Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001871

RESUMEN

Provoked vulvodynia (PV) is characterized by localized chronic vulvar pain. It is associated with a history of recurrent inflammation, mast cell (MC) accumulation, and neuronal sprouting in the vulva. However, the mechanism of how vulvar-inflammation promotes neuronal sprouting and gene-expression adaptation in the spinal cord, leading to hypersensitivity and painful sensations, is unknown. Here, we found that vulvar tissue from women with PV (n=8) is characterized by MC accumulation and neuronal sprouting compared to women without PV (n=4). In addition, we observed these changes in an animal study of PV. Thus, we found that repeated vulvar zymosan-inflammation challenges lead to long-lasting mechanical and thermal vulvar hypersensitivity, which was mediated by MC accumulation, neuronal sprouting, overexpression of the pain channels (TRPV1 and TRPA1) in vulvar neurons, as well as a long-term increase of gene expression related to neuroplasticity, neuroinflammation, and nerve growth factor (NGF) in the spinal cord/DRG(L6-S3). However, regulation of the NGF pathway by stabilization of MC activity with ketotifen fumarate (KF) during vulvar inflammation attenuated the local increase of NGF and histamine, as well as the elevated transcription of pro-inflammatory cytokines, and NGF pathway in the spinal cord. Additionally, KF treatment during inflammation modulates MC accumulation, neuronal hyperinnervation, and overexpression of the TRPV1 and TRPA1 channels in the vulvar neurons, consequently preventing the development of vulvar pain. A thorough examination of the NGF pathway during inflammation revealed that blocking NGF activity by using an NGF-non-peptide-inhibitor (Ro08-2750) regulates the upregulation of genes related to neuroplasticity, and NGF pathway in the spinal cord, as well as modulates neuronal sprouting and overexpression of the pain channels, resulting in a reduced level of vulvar hypersensitivity. On the other hand, stimulation of the NGF pathway in the vulvar promotes neuronal sprouting, overexpression of pain channels, and increase of gene expression related to neuroplasticity, neuroinflammation, and NGF in the spinal cord, resulting in long-lasting vulvar hypersensitivity. In conclusion, our findings suggest that vulvar allodynia induced by inflammation is mediated by MC accumulation, neuronal sprouting, and neuromodulation in the vulvar. Additionally, chronic vulvar pain may involve a long-term adaptation in gene expression in the spinal cord, which probably plays a critical role in central sensitization and pain maintenance. Strikingly, regulating the NGF pathway during the critical period of inflammation prevents vulvar pain development via modulating the neuronal changes in the vestibule and spinal cord, suggesting a fundamental role for the NGF pathway in PV development.

2.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682237

RESUMEN

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Asunto(s)
Diferenciación Celular , Quinasa 5 Dependiente de la Ciclina , Metformina , Factor de Crecimiento Nervioso , Neuronas , Receptor trkA , Animales , Metformina/farmacología , Ratas , Células PC12 , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Fosfotransferasas
3.
J Biochem Mol Toxicol ; 38(4): e23638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613466

RESUMEN

The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1ß into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.


Asunto(s)
Neuralgia , Neoplasias Pancreáticas , Humanos , Sustancia P , Neuralgia/etiología , Páncreas , Neoplasias Pancreáticas/complicaciones , Fibroblastos , Microambiente Tumoral
4.
J Shoulder Elbow Surg ; 33(7): 1473-1482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38311102

RESUMEN

BACKGROUND: Rotator cuff tear (RCT) is a frequent etiology of shoulder pain and disability; however, the triggers for the onset and aggravation of pain remain obscure. In this study, we established novel rat RCT models to examine the impact of tear size and tendon degeneration on pain. METHODS: Fifty-five adult male Sprague-Dawley rats were allocated into 4 study groups: large tear (L group, n = 10), small tear (S group, n = 15), small tear with scratching (S+ group n = 15), and sham surgery (Sham group, n = 15). Pain-related behaviors were evaluated by weight distribution of forelimbs during a 5-minute free gait using a dynamic weight-bearing apparatus at 2, 4, 6, and 8 weeks. Calcitonin gene-related peptide (CGRP) expressions in ipsilateral dorsal root ganglion (DRG) neurons of C4, C5, and C6 were evaluated at 4 and 8 weeks. The area of scar tissues around the torn tendon, infiltration of inflammatory cells, and severity of tendon degeneration (modified Bonar score) were histologically assessed at 4 and 8 weeks. Additionally, enzyme-linked immunosorbent assay (ELISA) was conducted to evaluate the levels of cyclooxygenase-2 (COX-2) and nerve growth factor (NGF) expression in torn tendons and surrounding tissues at 4 weeks. RESULTS: The weight distribution ratio (ipsilateral and contralateral side) was significantly decreased in the L and S+ group compared with its baseline and Sham group (P < .05), but the S group showed no significant difference compared with the Sham. The ratio of CGRP-immunoreactive neurons in the DRGs was significantly higher in the L and S+ groups than in the S and Sham groups. The histologic assessment indicated that scar tissue formation was more extensive in the L group than in the S and S+ groups. Still, there was no significant difference between the S and S+ groups. The modified Bonar score was considerably higher in the S+ group than in the S group. Furthermore, ELISA analysis demonstrated no significant disparity in COX-2 levels between the groups; however, NGF levels were substantially higher in the S+ group than in the S and Sham groups. CONCLUSION: The present study provides compelling evidence that large RCT is strongly associated with heightened pain severity in a rat model. Nevertheless, even a small tear can significantly aggravate pain when the torn tendon is degenerated. CGRP upregulation driven by peripheral NGF possibly played a pivotal role in the genesis and exacerbation of pain in small RCT.


Asunto(s)
Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Lesiones del Manguito de los Rotadores , Animales , Lesiones del Manguito de los Rotadores/metabolismo , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/complicaciones , Masculino , Ratas , Factor de Crecimiento Nervioso/metabolismo , Manguito de los Rotadores/patología , Péptido Relacionado con Gen de Calcitonina/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612839

RESUMEN

Chronic inflammatory diseases are considered the most significant cause of death worldwide. Current treatments for inflammatory diseases are limited due to the lack of understanding of the biological factors involved in early-stage disease progression. Nerve growth factor (NGF) is a neurotrophic factor directly associated with inflammatory and autoimmune diseases like osteoarthritis, multiple sclerosis, and rheumatoid arthritis. It has been shown that NGF levels are significantly upregulated at the site of inflammation and play a crucial role in developing a robust inflammatory response. However, little is known about NGF's temporal expression profile during the initial progressive phase of inflammation. This study aimed to determine the temporal expression patterns of NGF in rat skin (epidermis) during adjuvant-induced arthritis (AIA). Sprague Dawley rats were randomly divided into control and complete Freund's adjuvant (CFA)-treated groups. Levels of NGF were evaluated following unilateral AIA at different time points, and it was found that peripheral inflammation due to AIA significantly upregulated the expression of NGF mRNA and protein in a biphasic pattern. These results suggest that NGF signaling is crucial for initiating and maintaining peripheral neurogenic inflammation in rats during AIA.


Asunto(s)
Factor de Crecimiento Nervioso , Inflamación Neurogénica , Animales , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Nervioso/genética , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Inflamación
6.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892241

RESUMEN

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain.


Asunto(s)
Ganglios Espinales , Glutaminasa , Inflamación , Factor de Crecimiento Nervioso , Ratas Sprague-Dawley , Receptor trkA , Transducción de Señal , Animales , Ganglios Espinales/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Glutaminasa/metabolismo , Ratas , Receptor trkA/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Neuronas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
7.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769248

RESUMEN

The acetabular labrum enhances hip joint stability and plays a key role in osteoarthritis (OA) progression. Labral nerve endings contribute to hip OA pain. Moreover, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) are associated with pain. Consequently, we analysed VEGF and NGF expression levels in the labrum and their roles in OA. Labra obtained from OA patients were stained immunohistochemically, and labral cells were cultured and subjected to a reverse transcription (RT)-polymerase chain reaction (PCR) to analyse VEGF and NGF mRNA expression. VEGF and NGF expression were compared in each region of the labrum. Correlations between VEGF and NGF expression and age, body mass index, Kellgren-Lawrence grade, Harris Hip Score, the visual analogue scale (VAS), and Krenn score were analysed, and the RT-PCR confirmed the findings. VEGF and NGF expression were high on the labral articular side, negatively correlated with the Krenn score, and positively correlated with the VAS in early OA. VEGF and NGF mRNA expression increased significantly in patients with severe pain and decreased significantly in severely degenerated labra. In early OA, VEGF and NGF expression in the acetabular labrum was associated with the occurrence of hip pain; therefore, these factors could be effective targets for pain management.


Asunto(s)
Cartílago Articular , Osteoartritis de la Cadera , Humanos , Osteoartritis de la Cadera/genética , Osteoartritis de la Cadera/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Acetábulo , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Articulación de la Cadera , Dolor/metabolismo , Artralgia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cartílago Articular/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012296

RESUMEN

There is no cure yet available for Alzheimer's disease (AD). We recently optimized encapsulated cell biodelivery (ECB) devices releasing human mature nerve growth factor (hmNGF), termed ECB-NGF, to the basal forebrain of AD patients. The ECB-NGF delivery resulted in increased CSF cholinergic markers, improved glucose metabolism, and positive effects on cognition in AD patients. However, some ECB-NGF implants showed altered hmNGF release post-explantation. To optimize the ECB-NGF platform for future therapeutic purposes, we initiated in-vitro optimization studies by exposing ECB-NGF devices to physiological factors present within the AD brain. We report here that microglia cells can impair hmNGF release from ECB-NGF devices in-vitro, which can be reversed by transferring the devices to fresh culture medium. Further, we exposed the hmNGF secreting human ARPE-19 cell line (NGC0211) to microglia (HMC3) conditioned medium (MCM; untreated or treated with IL-1ß/IFNγ/Aß40/Aß42), and evaluated biochemical stress markers (ROS, GSH, ΔΨm, and Alamar Blue assay), cell death indicators (Annexin-V/PI), cell proliferation (CFSE retention and Ki67) and senescence markers (SA-ß-gal) in NGC0211 cells. MCMs from activated microglia reduced cell proliferation and induced cell senescence in NGC0211 cells, which otherwise resist biochemical alterations and cell death. These data indicate a critical but reversible impact of activated microglia on NGC0211 cells.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Prosencéfalo Basal/metabolismo , Biomarcadores , Proliferación Celular , Humanos , Microglía/metabolismo , Factor de Crecimiento Nervioso/metabolismo
9.
Molecules ; 27(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956937

RESUMEN

Glioblastoma (GBM) is one of the most aggressive and lethal malignancy of the central nervous system. Temozolomide is the standard of care for gliomas, frequently results in resistance to drug and tumor recurrence. Therefore, further research is required for the development of effective drugs in order to guarantee specific treatments to succeed. The aim of current study was to investigate the effects of nerve growth factor (NGF), human cathelicidin (LL-37), protegrin-1 (PG-1), and temozolomide on bioenergetic function of mitochondria, clonogenicity, and migration of human U251 glioma cells. Colony formation assay was used to test the ability of the glioma cells to form colonies in vitro. The U251 glioma cells migration was evaluated using wound-healing assay. To study the mitochondrial metabolism in glioma cells we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) using a Seahorse XF cell Mito stress test kit and Seahorse XF cell Glycolysis stress kit, respectively. We revealed that LL-37, NGF, and TMZ show strong anti-tumorigenic activity on GMB. LL-37 (4 µM), TMZ (155 µM), and NGF (7.55 × 10-3 µM) inhibited 43.9%-60.3%, 73.5%-81.3%, 66.2% the clonogenicity of glioma U251 cells for 1-2 days, respectively. LL-37 (4 µM), and NGF (7.55 × 10-3 µM) inhibited the migration of U251 glioma cells on the third and fourth days. TMZ also inhibited the migration of human glioma U251 cells over 1-3 days. In contrast, PG-1 (16 µM) stimulated the migration of U251 glioma cells on the second, fourth, and sixth days. Anti-mitogenic and anti-migration activities of NGF, LL-37, and TMZ maybe are relation to their capacity to reduce the basal OCR, ATP-synthetase, and maximal respiration of mitochondria in human glioma U251 cells. Glycolysis, glycolytic capacity and glycolytic spare in glioma U251 cells haven`t been changed under the effect of NGF, LL-37, PG-1, and TMZ in regard to control level. Thus, LL-37 and NGF inhibit migration and clonogenicity of U251 glioma cells, which may indicate that these compounds have anti-mitogenic and anti-migration effects on human glioma cells. The study of the mechanisms of these effects may contribute in the future to the use of NGF and LL-37 as therapeutic agents for gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Péptidos Catiónicos Antimicrobianos , Antineoplásicos Alquilantes/farmacología , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Dacarbazina/farmacología , Resistencia a Antineoplásicos , Glioma/patología , Humanos , Mitocondrias/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Factor de Crecimiento Nervioso/farmacología , Temozolomida/farmacología , Catelicidinas
10.
Pak J Med Sci ; 38(7): 1748-1753, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246689

RESUMEN

Objectives: To study the effects of anisodamine-tirofiban combined therapy on cardiac function and serological expression of serum NGF and ESM-1 in patients with acute myocardial infarction treated with percutaneous coronary intervention (PCI). Methods: Eighty patients with myocardial infarction treated in Cangzhou Medical College, Hebei, China from February 2015 to April 2017 were selected and divided into the control group and the research group according to the principle of random draw, 40 patients per group. The patients in the control group received symptomatic routine treatment, while the patients in the research group received anisodamine-tirofiban combined therapy on the top of symptomatic routine treatment. Differences between the two groups in TIMI flow grades, cardiac function, levels of NGF and ESM-1 and adverse response were observed. Results: The recovery of cardiac function in the research group was statistically significant with P value (p<0.05) and better than the control group in TIMI flow grades, myocardial perfusion capacity and cardiac function. The serological indicators in the research group had a higher level of NGF and a lower level of ESM-1 than the control group, and the differences were statistically significant (p<0.05). In terms of safety, neither group showed significant hepatorenal disorders. Conclusion: The combined treatment of anisodamine-tirofiban in patients with acute myocardial infarction after percutaneous coronary intervention (PCI) can recover NGF and ESM-1 related proteins, improve postoperative myocardial perfusion, and accelerate the recovery of cardiac function. It is worth promoting in clinic.

11.
J Physiol ; 599(6): 1783-1798, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476055

RESUMEN

KEY POINTS: Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are essential for neuronal development and survival in embryo. However, after birth they play pivotal roles in the generation of hyperalgesia in many painful conditions. Both factors are believed to act on different groups of primary afferents, but interaction between them has not yet been studied. Here we show a synergism between the two factors. Intramuscular injection of a mixture of both factors at a low concentration, each of which alone had no effect, induced a significant muscular mechanical hyperalgesia in rats. We show that synergism occurs in the primary afferent neurons and find that about 25% primary afferents innervating the muscle express both TrkA (NGF receptor) and GFRα1 (GDNF receptor). We show by pharmacological means that afferent neurons with TrkA and GFRα1 express both TRPV1 and ASICs. Our data establish a basis for synergism between NGF and GDNF. In some inflammatory conditions both nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are upregulated and play pivotal roles in inducing hyperalgesia. However, their interaction has not been studied. We examined whether and where interaction between both neurotrophic factors occurs in SD rats. Intramuscular injection to gastrocnemius muscle (GC) of a mixture of NGF (0.1 µm) and GDNF (0.008 µm), which alone had no effect, induced a significant mechanical hyperalgesia (F(6,30)  = 13.62, P = 0.0001), demonstrating synergism between the two factors. Phosphorylated extracellular signal-regulated kinase (pERK) immunoreactivity in dorsal root ganglia (DRGs) induced by compression of GC increased after injection of the mixture (P = 0.028, compared with PBS); thus the interaction of NGF and GDNF could occur at the primary afferent level. An in situ hybridization study (n = 4) demonstrated that 23.7-29.2% of GC-innervating DRG neurons coexpressed TrkA (NGF receptor) and GFRα1 (GDNF receptor). The cell size of the coexpressing GC DRG neurons showed no skewing towards the small size range but was distributed widely from the small to the large size ranges. Therefore, some of the coexpressing neurons with thin axons are thought to contribute to this mechanical hyperalgesia. The hyperalgesia was reversed by both amiloride (F(1,13)  = 5.056, P = 0.0425, compared with PBS) and capsazepine (F(1,10)  = 8.402, P = 0.0159, compared with DMSO), suggesting that the primary afferents sensitized by the mixture express both TRPV1 and ASICs. These results showed a basis of synergism between NGF and GDNF.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Factor de Crecimiento Nervioso , Animales , Ganglios Espinales , Hiperalgesia , Neuronas Aferentes , Ratas , Ratas Sprague-Dawley
12.
J Biol Chem ; 295(1): 275-286, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31801826

RESUMEN

Tropomyosin-receptor kinases (TRKs) are essential for the development of the nervous system. The molecular mechanism of TRKA activation by its ligand nerve growth factor (NGF) is still unsolved. Recent results indicate that at endogenous levels most of TRKA is in a monomer-dimer equilibrium and that the binding of NGF induces an increase of the dimeric and oligomeric forms of this receptor. An unsolved issue is the role of the TRKA transmembrane domain (TMD) in the dimerization of TRKA and the structural details of the TMD in the active dimer receptor. Here, we found that the TRKA-TMD can form dimers, identified the structural determinants of the dimer interface in the active receptor, and validated this interface through site-directed mutagenesis together with functional and cell differentiation studies. Using in vivo cross-linking, we found that the extracellular juxtamembrane region is reordered after ligand binding. Replacement of some residues in the juxtamembrane region with cysteine resulted in ligand-independent active dimers and revealed the preferred dimer interface. Moreover, insertion of leucine residues into the TMD helix induced a ligand-independent TRKA activation, suggesting that a rotation of the TMD dimers underlies NGF-induced TRKA activation. Altogether, our findings indicate that the transmembrane and juxtamembrane regions of TRKA play key roles in its dimerization and activation by NGF.


Asunto(s)
Simulación de Dinámica Molecular , Factor de Crecimiento Nervioso/metabolismo , Multimerización de Proteína , Receptor trkA/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Diferenciación Celular , Células HeLa , Humanos , Células PC12 , Unión Proteica , Ratas , Receptor trkA/genética , Receptor trkA/metabolismo
13.
Adv Exp Med Biol ; 1331: 167-191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453298

RESUMEN

Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo
14.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806315

RESUMEN

Systemic injection of a nerve growth factor (NGF) antibody has been proven to have a significant relevance in relieving osteoarthritis (OA) pain, while its adverse effects remain a safety concern for patients. A local low-dose injection is thought to minimize adverse effects. In this study, OA was induced in an 8-week-old male Sprague-Dawley (SD) rat joint by monoiodoacetate (MIA) injection for 2 weeks, and the effect of weekly injections of low-dose (1, 10, and 100 µg) NGF antibody or saline (control) was evaluated. Behavioral tests were performed, and at the end of week 6, all rats were sacrificed and their knee joints were collected for macroscopic and histological evaluations. Results showed that 100 µg NGF antibody injection relieved pain in OA rats, as evidenced from improved weight-bearing performance but not allodynia. In contrast, no significant differences were observed in macroscopic and histological scores between rats from different groups, demonstrating that intra-articular treatment does not worsen OA progression. These results suggest that local administration yielded a low effective NGF antibody dose that may serve as an alternative approach to systemic injection for the treatment of patients with OA.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Artritis Experimental/terapia , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Osteoartritis/terapia , Manejo del Dolor/métodos , Animales , Artritis Experimental/patología , Artritis Experimental/fisiopatología , Cartílago Articular/patología , Relación Dosis-Respuesta Inmunológica , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Inyecciones Intraarticulares , Ácido Yodoacético/toxicidad , Masculino , Factor de Crecimiento Nervioso/inmunología , Osteoartritis/patología , Osteoartritis/fisiopatología , Ratas , Ratas Sprague-Dawley , Soporte de Peso/fisiología
15.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008797

RESUMEN

The molecular mechanism of discogenic low back pain (LBP) involves nonphysiological nerve invasion into a degenerated intervertebral disc (IVD), induced by nerve growth factor (NGF). Selective cyclooxygenase (COX)-2 inhibitors are mainly used in the treatment of LBP, and act by suppressing the inflammatory mediator prostaglandin E2 (PGE2), which is induced by inflammatory stimuli, such as interleukin-1ß (IL-1ß). However, in our previous in vitro study using cultured human IVD cells, we demonstrated that the induction of NGF by IL-1ß is augmented by a selective COX-2 inhibitor, and that PGE2 and PGE1 suppress NGF expression. Therefore, in this study, to elucidate the mechanism of NGF suppression by PGE2 and PGE1, we focused on mitogen-activated protein kinases (MAPKs) and its phosphatase, dual-specificity phosphatase (DUSP)-1. IL-1ß-induced NGF expression was altered in human IVD cells by MAPK pathway inhibitors. PGE2 and PGE1 enhanced IL-1ß-induced DUSP-1 expression, and suppressed the phosphorylation of MAPKs in human IVD cells. In DUSP-1 knockdown cells established using small interfering RNA, IL-1ß-induced phosphorylation of MAPKs was enhanced and prolonged, and NGF expression was significantly enhanced. These results suggest that PGE2 and PGE1 suppress IL-1ß-induced NGF expression by suppression of the MAPK signaling pathway, accompanied by increased DUSP-1 expression.


Asunto(s)
Alprostadil/farmacología , Dinoprostona/farmacología , Fosfatasa 1 de Especificidad Dual/metabolismo , Interleucina-1beta/metabolismo , Disco Intervertebral/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Crecimiento Nervioso/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Persona de Mediana Edad , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/metabolismo
16.
J Mol Cell Cardiol ; 143: 26-37, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32277975

RESUMEN

RATIONALE: After cardiac damage, excessive neurite outgrowth (sympathetic hyperinnervation) can occur, which is related to ventricular arrhythmias/sudden cardiac death. Post-damage reactivation of epicardium causes epicardium-derived cells (EPDCs) to acquire a mesenchymal character, contributing to cardiac regeneration. Whether EPDCs also contribute to cardiac re/hyperinnervation, is unknown. AIM: To investigate whether mesenchymal EPDCs influence cardiac sympathetic innervation. METHODS AND RESULTS: Sympathetic ganglia were co-cultured with mesenchymal EPDCs and/or myocardium, and neurite outgrowth and sprouting density were assessed. Results showed a significant increase in neurite density and directional (i.e. towards myocardium) outgrowth when ganglia were co-cultured with a combination of EPDCs and myocardium, as compared to cultures with EPDCs or myocardium alone. In absence of myocardium, this outgrowth was not directional. Neurite differentiation of PC12 cells in conditioned medium confirmed these results via a paracrine effect, in accordance with expression of neurotrophic factors in myocardial explants co-cultured with EPDCs. Of interest, EPDCs increased the expression of nerve growth factor (NGF) in cultured, but not in fresh myocardium, possibly due to an "ischemic state" of cultured myocardium, supported by TUNEL and Hif1α expression. Cardiac tissues after myocardial infarction showed robust NGF expression in the infarcted, but not remote area. CONCLUSION: Neurite outgrowth and density increases significantly in the presence of EPDCs by a paracrine effect, indicating a new role for EPDCs in the occurrence of sympathetic re/hyperinnervation after cardiac damage.


Asunto(s)
Corazón/inervación , Miocardio/metabolismo , Pericardio/metabolismo , Fibras Simpáticas Posganglionares/fisiología , Animales , Apoptosis/genética , Línea Celular Tumoral , Células Cultivadas , Ganglios Simpáticos/citología , Ganglios Simpáticos/metabolismo , Humanos , Ratones , Miocardio/citología , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Proyección Neuronal
17.
J Cell Mol Med ; 24(14): 8166-8178, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32515141

RESUMEN

The application of growth factors (GFs) for treating chronic spinal cord injury (SCI) has been shown to promote axonal regeneration and functional recovery. However, direct administration of GFs is limited by their rapid degradation and dilution at the injured sites. Moreover, SCI recovery is a multifactorial process that requires multiple GFs to participate in tissue regeneration. Based on these facts, controlled delivery of multiple growth factors (GFs) to lesion areas is becoming an attractive strategy for repairing SCI. Presently, we developed a GFs-based delivery system (called GFs-HP) that consisted of basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and heparin-poloxamer (HP) hydrogel through self-assembly mode. This GFs-HP was a kind of thermosensitive hydrogel that was suitable for orthotopic administration in vivo. Meanwhile, a 3D porous structure of this hydrogel is commonly used to load large amounts of GFs. After single injection of GFs-HP into the lesioned spinal cord, the sustained release of NGF and bFGF from HP could significantly improve neuronal survival, axon regeneration, reactive astrogliosis suppression and locomotor recovery, when compared with the treatment of free GFs or HP. Moreover, we also revealed that these neuroprotective and neuroregenerative effects of GFs-HP were likely through activating the phosphatidylinositol 3 kinase and protein kinase B (PI3K/Akt) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signalling pathways. Overall, our work will provide an effective therapeutic strategy for SCI repair.


Asunto(s)
Sistemas de Liberación de Medicamentos , Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Heparina/química , Hidrogeles/química , Factor de Crecimiento Nervioso/administración & dosificación , Poloxámero/química , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Regeneración Nerviosa , Fosfatidilinositol 3-Quinasas/metabolismo , Porosidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Recuperación de la Función , Transducción de Señal , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Temperatura , Resultado del Tratamiento
18.
Amino Acids ; 52(1): 87-102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31875259

RESUMEN

Type 2 Diabetes causes learning and memory deficits that might be mediated by hippocampus neuron apoptosis. Studies found that taurine might improve cognitive deficits under diabetic condition because of its ability to prevent hippocampus neuron apoptosis. However, the effect and mechanism is not clear. In this study, we explore the effect and mechanism of taurine on inhibiting hippocampus neuron apoptosis. Sixty male Sprague-Dawley rats were randomly divided into control, T2D, taurine treatment (giving 0.5%, 1%, and 2% taurine in drinking water) groups. Streptozotocin was used to establish the diabetes model. HT-22 cell (hippocampus neurons line) was used for in vitro experiments. Morris Water Maze test was used to check the learning and memory ability, TUNEL assay was used to measure apoptosis and nerve growth factor (NGF); Akt/Bad pathway relevant protein was detected by western blot. Taurine improved learning and memory ability and significantly decreased apoptosis of the hippocampus neurons in T2D rats. Moreover, taurine supplement also inhibited high glucose-induced apoptosis in HT-22 cell in vitro. Mechanistically, taurine increased the expression of NGF, phosphorylation of Trka, Akt, and Bad, as well as reduced cytochrome c release from mitochondria to cytosol. However, beneficial effects of taurine were blocked in the presence of anti-NGF antibody or Akt inhibitor. Taurine could inhibit hippocampus neuron apoptosis via NGF-Akt/Bad pathway. These results provide some clues that taurine might be efficient and feasible candidate for improvement of learning and memory ability in T2D rats.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor de Crecimiento Nervioso/genética , Receptor trkA/genética , Taurina/farmacología , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Glucosa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Aprendizaje por Laberinto , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Transducción de Señal , Proteína Letal Asociada a bcl/genética
19.
Cell Commun Signal ; 18(1): 66, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32312253

RESUMEN

BACKGROUND: Anti-nerve growth factor (NGF) monoclonal antibodies (anti-NGF mAbs) have been reported to significantly attenuate pain, but the mechanism involved has not been fully elucidated, and the serious adverse events associated with mAbs seriously limit their clinical use. This study further investigated the mechanism by which peripheral NGF is involved in neuropathic pain and found safe, natural compounds that target NGF to attenuate neuropathic pain. METHODS: Nociception was assessed by the Von Frey hair and Hargreaves' methods. Western-blotting, qPCR and immunofluorescence were used to detect the cell signaling pathway. RAW264.7 macrophages and RSC96 Schwann cells were cultured for in vitro evaluation. RESULTS: Intraplantar administration of anti-NGF mAbs suppressed the expression of phosphorylated transforming growth factor-ß-activated kinase 1 (TAK1) in the dorsal root ganglion (DRG) and sciatic nerve. Intraplantar administration of a TAK1 inhibitor attenuated CCI-induced neuropathic pain and suppressed the expression of phosphorylated mitogen-activated protein kinases (MAPKs) in the DRG and sciatic nerve. Perisciatic nerve administration of levo-corydalmine (l-CDL) on the operated side obviously attenuated CCI-induced neuropathic pain and suppressed the expression of mNGF and proNGF. In addition, l-CDL-induced antinociception was reversed by intraplantar administration of NGF. Further results indicated that l-CDL-induced suppression of phosphorylated TAK1, MAPKs, and p65 and expression of the proinflammatory cytokines TNF-α and IL-1ß in the DRG and sciatic nerve were all abolished by NGF. In addition, in vitro experiments indicated that l-CDL suppressed the secretion of NGF and proNGF in RAW264.7 macrophages and RSC96 Schwann cells, which was abolished by AP-1 and CREB agonists, respectively. CONCLUSIONS: This study showed NGF inhibition suppressed TAK1 in the periphery to attenuate CCI-induced neuropathic pain through inhibition of downstream MAPK and p65 signaling. The natural compound l-CDL inhibited NGF secretion by macrophages and Schwann cells and downstream TAK1-MAPK/NF-κB signaling in the periphery to attenuate CCI-induced neuropathic pain. Video abstract Proposed mechanisms underlying the effect of l-CDL in periphery of CCI rats. In CCI rats, macropahages and Schwann cells could secret NGF to act on the receptors in the periphery to activate TAK1-MAPK/NF-κB axis and promote the release of proinflammatory cytokines, including TNF-α and IL-1ß to promote neuropathic pain. l-CDL decreased the secretion of NGF through inhibiting AP-1 and CREB respectively in RAW264.7 and RSC96 Schwann cells to attenuate CCI-induced neuropathic pain by inhibiting the TAK1-p38 MAPK/NF-κB signaling pathway.


Asunto(s)
Anticuerpos Monoclonales , Quinasas Quinasa Quinasa PAM , Factor de Crecimiento Nervioso , Neuralgia/tratamiento farmacológico , Extractos Vegetales , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Corydalis/química , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Factor de Crecimiento Nervioso/inmunología , Factor de Crecimiento Nervioso/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Transducción de Señal
20.
Mol Cell Biochem ; 469(1-2): 53-64, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279149

RESUMEN

It has been shown that the conditioned medium of bone mesenchymal stem cells (BMSC-CM) can inhibit apoptosis of neural cells exposed to 2,5-hexanedione (HD), but its protective mechanism remains unclear. To investigate the underlying mechanism, VSC4.1 cells were given HD and 5, 10 and 15% BMSC-CM (v/v) in the current experiment. Our data showed that BMSC-CM concentration-dependently attenuated HD-induced cell apoptosis. Moreover, BMSC-CM remarkably decreased the mitochondrial cytochrome c (Cyt C) release and the caspase-3 activity in HD-given VSC4.1 cells. Given a relatively high expression of NGF in BMSCs and BMSC-CM, we hypothesized that NGF might be an important mediator of the protection of BMSC-CM against apoptosis induced by HD. To verify our hypothesis, the VSC4.1 cells were administrated with NGF and anti-NGF antibody in addition to HD. As expected, NGF could perfectly mimic BMSC-CM's protective role and these beneficial effects were abolished by anti-NGF antibody intervention. To further explore its mechanism, inhibitors of TrkA and Akt were given to the VSC4.1 cells and NGF/Akt/Bad pathway turned out to be involved in anti-apoptotic role of BMSC-CM. Based on these findings, it was revealed that BMSC-CM beneficial role was mediated by NGF and relied on the Akt/Bad pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Hexanonas/toxicidad , Células Madre Mesenquimatosas/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Caspasa 3/metabolismo , Citocromos c/metabolismo , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Receptor trkA/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA