectivity between the dorsolateral prefrontal cortex and dorsomedial prefrontal cortex was strengthened post-resolution compared to during an episode; however, this relationship was still significantly weaker compared to controls. DISCUSSION: These findings highlight DOT's potential as an imaging biomarker to measure impaired cerebral oxygenation and functional dysconnectivity during and after delirium. Future studies should focus on the role of cerebral oxygenation in delirium pathogenesis and exploring the etiological link between delirium and dementias. HIGHLIGHTS: We developed a portable diffuse optical tomography (DOT) system for bedside three-dimensional functional neuroimaging to study delirium in the hospital. We implemented a novel DOT task-focused seed-based correlation analysis. DOT revealed decreased cerebral oxygenation and functional connectivity strength in the delirium group, even after resolution of delirium.


Asunto(s)
Delirio , Tomografía Óptica , Humanos , Tomografía Óptica/métodos , Delirio/diagnóstico por imagen , Delirio/fisiopatología , Masculino , Femenino , Anciano , Corteza Prefrontal/diagnóstico por imagen , Hemodinámica/fisiología , Circulación Cerebrovascular/fisiología , Mapeo Encefálico , Persona de Mediana Edad
7.
Clin Otolaryngol ; 49(1): 41-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37885344

RESUMEN

OBJECTIVES: To assess outcomes associated with photobiomodulation therapy (PBMT) for hearing loss in human and animal studies. DESIGN: Systematic review and narrative synthesis in accordance with PRISMA guidelines. SETTING: Data bases searched: MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov and Web of Science. No limits were placed on language or year of publication. Review conducted in accordance with the PRISMA 2020 statement. PARTICIPANTS: All human and animal subjects treated with PBMT for hearing loss. MAIN OUTCOME MEASURES: Pre- and post-PBMT audio metric outcomes. RESULTS: Searches identified 122 abstracts and 49 full text articles. Of these, 17 studies met the inclusion criteria, reporting outcomes in 327 animals (11 studies), 30 humans (1 study), and 40 animal specimens (5 studies). PBMT parameters included 6 different wavelengths: 908 nm (1 study), 810 nm (1 study), 532 & 635 nm (1 study), 830 nm (3 studies), 808 nm (11 studies). The duration ranged from 4 to 60 minutes in a session, and the follow-up ranged from 5-28 days. Outcomes improved significantly when wavelengths within the range of 800-830 nm were used, and with greater duration of PBMT exposure. Included studies predominantly consisted of non-randomized controlled trials (10 studies). CONCLUSIONS: Hearing outcomes following PBMT appear to be superior to no PBMT for subjects with hearing loss, although higher level evidence is required to verify this. PBMT enables concentrated, focused delivery of light therapy to the inner ear through a non-invasive manner with minimal side effects. As a result of heterogeneity in reporting PBMT parameters and outcomes across the included studies, direct comparison is challenging.


Asunto(s)
Pérdida Auditiva , Terapia por Luz de Baja Intensidad , Animales , Humanos , Audición , Pérdida Auditiva/radioterapia
8.
Behav Res Methods ; 56(3): 2227-2242, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507648

RESUMEN

Functional near-infrared spectroscopy (fNIRS) relies on near-infrared (NIR) light for changes in tissue oxygenation. For decades, this technique has been used in neuroscience to measure cortical activity. However, recent research suggests that NIR light directed to neural populations can modulate their activity through "photobiomodulation" (PBM). Yet, fNIRS is being used exclusively as a measurement tool. By adopting cognitive tests sensitive to prefrontal functioning, we show that a 'classical' fNIRS device, placed in correspondence of the prefrontal cortices of healthy participants, induces faster RTs and better accuracy in some of the indexes considered. A well-matched control group, wearing the same but inactive device, did not show any improvement. Hence, our findings indicate that the 'standard' use of fNIRS devices generates PBM impacting cognition. The neuromodulatory power intrinsic in that technique has been so far completely overlooked, and future studies will need to take this into account.


Asunto(s)
Neurociencias , Nootrópicos , Humanos , Espectroscopía Infrarroja Corta/métodos , Neuroimagen Funcional , Cognición
9.
Angew Chem Int Ed Engl ; : e202407638, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941107

RESUMEN

Near-infrared light-driven photocatalytic CO2 reduction (NIR-CO2PR) holds tremendous promise for the production of valuable commodity chemicals and fuels. However, designing photocatalysts capable of reducing CO2 with low energy NIR photons remains challenging. Herein, a novel NIR-driven photocatalyst comprising an anionic Ru complex intercalated between NiAl-layered double hydroxide nanosheets (NiAl-Ru-LDH) is shown to deliver efficient CO2 photoreduction (0.887 µmol h-1) with CO selectivity of 84.81% under 1200 nm illumination and excellent stability over 50 testing cycles. This remarkable performance results from the intercalated Ru complex lowering the LDH band gap (0.98 eV) via a compression-related charge redistribution phenomenon. Furthermore, transient absorption spectroscopy data verified light-induced electron transfer from the Ru complex towards the LDH sheets, increasing the availability of electrons to drive CO2PR. The presence of hydroxyl defects in the LDH sheets promotes the adsorption of CO2 molecules and lowers the energy barriers for NIR-CO2PR to CO. To our knowledge, this is one of the first reports of NIR-CO2PR at wavelengths up to 1200 nm in LDH-based photocatalyst systems.

10.
Small ; 19(42): e2302737, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37345587

RESUMEN

How to collaboratively reduce Cr(VI) and break Cr(III) complexes is a technical challenge to solve chromium-containing wastewater (CCW) pollution. Solar photovoltaic (SPV) technology based on semiconductor materials is a potential strategy to solve this issue. Sb2 S3 is a typical semiconductor material with total visible-light harvesting capacity, but its large-sized structure highly aggravates disordered photoexciton migration, accelerating the recombination kinetics and resulting low-efficient photon utilization. Herein, the uniform mesoporous CdS shell is in situ formed on the surface of Sb2 S3 nanorods (NRs) to construct the core-shell Sb2 S3 @CdS heterojunction with high BET surface area and excellent near-infrared light harvesting capacity via a surface cationic displacement strategy, and density functional theory thermodynamically explains the breaking of SbS bonds and formation of CdS bonds according to the bond energy calculation. The SbSCd bonding interaction and van der Waals force significantly enhance the stability and synergy of Sb2 S3 /CdS heterointerface throughout the entire surface of Sb2 S3 NRs, promoting the Sb2 S3 -to-CdS electron transfer due to the formation of built-in electric field. Therefore, the optimized Sb2 S3 @CdS catalyst achieves highly enhanced simulated sunlight-driven Cr(VI) reduction (0.154 min-1 ) and decomplexation of complexed Cr(III) in weakly acidic condition, resulting effective CCW treatment under co-action of photoexcited electrons and active radicals. This study provides a high-performance heterostructured catalyst for effective CCW treatment by SPV technology.

11.
J Transl Med ; 21(1): 135, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36814278

RESUMEN

Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.


Asunto(s)
Terapia por Luz de Baja Intensidad , Enfermedades del Sistema Nervioso , Humanos , Terapia por Luz de Baja Intensidad/métodos , Encéfalo , Cognición , Neuronas
12.
Chemistry ; 29(66): e202302125, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37673787

RESUMEN

Iron-based nanomaterials have shown great promise for tumor ferrotherapy in recent years. However, nanoparticle-induced ferroptosis has low therapeutic efficacy owing to unsatisfactory Fenton reaction activity in a typical tumor microenvironment. In this study, NIR light-activated Fe/PPy-RGD nanopolymers were developed to combine photothermal therapy and ferrotherapy and achieve enhanced antitumor activity. Importantly, Fe/PPy-RGD exhibited excellent therapeutic performance under NIR light activation both in vitro and in vivo. Under irradiation with NIR light, the heat generated by Fe/PPy-RGD not only induced a therapeutic photothermal effect but also enhanced the release of iron ions and the Fenton reaction by inducing ferroptosis. Additionally, by virtue of RGD conjugation and its ultrasmall size, Fe/PPy-RGD could effectively accumulate at tumor sites in living mice after systemic administration and could be monitored via MR imaging. Hence, this study provides a promising approach for integrating ferrotherapy with photothermal therapy to achieve enhanced tumor treatment.


Asunto(s)
Nanopartículas , Neoplasias , Ratones , Animales , Fototerapia/métodos , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen por Resonancia Magnética , Hierro , Oligopéptidos , Microambiente Tumoral
13.
Chemphyschem ; 24(7): e202200696, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36535899

RESUMEN

Effective utilization of the sunlight for chemical reactions is pivotal for dealing with the growing energy and environmental issues. So far, much effort has been focused on the development of semiconductor photocatalysts responsive to UV and visible light. However, the near infrared and infrared (NIR-IR) light occupying ∼50 % of the solar energy has usually been wasted because of the low photon energy insufficient for the band gap excitation. Antimony doping into SnO2 (ATO) induces strong absorption due to the conduction band electrons in the NIR region. The absorbed light energy is eventually converted to heat via the interaction between hot electrons and phonons. This Concept highlights the photothermal effect of ATO nanocrystals (NCs) on liquid-phase oxidation reactions through the NIR light-to-heat conversion. Under NIR illumination even at an intensity of ∼0.5 sun, the reaction field temperature on the catalyst surface is raised 20-30 K above the bulk solution temperature, while the latter is maintained near the ambient temperature. In some reactions, this photothermal local heating engenders the enhancement of not only the catalytic activity and selectivity but also the regeneration of catalytically active sites. Further, the photocatalytic activity of semiconductors can be promoted. Finally, the conclusions and possible subjects in the future are summarized.

14.
Nitric Oxide ; 130: 58-68, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462596

RESUMEN

Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.


Asunto(s)
Enfermedades Cardiovasculares , Terapia por Luz de Baja Intensidad , Humanos , Terapia por Luz de Baja Intensidad/métodos , Óxido Nítrico , Transducción de Señal
15.
Nanotechnology ; 34(49)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37666240

RESUMEN

Two-dimensional (2D) PdSe2film has the characteristics of adjustable bandgap, high carrier mobility, and high stability. Photodetector (PD) based on 2D PdSe2exhibits wide spectral self-driving features, demonstrating enormous potential in the field of optical detection. Here, we design and fabricate PdSe2/Si heterojunction PDs with various thicknesses of the PdSe2films from 10 to 35 nm. Due to the enhancement of light absorption capacity and built-in electric field of heterojunction, the photodetector with thicker PdSe2film can generate more photo-generated carriers and effectively separate them to form a large photocurrent, thus showing more excellent photodetection performance. The responsivity and specific detectivity of the PdSe2/Si PDs with 10 nm, 20 nm, and 35 nm PdSe2films are 2.12 A W-1and 6.72 × 109Jones, 6.17 A W-1and 1.95 × 1010Jones, and 8.02 A W-1and 2.54 × 1010Jones, respectively (808 nm illumination). The PD with 35 nm PdSe2film exhibits better performance than the other two PDs, with the rise/fall times of 15.8µs/138.9µs atf= 1 kHz and the cut-off frequency of 8.6 kHz. Furthermore, we demonstrate that the properties of PdSe2/Si PD array have excellent uniformity and stability at room temperature and shows potential for image sensing in the UV-vis-NIR wavelength range.

16.
Crit Care ; 27(1): 491, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098060

RESUMEN

BACKGROUND: Brain injury is a leading cause of morbidity and mortality in patients resuscitated from cardiac arrest. Mitochondrial dysfunction contributes to brain injury following cardiac arrest; therefore, therapies that limit mitochondrial dysfunction have the potential to improve neurological outcomes. Generation of reactive oxygen species (ROS) during ischemia-reperfusion injury in the brain is a critical component of mitochondrial injury and is dependent on hyperactivation of mitochondria following resuscitation. Our previous studies have provided evidence that modulating mitochondrial function with specific near-infrared light (NIR) wavelengths can reduce post-ischemic mitochondrial hyperactivity, thereby reducing brain injury during reperfusion in multiple small animal models. METHODS: Isolated porcine brain cytochrome c oxidase (COX) was used to investigate the mechanism of NIR-induced mitochondrial modulation. Cultured primary neurons from mice expressing mitoQC were utilized to explore the mitochondrial mechanisms related to protection with NIR following ischemia-reperfusion. Anesthetized pigs were used to optimize the delivery of NIR to the brain by measuring the penetration depth of NIR to deep brain structures and tissue heating. Finally, a model of out-of-hospital cardiac arrest with CPR in adult pigs was used to evaluate the translational potential of NIR as a noninvasive therapeutic approach to protect the brain after resuscitation. RESULTS: Molecular evaluation of enzyme activity during NIR irradiation demonstrated COX function was reduced in an intensity-dependent manner with a threshold of enzyme inhibition leading to a moderate reduction in activity without complete inhibition. Mechanistic interrogation in neurons demonstrated that mitochondrial swelling and upregulation of mitophagy were reduced with NIR treatment. NIR therapy in large animals is feasible, as NIR penetrates deep into the brain without substantial tissue heating. In a translational porcine model of CA/CPR, transcranial NIR treatment for two hours at the onset of return of spontaneous circulation (ROSC) demonstrated significantly improved neurological deficit scores and reduced histologic evidence of brain injury after resuscitation from cardiac arrest. CONCLUSIONS: NIR modulates mitochondrial function which improves mitochondrial dynamics and quality control following ischemia/reperfusion. Noninvasive modulation of mitochondria, achieved by transcranial treatment of the brain with NIR, mitigates post-cardiac arrest brain injury and improves neurologic functional outcomes.


Asunto(s)
Lesiones Encefálicas , Reanimación Cardiopulmonar , Enfermedades Mitocondriales , Paro Cardíaco Extrahospitalario , Humanos , Ratones , Animales , Porcinos , Mitocondrias , Isquemia , Modelos Animales de Enfermedad
17.
J Nanobiotechnology ; 21(1): 330, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715259

RESUMEN

Wounds can lead to skin and soft tissue damage and their improper management may lead to the growth of pathogenic bacteria at the site of injury. Identifying better ways to promote wound healing is a major unmet need and biomedical materials with the ability to promote wound healing are urgently needed. Here, we report a thermosensitive black phosphorus hydrogel composed of black phosphorus nano-loaded drug silver sulfadiazine (SSD) and chitosan thermosensitive hydrogel for wound healing. The hydrogel has temperature-sensitive properties and enables the continuous release of SSD under near-infrared irradiation to achieve synergistic photothermal and antibacterial treatment. Additionally, it exerts antibacterial effects on Staphylococcus aureus. In a rat skin injury model, it promotes collagen deposition, boosts neovascularization, and suppresses inflammatory markers. In summary, the excellent thermosensitivity, biocompatibility, and wound-healing-promoting qualities of the reported thermosensitive hydrogel make it suitable as an ideal wound dressing in the clinic.


Asunto(s)
Hidrogeles , Sulfadiazina de Plata , Animales , Ratas , Sulfadiazina de Plata/farmacología , Antibacterianos/farmacología , Cicatrización de Heridas , Fósforo
18.
J Nanobiotechnology ; 21(1): 279, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598155

RESUMEN

To resolve the problem of target specificity and light transmission to deep-seated tissues in photodynamic therapy (PDT), we report a cancer cell-targeted photosensitizer using photoprotein-conjugated upconversion nanoparticles (UCNPs) with high target specificity and efficient light transmission to deep tissues. Core-shell UCNPs with low internal energy back transfer were conjugated with recombinant proteins that consists of a photosensitizer (KillerRed; KR) and a cancer cell-targeted lead peptide (LP). Under near infrared (NIR)-irradiating condition, the UCNP-KR-LP generated superoxide anion radicals as reactive oxygen species via NIR-to-green light conversion and exhibited excellent specificity to target cancer cells through receptor-mediated cell adhesion. Consequently, this photosensitizing process facilitated rapid cell death in cancer cell lines (MCF-7, MDA-MB-231, and U-87MG) overexpressing integrin beta 1 (ITGB1) receptors but not in a cell line (SK-BR-3) with reduced ITGB1 expression and a non-invasive normal breast cell line (MCF-10A). In contrast to green light irradiation, NIR light irradiation exhibited significant PDT efficacy in cancer cells located beneath porcine skin tissues up to a depth of 10 mm, as well as in vivo tumor xenograft mouse models. This finding suggests that the designed nanocomposite is useful for sensing and targeting various deep-seated tumors.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Animales , Ratones , Porcinos , Fármacos Fotosensibilizantes/farmacología , Luz , Mama , Proteínas Luminiscentes , Neoplasias/tratamiento farmacológico
19.
Lasers Med Sci ; 38(1): 39, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633696

RESUMEN

Alzheimer's disease (AD) and dementia are the most worrying health problems faced by people globally today. Although the pathological features of AD consisting of amyloid-beta (Aß) plaques in the extracellular space (ECS) and intracellular tau tangles are well established, the developed medicines targeting these two proteins have not obtained the expected clinical effects. Photobiomodulation (PBM) describes the therapeutic use of red light (RL) or near-infrared light (NIR) to serve as a noninvasive neuroprotective strategy for brain diseases. The present review discusses the mechanisms of the photoelectric coupling effect (light energy-induced special electronic transition-related alterations in protein structure) of PBM on reducing Aß toxicity. On the one hand, RL or NIR can directly disassemble Aß in vitro and in vivo. On the other hand, formaldehyde (FA)-inhibited catalase (CAT) and H2O2-inactived formaldehyde dehydrogenase (FDH) are formed a vicious circle in AD; however, light energy not only activates FDH to degrade excessive FA (which crosslinks Aß monomer to form Aß oligomers and senile plaques) but also sensitizes CAT to reduce hydrogen peroxide levels (H2O2, which can facilitate Aß aggregation and enhance FA generation). In addition, it also activates mitochondrial cytochrome-c to produce ATP in the neurons. Clinical trials of phototherapeutics or oral coenzyme Q10 have shown positive effects in AD patients. Hence, a promising strategy combined PBM with nanopacked Q10 has been proposed to apply for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/radioterapia , Enfermedad de Alzheimer/tratamiento farmacológico , Peróxido de Hidrógeno , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/uso terapéutico , Catalasa , Luz
20.
Lasers Med Sci ; 38(1): 111, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099210

RESUMEN

This study aims to examine the effects of acute whole-body photobiomodulation (wbPBM), applied pre-exercise, on bouts of anaerobic cycling (Wingate) performances. Forty-eight healthy, active males and females participated in this single-blind, randomized, crossover study. Participants visited the laboratory three times to complete repeat (4 ×) Wingate testing, with one week between each visit. All participants completed baseline testing during their first visit and randomly received either the wbPBM or placebo condition before testing on the second visit, followed by the opposite condition on the third visit. There were no significant condition × time interactions for any variable (peak power, average power, power decrement, lactate, heart rate, ratings of perceived exertion, heart rate variability (HRV), root-mean square of differences between R-R intervals (rMSSD), power in the high-frequency range (HF) average, power in the low-frequency range (LF) average, total power, LF/HF, or power in the very-low-frequency range average). A main condition effect was only noted for heart rate, where peak heart rate was significantly higher for wbPBM (145, 141-148 bpm) than placebo (143, 139-146 bpm; p = 0.006) and baseline testing (143, 140-146; p = 0.049) throughout the entire testing session (i.e., collapsed across all timepoints). Furthermore, HRV (rMSSD) the following morning after testing was significantly higher for the wbPBM session compared to placebo (p = 0.043). There were no differences in perceived recovery (p = 0.713) or stress (p = 0.978) scores between wbPBM and placebo. Implementing 20 min of wbPBM immediately prior to maximal bouts of anaerobic cycling did not improve performance (i.e., power output) or physiological responses (e.g., lactate). However, wbPBM elicited the ability to work at a higher heart rate throughout testing and seemed to enhance recovery through improved HRV the following morning.


Asunto(s)
Ciclismo , Ácido Láctico , Masculino , Femenino , Humanos , Estudios Cruzados , Anaerobiosis , Método Simple Ciego , Ciclismo/fisiología , Frecuencia Cardíaca/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA