Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(42): e2401035121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388262

RESUMEN

Most measurements and models of forest carbon cycling neglect the carbon flux associated with the turnover of branch biomass, a physiological process quantified for other organs (fine roots, leaves, and stems). Synthesizing data from boreal, temperate, and tropical forests (184,815 trees), we found that including branch turnover increased empirical estimates of aboveground wood production by 16% (equivalent to 1.9 Pg Cy-1 globally), of similar magnitude to the observed global forest carbon sinks. In addition, reallocating carbon to branch turnover in model simulations reduced stem wood biomass, a long-lasting carbon storage, by 7 to 17%. This prevailing neglect of branch turnover suggests widespread biases in carbon flux estimates across global datasets and model simulations. Branch litterfall, sometimes used as a proxy for branch turnover, ignores carbon lost from attached dead branches, underestimating branch C turnover by 38% in a pine forest. Modifications to field measurement protocols and existing models are needed to allow a more realistic partitioning of wood production and forest carbon storage.


Asunto(s)
Ciclo del Carbono , Carbono , Bosques , Árboles , Carbono/metabolismo , Árboles/metabolismo , Biomasa , Madera/metabolismo , Secuestro de Carbono
2.
Glob Chang Biol ; 30(2): e17190, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403855

RESUMEN

Enhancement of net primary production (NPP) in forests as atmospheric [CO2 ] increases is likely limited by the availability of other growth resources. The Duke Free Air CO2 Enrichment (FACE) experiment was located on a moderate-fertility site in the southeastern US, in a loblolly pine (Pinus taeda L.) plantation with broadleaved species growing mostly in mid-canopy and understory. Duke FACE ran from 1994 to 2010 and combined elevated [CO2 ] (eCO2 ) with nitrogen (N) additions. We assessed the spatial and temporal variation of NPP response using a dataset that includes previously unpublished data from 6 years of the replicated CO2 × N experiment and extends to 2 years beyond the termination of enrichment. Averaged over time (1997-2010), NPP of pine and broadleaved species were 38% and 52% higher under eCO2 compared to ambient conditions. Furthermore, there was no evidence of a decline in enhancement over time in any plot regardless of its native site quality. The relation between spatial variation in the response and native site quality was suggested but inconclusive. Nitrogen amendments under eCO2 , in turn, resulted in an additional 11% increase in pine NPP. For pine, the eCO2 -induced increase in NPP was similar above- and belowground and was driven by both increased leaf area index (L) and production efficiency (PE = NPP/L). For broadleaved species, coarse-root biomass production was more than 200% higher under eCO2 and accounted for the entire production response, driven by increased PE. Notably, the fraction of annual NPP retained in total living biomass was higher under eCO2 , reflecting a slight shift in allocation fraction to woody mass and a lower mortality rate. Our findings also imply that tree growth may not have been only N-limited, but perhaps constrained by the availability of other nutrients. The observed sustained NPP enhancement, even without N-additions, demonstrates no progressive N limitation.


Asunto(s)
Dióxido de Carbono , Pinus , Nitrógeno , Pinus/fisiología , Bosques , Árboles , Pinus taeda , Hojas de la Planta/fisiología
3.
Glob Chang Biol ; 30(8): e17453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099457

RESUMEN

Soil organic carbon (SOC) accrual, and particularly the formation of fine fraction carbon (OCfine), has a large potential to act as sink for atmospheric CO2. For reliable estimates of this potential and efficient policy advice, the major limiting factors for OCfine accrual need to be understood. The upper boundary of the correlation between fine mineral particles (silt + clay) and OCfine is widely used to estimate the maximum mineralogical capacity of soils to store OCfine, suggesting that mineral surfaces get C saturated. Using a dataset covering the temperate zone and partly other climates on OCfine contents and a SOC turnover model, we provide two independent lines of evidence, that this empirical upper boundary does not indicate C saturation. Firstly, the C loading of the silt + clay fraction was found to strongly exceed previous saturation estimates in coarse-textured soils, which raises the question of why this is not observed in fine-textured soils. Secondly, a subsequent modelling exercise revealed, that for 74% of all investigated soils, local net primary production (NPP) would not be sufficient to reach a C loading of 80 g C kg-1 silt + clay, which was previously assumed to be a general C saturation point. The proportion of soils with potentially enough NPP to reach that point decreased strongly with increasing silt + clay content. High C loadings can thus hardly be reached in more fine-textured soils, even if all NPP would be available as C input. As a pragmatic approach, we introduced texture-dependent, empirical maximum C loadings of the fine fraction, that decreased from 160 g kg-1 in coarse to 75 g kg-1 in most fine-textured soils. We conclude that OCfine accrual in soils is mainly limited by C inputs and is strongly modulated by texture, mineralogy, climate and other site properties, which could be formulated as an ecosystem capacity to stabilise SOC.


Asunto(s)
Carbono , Ecosistema , Suelo , Suelo/química , Carbono/análisis , Secuestro de Carbono , Modelos Teóricos
4.
Ecol Appl ; 34(3): e2944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379442

RESUMEN

In China, the Grain for Green Program (GGP) is an ambitious project to convert croplands into natural vegetation, but exactly how changes in vegetation translate into changes in soil organic carbon remains less clear. Here we conducted a meta-analysis using 734 observations to explore the effects of land recovery on soil organic carbon and nutrients in four provinces in Southwest China. Following GGP, the soil organic carbon content (SOCc) and soil organic carbon stock (SOCs) increased by 33.73% and 22.39%, respectively, compared with the surrounding croplands. Similarly, soil nitrogen increased, while phosphorus decreased. Outcomes were heterogeneous, but depended on variations in soil and environmental characteristics. Both the regional land use and cover change indicated by the landscape type transfer matrix and net primary production from 2000 to 2020 further confirmed that the GGP promoted the forest area and regional mean net primary production. Our findings suggest that the GGP could enhance soil and vegetation carbon sequestration in Southwest China and help to develop a carbon-neutral strategy.


Asunto(s)
Carbono , Suelo , Carbono/análisis , Bosques , Grano Comestible , China
5.
Ecol Appl ; 34(5): e2978, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725417

RESUMEN

Rangelands are the dominant land use across a broad swath of central North America where they span a wide gradient, from <350 to >900 mm, in mean annual precipitation. Substantial efforts have examined temporal and spatial variation in aboveground net primary production (ANPP) to precipitation (PPT) across this gradient. In contrast, net secondary productivity (NSP, e.g., primary consumer production) has not been evaluated analogously. However, livestock production, which is a form of NSP or primary consumer production supported by primary production, is the dominant non-cultivated land use and an integral economic driver in these regions. Here, we used long-term (mean length = 19 years) ANPP and NSP data from six research sites across the Central Great Plains with a history of a conservative stocking to determine resource (i.e., PPT)-productivity relationships, NSP sensitivities to dry-year precipitation, and regional trophic efficiencies (e.g., NSP:ANPP ratio). PPT-ANPP relationships were linear for both temporal (site-based) and spatial (among site) gradients. The spatial PPT-NSP model revealed that PPT mediated a saturating relationship for NSP as sites became more mesic, a finding that contrasts with many plant-based PPT-ANPP relationships. A saturating response to high growing-season precipitation suggests biogeochemical rather than vegetation growth constraints may govern NSP (i.e., large herbivore production). Differential sensitivity in NSP to dry years demonstrated that the primary consumer production response heightened as sites became more xeric. Although sensitivity generally decreased with increasing precipitation as predicted from known PPT-ANPP relationships, evidence suggests that the dominant species' identity and traits influenced secondary production efficiency. Non-native northern mixed-grass prairie was outperformed by native Central Great Plains rangeland in sensitivity to dry years and efficiency in converting ANPP to NSP. A more comprehensive understanding of the mechanisms leading to differences in producer and consumer responses will require multisite experiments to assess biotic and abiotic determinants of multi-trophic level efficiency and sensitivity.


Asunto(s)
Ecosistema , Estados Unidos , Animales , Lluvia , Modelos Biológicos , Factores de Tiempo
6.
J Environ Manage ; 368: 122257, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173302

RESUMEN

Human activities and climate change impact ecosystem services, thereby affecting economic and social sustainable development. Measuring the heterogeneity in space and time of how human activities affect ecosystem services poses a challenge for the sustainable management of land resources. Based on "human appropriation of net primary production (HANPP) - Fractional Vegetation Cover (FVC) - Soil Conservation Service (SCS)" cascading effect, first, a geographically and temporally weighted regression (GTWR) model was employed to assess the impact of HANPP in percent of potential NPP (hereafter HANPP%) on the FVC; second, changes in the FVC caused by human activities were quantified; and third, the potential soil conservation service (SCSp) and actual soil conservation service (SCSa) were estimated using the Revised Universal Soil Loss Equation (RUSLE) model, and the difference between them represented the changes in soil conservation service caused by human activities (SCSh). Taking the Qinghai-Tibet Plateau as a case study, we found that the GTWR model was well suited for analyzing the relationship between the HANPP% and the FVC (R2 = 0.897). The HANPP resulted in a decrease in the FVC from 0.222 in 2001 to 0.199 in 2019 and correspondingly resulted in a decrease in the ratio of SCSh to SCSp from 8.95% to 7.24%. This study provides a quantitative method that allows quantifying the influence of human activity on ecosystem services closely related to the FVC.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Actividades Humanas , Suelo , Conservación de los Recursos Naturales/métodos , Humanos , Cambio Climático
7.
J Sci Food Agric ; 104(3): 1420-1430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800371

RESUMEN

BACKGROUND: The Huang-Huai-Hai Plain (3HP) is the main agricultural area in China. Although climate change (CC) and crop management (CM) are considered factors affecting the winter wheat net primary production (NPP) in this region, their effects remain unclear. In the present study, we evaluated the relative contributions of CC and CM to winter wheat aboveground NPP (ANPP) in the 3HP and the relationships between climatic factors and ANPP using the first-order difference method from 2000 to 2020. RESULTS: CM had a greater influence on the ANPP of winter wheat than did CC. However, the relative contribution of CM to ANPP gradually decreased in humid and dry sub-humid regions with the development of winter wheat. Furthermore, in areas characterized by low temperatures and limited precipitation, CC became the dominant factor contributing to ANPP, indicating that varieties resilient to drought and cold should be selected in these regions. Minimum and average temperatures were the dominant factors driving spatiotemporal variations in ANPP during the early stage of winter wheat growth, whereas maximum temperature constrained growth throughout the winter wheat growth cycle. When winter wheat entered the vigorous growth stage, precipitation and solar radiation replaced temperature as the driving factors influencing winter wheat growth. CONCLUSION: The results of the present study provide guidance for optimizing winter wheat crop management in the 3HP. © 2023 Society of Chemical Industry.


Asunto(s)
Cambio Climático , Triticum , Agricultura , Temperatura , Frío , China
8.
Glob Chang Biol ; 29(4): 1119-1132, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464908

RESUMEN

Boreal forests are important global carbon (C) sinks and, therefore, considered as a key element in climate change mitigation policies. However, their actual C sink strength is uncertain and under debate, particularly for the actively managed forests in the boreal regions of Fennoscandia. In this study, we use an extensive set of biometric- and chamber-based C flux data collected in 50 forest stands (ranging from 5 to 211 years) over 3 years (2016-2018) with the aim to explore the variations of the annual net ecosystem production (NEP; i.e., the ecosystem C balance) across a 68 km2 managed boreal forest landscape in northern Sweden. Our results demonstrate that net primary production rather than heterotrophic respiration regulated the spatio-temporal variations of NEP across the heterogeneous mosaic of the managed boreal forest landscape. We further find divergent successional patterns of NEP in our managed forests relative to naturally regenerating boreal forests, including (i) a fast recovery of the C sink function within the first decade after harvest due to the rapid establishment of a productive understory layer and (ii) a sustained C sink in old stands (131-211 years). We estimate that the rotation period for optimum C sequestration extends to 138 years, which over multiple rotations results in a long-term C sequestration rate of 86.5 t C ha-1 per rotation. Our study highlights the potential of forest management to maximize C sequestration of boreal forest landscapes and associate climate change mitigation effects by developing strategies that optimize tree biomass production rather than heterotrophic soil C emissions.


Asunto(s)
Ecosistema , Taiga , Carbono , Bosques , Biomasa , Árboles , Secuestro de Carbono
9.
Glob Chang Biol ; 29(18): 5250-5260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37409536

RESUMEN

Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2 . However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The 'biogeochemical fingerprint' of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Hierro , Dióxido de Carbono/análisis , Océanos y Mares , Fertilización
10.
Glob Chang Biol ; 29(24): 7012-7028, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37589204

RESUMEN

Terrestrial enhanced weathering (EW) through the application of Mg- or Ca-rich rock dust to soil is a negative emission technology with the potential to address impacts of climate change. The effectiveness of EW was tested over 4 years by spreading ground basalt (50 t ha-1 year-1 ) on maize/soybean and miscanthus cropping systems in the Midwest US. The major elements of the carbon budget were quantified through measurements of eddy covariance, soil carbon flux, and biomass. The movement of Mg and Ca to deep soil, released by weathering, balanced by a corresponding alkalinity flux, was used to measure the drawdown of CO2 , where the release of cations from basalt was measured as the ratio of rare earth elements to base cations in the applied rock dust and in the surface soil. Basalt application stimulated peak biomass and net primary production in both cropping systems and caused a small but significant stimulation of soil respiration. Net ecosystem carbon balance (NECB) was strongly negative for maize/soybean (-199 to -453 g C m-2 year-1 ) indicating this system was losing carbon to the atmosphere. Average EW (102 g C m-2 year-1 ) offset carbon loss in the maize/soybean by 23%-42%. NECB of miscanthus was positive (63-129 g C m-2 year-1 ), indicating carbon gain in the system, and EW greatly increased inorganic carbon storage by an additional 234 g C m-2 year-1 . Our analysis indicates a co-deployment of a perennial biofuel crop (miscanthus) with EW leads to major wins-increased harvested yields of 29%-42% with additional carbon dioxide removal (CDR) of 8.6 t CO2 ha-1 year-1 . EW applied to maize/soybean drives a CDR of 3.7 t CO2 ha-1 year-1 , which partially offsets well-established carbon losses from soil from this crop rotation. EW applied in the US Midwest creates measurable improvements to the carbon budgets perennial bioenergy crops and conventional row crops.


Asunto(s)
Dióxido de Carbono , Ecosistema , Suelo , Poaceae , Zea mays , Polvo , Cationes , Agricultura
11.
Glob Chang Biol ; 29(17): 5014-5032, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332159

RESUMEN

River transport of dissolved organic carbon (DOC) to the ocean is a crucial but poorly quantified regional carbon cycle component. Large uncertainties remaining on the riverine DOC export from China, as well as its trend and drivers of change, have challenged the reconciliation between atmosphere-based and land-based estimates of China's land carbon sink. Here, we harmonized a large database of riverine in-situ measurements and applied a random forest model, to quantify riverine DOC fluxes (FDOC ) and DOC concentrations (CDOC ) in rivers across China. This study proposes the first DOC modeling effort capable of reproducing well the magnitude of riverine CDOC and FDOC , as well as its trends, on a monthly scale and with a much wider spatial distribution over China compared to previous studies that mainly focused on annual-scale estimates and large rivers. Results show that over the period 2001-2015, the average CDOC was 2.25 ± 0.45 mg/L and average FDOC was 4.04 ± 1.02 Tg/year. Simultaneously, we found a significant increase in FDOC (+0.044 Tg/year2 , p = .01), but little change in CDOC (-0.001 mg/L/year, p > .10). Although the trend in CDOC is not significant at the country scale, it is significantly increasing in the Yangtze River Basin and Huaihe River Basin (0.005 and 0.013 mg/L/year, p < .05) while significantly decreasing in the Yellow River Basin and Southwest Rivers Basin (-0.043 and -0.014 mg/L/year, p = .01). Changes in hydrology, play a stronger role than direct impacts of anthropogenic activities in determining the spatio-temporal variability of FDOC and CDOC across China. However, and in contrast with other basins, the significant increase in CDOC in the Yangtze River Basin and Huaihe River Basin is attributable to direct anthropogenic activities. Given the dominance of hydrology in driving FDOC , the increase in FDOC is likely to continue under the projected increase in river discharge over China resulting from a future wetter climate.


Asunto(s)
Carbono , Materia Orgánica Disuelta , Carbono/análisis , Monitoreo del Ambiente , Ríos , China
12.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38504954

RESUMEN

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

13.
Oecologia ; 201(1): 143-154, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36507971

RESUMEN

Ecosystems are faced with an onslaught of co-occurring global change drivers. While frequently studied independently, the effects of multiple global change drivers have the potential to be additive, antagonistic, or synergistic. Global warming, for example, may intensify the effects of more variable precipitation regimes with warmer temperatures increasing evapotranspiration and thereby amplifying the effect of already dry soils. Here, we present the long-term effects (11 years) of altered precipitation patterns (increased intra-annual variability in the growing season) and warming (1 °C year-round) on plant community composition and aboveground net primary productivity (ANPP), a key measure of ecosystem functioning in mesic tallgrass prairie. Based on past results, we expected that increased precipitation variability and warming would have additive effects on both community composition and ANPP. Increased precipitation variability altered plant community composition and increased richness, with no effect on ANPP. In contrast, warming decreased ANPP via reduction in grass stems and biomass but had no effect on the plant community. Contrary to expectations, across all measured variables, precipitation and warming treatments had no interactive effects. While treatment interactions did not occur, each treatment did individually impact a different component of the ecosystem (i.e., community vs. function). Thus, different aspects of the ecosystem may be sensitive to different global change drivers in mesic grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Lluvia , Biomasa , Poaceae , Plantas , Cambio Climático
14.
J Environ Manage ; 330: 117114, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586368

RESUMEN

Forest carbon stocks and sinks (CSSs) have been widely estimated using climate classification tables and linear regression (LR) models with common independent variables (IVs) such as the average diameter at breast height (DBH) of stems and root shoot ratio. However, this approach is relatively ineffective when the explanatory power of IVs is lower than that of unobservable variables. Various environmental and anthropogenic factors affect target variables that cause the correlation between them to be chaotic. Here, we designed a knife set (KS) approach combining LR models and the wandering through random forests (WTF) algorithm and applied it in a specific case of Phyllostachys edulis (Carrière) J. Houz. (P. edulis) forests, which have an irregular relationship between their belowground carbon (BGC) stocks and average DBH. We then validated the KS approach performed by cluster computing to estimate the aboveground carbon (AGC) and BGC stocks and the total net primary production (TNPP). The estimated CSSs were compared to the benchmark of the methodology that applied Tier 1 in the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories via 10-fold cross validation, and the KS approach significantly increased precision and accuracy of estimations. Our approach provides general insights to accurately estimate forest CSSs relying on evidence-based field data, even if some target variables are divergent in specific forest types. We also pointed out the reason why current fancy models containing machine learning (ML) or deep learning algorithms are not effective in predicting the target variables of certain chaotic systems is perhaps that the total explanatory power of observable variables is less than that of the total unobservable variables. Quantifying unobservable variables into observable variables is a linchpin of future works related to chaotic system estimation.


Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático
15.
Environ Monit Assess ; 195(7): 836, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37308607

RESUMEN

The linkages between the emergence of zoonotic diseases and ecosystem degradation have been widely acknowledged by the scientific community and policy makers. In this paper we investigate the relationship between human overexploitation of natural resources, represented by the Human Appropriation of Net Primary Production Index (HANPP) and the spread of Covid-19 cases during the first pandemic wave in 730 regions of 63 countries worldwide. Using a Bayesian estimation technique, we highlight the significant role of HANPP as a driver of Covid-19 diffusion, besides confirming the well-known impact of population size and the effects of other socio-economic variables. We believe that these findings could be relevant for policy makers in their effort towards a more sustainable intensive agriculture and responsible urbanisation.


Asunto(s)
COVID-19 , Humanos , Teorema de Bayes , Ecosistema , Monitoreo del Ambiente , Agricultura
16.
Glob Chang Biol ; 28(12): 3902-3919, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35320616

RESUMEN

Although the role of livestock in future food systems is debated, animal proteins are unlikely to completely disappear from our diet. Grasslands are a key source of primary productivity for livestock, and feed-food competition is often limited on such land. Previous research on the potential for sustainable grazing has focused on restricted geographical areas or does not consider inter-annual changes in grazing opportunities. Here, we developed a robust method to estimate trends and interannual variability (IV) in global livestock carrying capacity (number of grazing animals a piece of land can support) over 2001-2015, as well as relative stocking density (the reported livestock distribution relative to the estimated carrying capacity [CC]) in 2010. We first estimated the aboveground biomass that is available for grazers on global grasslands based on the MODIS Net Primary Production product. This was then used to calculate livestock carrying capacities using slopes, forest cover, and animal forage requirements as restrictions. We found that globally, CC decreased on 27% of total grasslands area, mostly in Europe and southeastern Brazil, while it increased on 15% of grasslands, particularly in Sudano-Sahel and some parts of South America. In 2010, livestock forage requirements exceeded forage availability in northwestern Europe, and southern and eastern Asia. Although our findings imply some opportunities to increase grazing pressures in cold regions, Central Africa, and Australia, the high IV or low biomass supply might prevent considerable increases in stocking densities. The approach and derived open access data sets can feed into global food system modelling, support conservation efforts to reduce land degradation associated with overgrazing, and help identify undergrazed areas for targeted sustainable intensification efforts or rewilding purposes.


Asunto(s)
Conservación de los Recursos Naturales , Ganado , Animales , Biomasa , Brasil , Pradera
17.
Glob Chang Biol ; 28(1): 307-322, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651392

RESUMEN

Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.


Asunto(s)
Carbono , Ecosistema , Humanos
18.
Glob Chang Biol ; 28(4): 1458-1476, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783402

RESUMEN

Elevated atmospheric CO2 (eCO2 ) typically increases aboveground growth in both growth chamber and free-air carbon enrichment (FACE) studies. Here we report on the impacts of eCO2 and nitrogen amendment on coarse root biomass and net primary productivity (NPP) at the Duke FACE study, where half of the eight plots in a 30-year-old loblolly pine (Pinus taeda, L.) plantation, including competing naturally regenerated broadleaved species, were subjected to eCO2 (ambient, aCO2 plus 200 ppm) for 15-17 years, combined with annual nitrogen amendments (11.2 g N m-2 ) for 6 years. Allometric equations were developed following harvest to estimate coarse root (>2 mm diameter) biomass. Pine root biomass under eCO2 increased 32%, 1.80 kg m-2 above the 5.66 kg m-2 observed in aCO2 , largely accumulating in the top 30 cm of soil. In contrast, eCO2 increased broadleaved root biomass more than twofold (aCO2 : 0.81, eCO2 : 2.07 kg m-2 ), primarily accumulating in the 30-60 cm soil depth. Combined, pine and broadleaved root biomass increased 3.08 kg m-2 over aCO2 of 6.46 kg m-2 , a 48% increase. Elevated CO2 did not increase pine root:shoot ratio (average 0.24) but increased the ratio from 0.57 to 1.12 in broadleaved species. Averaged over the study (1997-2010), eCO2 increased pine, broadleaved and total coarse root NPP by 49%, 373% and 86% respectively. Nitrogen amendment had smaller effects on any component, singly or interacting with eCO2 . A sustained increase in root NPP under eCO2 over the study period indicates that soil nutrients were sufficient to maintain root growth response to eCO2 . These responses must be considered in computing coarse root carbon sequestration of the extensive southern pine and similar forests, and in modelling the responses of coarse root biomass of pine-broadleaved forests to CO2 concentration over a range of soil N availability.


Asunto(s)
Nitrógeno , Pinus taeda , Biomasa , Dióxido de Carbono , Suelo
19.
Ecol Appl ; 32(4): e2562, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35138007

RESUMEN

Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field-based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field-based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15-year period for Baltimore, MD, USA using a combination of plot-based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m-2 , a result that we then put into context through comparison with other North American Long-Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs.


Asunto(s)
Ecosistema , Lluvia , Baltimore , Biomasa , Pradera , Árboles
20.
J Phycol ; 58(6): 760-772, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054376

RESUMEN

Cystophora is the second largest genus of fucoids worldwide and, like many other forest-forming macroalgae, is increasingly threatened by a range of anthropogenic impacts including ocean warming. Yet, limited ecological information is available from the warm portion of their range (SW Western Australia), where severe range contractions are predicted to occur. Here, we provide the first insights on the abundance, diversity, productivity, and stand structure of Cystophora forests in this region. Forests were ubiquitous over more than 800 km of coastline and dominated sheltered and moderately-exposed reefs. Stand biomass and productivity were similar or greater than that of kelp forests in the temperate reef communities examined, suggesting that Cystophora spp. play a similarly important ecological role. The stand structure of Cystophora forests was, however, different than those of kelp forests, with most stands featuring an abundant bank of sub-canopy juveniles and only a few plants forming the canopy layer. Stand productivity followed an opposite seasonal pattern than that of kelps, with maximal growth in late autumn through early winter and net biomass loss in summer. Annually, stands contributed between 2.2 and 5.7 kg · m-2 (fresh biomass) to reef productivity depending on the dominant stand species. We propose that Cystophora forests play an important and unique role in supporting subtidal temperate diversity and productivity throughout temperate Australia, and urge a better understanding of their ecology and responses to anthropogenic threats.


Asunto(s)
Kelp , Algas Marinas , Bosques , Kelp/fisiología , Biomasa , Australia , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA