Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37170752

RESUMEN

Haplotype networks are graphs used to represent evolutionary relationships between a set of taxa and are characterized by intuitiveness in analyzing genealogical relationships of closely related genomes. We here propose a novel algorithm termed McAN that considers mutation spectrum history (mutations in ancestry haplotype should be contained in descendant haplotype), node size (corresponding to sample count for a given node) and sampling time when constructing haplotype network. We show that McAN is two orders of magnitude faster than state-of-the-art algorithms without losing accuracy, making it suitable for analysis of a large number of sequences. Based on our algorithm, we developed an online web server and offline tool for haplotype network construction, community lineage determination, and interactive network visualization. We demonstrate that McAN is highly suitable for analyzing and visualizing massive genomic data and is helpful to enhance the understanding of genome evolution. Availability: Source code is written in C/C++ and available at https://github.com/Theory-Lun/McAN and https://ngdc.cncb.ac.cn/biocode/tools/BT007301 under the MIT license. Web server is available at https://ngdc.cncb.ac.cn/bit/hapnet/. SARS-CoV-2 dataset are available at https://ngdc.cncb.ac.cn/ncov/. Contact: songshh@big.ac.cn (Song S), zhaowm@big.ac.cn (Zhao W), baoym@big.ac.cn (Bao Y), zhangzhang@big.ac.cn (Zhang Z), ybxue@big.ac.cn (Xue Y).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Haplotipos , SARS-CoV-2/genética , COVID-19/genética , Algoritmos , Genómica , Programas Informáticos
2.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37350526

RESUMEN

Neurodegenerative diseases (NDs) usually connect with aggregation and molecular interactions of pathological proteins. The integration of accumulative data from clinical and biomedical research will allow for the excavation of pathological proteins and related interactors. It is also important to systematically study their interacting proteins in order to find more related proteins and potential therapeutic targets. Understanding binding regions in protein interactions will help functional proteomics and provide an alternative method for predicting novel interactions. This study integrated data from biomedical research to achieve systematic mining and analysis of pathogenic proteins and their interaction network. A workflow has been built as a solution for the collective information of proteins involved in NDs, related protein-protein interactions (PPIs) and interactive visualizations. It also included protein isoforms and mapped them in a disease-related PPI network to illuminate the impact of alternative splicing on protein binding. The interacting proteins enriched by diseases and biological processes (BPs) revealed possible regulatory modules. A high-resolution network with structural affinity information was generated. Finally, Neurodegenerative Disease Atlas (NDAtlas) was constructed with an interactive and intuitive view of protein docking with 3D molecular graphics beyond the traditional 2D network. NDAtlas is available at http://bis.zju.edu.cn/ndatlas.


Asunto(s)
Enfermedades Neurodegenerativas , Mapeo de Interacción de Proteínas , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Enfermedades Neurodegenerativas/genética , Bases de Datos de Proteínas , Isoformas de Proteínas/genética , Mapas de Interacción de Proteínas
3.
Fa Yi Xue Za Zhi ; 40(3): 245-253, 2024 Jun 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-39166305

RESUMEN

OBJECTIVES: To describe the current state of research and future research hotspots through a metrological analysis of the literature in the field of forensic anthropological remains identification research. METHODS: The data retrieved and extracted from the Web of Science Core Collection (WoSCC), the core database of the Web of Science information service platform (hereinafter referred to as "WoS"), was used to analyze the trends and topic changes in research on forensic identification of human remains from 1991 to 2022. Network visualisation of publication trends, countries (regions), institutions, authors and topics related to the identification of remains in forensic anthropology was analysed using python 3.9.2 and Gephi 0.10. RESULTS: A total of 873 papers written in English in the field of forensic anthropological remains identification research were obtained. The journal with the largest number of publications was Forensic Science International (164 articles). The country (region) with the largest number of published papers was China (90 articles). Katholieke Univ Leuven (Netherlands, 21 articles) was the institution with the largest number of publications. Topic analysis revealed that the focus of forensic anthropological remains identification research was sex estimation and age estimation, and the most commonly studied remains were teeth. CONCLUSIONS: The volume of publications in the field of forensic anthropological remains identification research has a distinct phasing. However, the scope of both international and domestic collaborations remains limited. Traditionally, human remains identification has primarily relied on key areas such as the pelvis, skull, and teeth. Looking ahead, future research will likely focus on the more accurate and efficient identification of multiple skeletal remains through the use of machine learning and deep learning techniques.


Asunto(s)
Bibliometría , Restos Mortales , Antropología Forense , Humanos , Antropología Forense/métodos , Publicaciones/estadística & datos numéricos
4.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34343245

RESUMEN

Each patient's cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to better predictive accuracy. The general platform and the comparison results are expected to become useful for future studies that use similar predictive approaches also in other cancer types.


Asunto(s)
Neoplasias Ováricas/terapia , Algoritmos , Terapia Combinada , Femenino , Humanos , Células Tumorales Cultivadas
5.
Methods ; 202: 173-184, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33901644

RESUMEN

Driver drowsiness is one of the main factors leading to road fatalities and hazards in the transportation industry. Electroencephalography (EEG) has been considered as one of the best physiological signals to detect drivers' drowsy states, since it directly measures neurophysiological activities in the brain. However, designing a calibration-free system for driver drowsiness detection with EEG is still a challenging task, as EEG suffers from serious mental and physical drifts across different subjects. In this paper, we propose a compact and interpretable Convolutional Neural Network (CNN) to discover shared EEG features across different subjects for driver drowsiness detection. We incorporate the Global Average Pooling (GAP) layer in the model structure, allowing the Class Activation Map (CAM) method to be used for localizing regions of the input signal that contribute most for classification. Results show that the proposed model can achieve an average accuracy of 73.22% on 11 subjects for 2-class cross-subject EEG signal classification, which is higher than conventional machine learning methods and other state-of-art deep learning methods. It is revealed by the visualization technique that the model has learned biologically explainable features, e.g., Alpha spindles and Theta burst, as evidence for the drowsy state. It is also interesting to see that the model uses artifacts that usually dominate the wakeful EEG, e.g., muscle artifacts and sensor drifts, to recognize the alert state. The proposed model illustrates a potential direction to use CNN models as a powerful tool to discover shared features related to different mental states across different subjects from EEG signals.


Asunto(s)
Electroencefalografía , Vigilia , Artefactos , Humanos , Aprendizaje Automático , Redes Neurales de la Computación
6.
BMC Bioinformatics ; 23(1): 512, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451100

RESUMEN

BACKGROUND: Genome-scale metabolic reconstruction tools have been developed in the last decades. They have helped to reconstruct eukaryotic and prokaryotic metabolic models, which have contributed to fields, e.g., genetic engineering, drug discovery, prediction of phenotypes, and other model-driven discoveries. However, the use of these programs requires a high level of bioinformatic skills. Moreover, the functionalities required to build models are scattered throughout multiple tools, requiring knowledge and experience for utilizing several tools. RESULTS: Here we present ChiMera, which combines tools used for model reconstruction, prediction, and visualization. ChiMera uses CarveMe in the reconstruction module, generating a gap-filled draft reconstruction able to produce growth predictions using flux balance analysis for gram-positive and gram-negative bacteria. ChiMera also contains two modules for metabolic network visualization. The first module generates maps for the most important pathways, e.g., glycolysis, nucleotides and amino acids biosynthesis, fatty acid oxidation and biosynthesis and core-metabolism. The second module produces a genome-wide metabolic map, which can be used to retrieve KEGG pathway information for each compound in the model. A module to investigate gene essentiality and knockout is also present. CONCLUSIONS: Overall, ChiMera uses automation algorithms to combine a variety of tools to automatically perform model creation, gap-filling, flux balance analysis (FBA), and metabolic network visualization. ChiMera models readily provide metabolic insights that can aid genetic engineering projects, prediction of phenotypes, and model-driven discoveries.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Redes y Vías Metabólicas/genética , Genoma Bacteriano
7.
Brief Bioinform ; 21(1): 211-220, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30566623

RESUMEN

Knowledge of the full target space of drugs (or drug-like compounds) provides important insights into the potential therapeutic use of the agents to modulate or avoid their various on- and off-targets in drug discovery and precision medicine. However, there is a lack of consolidated databases and associated data exploration tools that allow for systematic profiling of drug target-binding potencies of both approved and investigational agents using a network-centric approach. We recently initiated a community-driven platform, Drug Target Commons (DTC), which is an open-data crowdsourcing platform designed to improve the management, reproducibility and extended use of compound-target bioactivity data for drug discovery and repurposing, as well as target identification applications. In this work, we demonstrate an integrated use of the rich bioactivity data from DTC and related drug databases using Drug Target Profiler (DTP), an open-source software and web tool for interactive exploration of drug-target interaction networks. DTP was designed for network-centric modeling of mode-of-action of multi-targeting anticancer compounds, especially for precision oncology applications. DTP enables users to construct an interaction network based on integrated bioactivity data across selected chemical compounds and their protein targets, further customizable using various visualization and filtering options, as well as cross-links to several drug and protein databases to provide comprehensive information of the network nodes and interactions. We demonstrate here the operation of the DTP tool and its unique features by several use cases related to both drug discovery and drug repurposing applications, using examples of anticancer drugs with shared target profiles. DTP is freely accessible at http://drugtargetprofiler.fimm.fi/.

8.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430723

RESUMEN

MSClustering is an efficient software package for visualizing and analyzing complex networks in Cytoscape. Based on the distance matrix of a network that it takes as input, MSClustering automatically displays the minimum span clustering (MSC) of the network at various characteristic levels. To produce a view of the overall network structure, the app then organizes the multi-level results into an MSC tree. Here, we demonstrate the package's phylogenetic applications in studying the evolutionary relationships of complex systems, including 63 beta coronaviruses and 197 GPCRs. The validity of MSClustering for large systems has been verified by its clustering of 3481 enzymes. Through an experimental comparison, we show that MSClustering outperforms five different state-of-the-art methods in the efficiency and reliability of their clustering.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Filogenia , Reproducibilidad de los Resultados , Análisis por Conglomerados
9.
BMC Bioinformatics ; 21(1): 118, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32192433

RESUMEN

BACKGROUND: mRNA interaction with other mRNAs and other signaling molecules determine different biological pathways and functions. Gene co-expression network analysis methods have been widely used to identify correlation patterns between genes in various biological contexts (e.g., cancer, mouse genetics, yeast genetics). A challenge remains to identify an optimal partition of the networks where the individual modules (clusters) are neither too small to make any general inferences, nor too large to be biologically interpretable. Clustering thresholds for identification of modules are not systematically determined and depend on user-settable parameters requiring optimization. The absence of systematic threshold determination may result in suboptimal module identification and a large number of unassigned features. RESULTS: In this study, we propose a new pipeline to perform gene co-expression network analysis. The proposed pipeline employs WGCNA, a software widely used to perform different aspects of gene co-expression network analysis, and Modularity Maximization algorithm, to analyze novel RNA-Seq data to understand the effects of low-dose 56Fe ion irradiation on the formation of hepatocellular carcinoma in mice. The network results, along with experimental validation, show that using WGCNA combined with Modularity Maximization, provides a more biologically interpretable network in our dataset, than that obtainable using WGCNA alone. The proposed pipeline showed better performance than the existing clustering algorithm in WGCNA, and identified a module that was biologically validated by a mitochondrial complex I assay. CONCLUSIONS: We present a pipeline that can reduce the problem of parameter selection that occurs with the existing algorithm in WGCNA, for applicable RNA-Seq datasets. This may assist in the future discovery of novel mRNA interactions, and elucidation of their potential downstream molecular effects.


Asunto(s)
Hierro/química , Hígado/metabolismo , Programas Informáticos , Algoritmos , Animales , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Iones/química , Hierro/toxicidad , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , RNA-Seq
10.
Environ Monit Assess ; 192(11): 714, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33079229

RESUMEN

Antibiotic resistance is considered by the countries to be a global health issue and a huge threat to public health. The reduction of resistant microorganisms from water/wastewater is of importance in environmental sciences since they are resistant in the aquatic environment. In this study, a bibliometric analysis of literature from the field of environmental science in water ecosystems from 2015 to 2019 was carried out using the keywords "Antibiotic Resistance (AR)" and "Escherichia coli". Furthermore, using the keywords of "Fresh Water," "Sea Water," and "Waste Water," 155, 52, and 57 studies were discovered, respectively. It is found that 217 studies of the total 2115 studies investigated on AR are mostly performed in the "Waste Water" by considering human health. Given the studies, an up-to-date solution should be proposed since the release of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from wastewater treatment plants needs to be mitigated. For this reason, it is obvious that working on micro and macro ecosystems will increase the probability of solutions in antibiotic resistance. A discussion of removal techniques for coliform bacteria, particularly antibiotic resistant Escherichia coli, was presented. One of the unique values of this study is to offer an innovative solution that removing them by metal-organic frameworks (MOFs) are emerging crystalline hybrid materials. MOFs are used for environmental, biological, and food antimicrobial substances efficiently. Therefore, we can give inspiration to the future studies of antimicrobial resistance removal via adsorption using MOFs as adsorbents. Graphical Abstract.


Asunto(s)
Ecosistema , Escherichia coli , Bibliometría , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Humanos
11.
BMC Bioinformatics ; 20(1): 417, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409281

RESUMEN

BACKGROUND: The development of high throughput sequencing techniques provides us with the possibilities to obtain large data sets, which capture the effect of dynamic perturbations on cellular processes. However, because of the dynamic nature of these processes, the analysis of the results is challenging. Therefore, there is a great need for bioinformatics tools that address this problem. RESULTS: Here we present DynOVis, a network visualization tool that can capture dynamic dose-over-time effects in biological networks. DynOVis is an integrated work frame of R packages and JavaScript libraries and offers a force-directed graph network style, involving multiple network analysis methods such as degree threshold, but more importantly, it allows for node expression animations as well as a frame-by-frame view of the dynamic exposure. Valuable biological information can be highlighted on the nodes in the network, by the integration of various databases within DynOVis. This information includes pathway-to-gene associations from ConsensusPathDB, disease-to-gene associations from the Comparative Toxicogenomics databases, as well as Entrez gene ID, gene symbol, gene synonyms and gene type from the NCBI database. CONCLUSIONS: DynOVis could be a useful tool to analyse biological networks which have a dynamic nature. It can visualize the dynamic perturbations in biological networks and allows the user to investigate the changes over time. The integrated data from various online databases makes it easy to identify the biological relevance of nodes in the network. With DynOVis we offer a service that is easy to use and does not require any bioinformatics skills to visualize a network.


Asunto(s)
Redes Reguladoras de Genes , Interfaz Usuario-Computador , Acetaminofén/farmacología , Biología Computacional/métodos , Bases de Datos Factuales , Humanos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
12.
BMC Bioinformatics ; 20(1): 56, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30691403

RESUMEN

BACKGROUND: Genome-scale metabolic network reconstructions are low level chemical representations of biological organisms. These models allow the system-level investigation of metabolic phenotypes using a variety of computational approaches. The link between a metabolic network model and an organisms' higher-level behaviour is usually found using a constraint-based analysis approach, such as FBA (Flux Balance Analysis). However, the process of model reconstruction rarely proceeds without error. Often, considerable parts of a model cannot carry flux under any condition. This is termed model inconsistency and is caused by faulty topology and/or stoichiometry of the underlying reconstructed network. While there exist several automated gap-filling tools that may solve some of the inconsistencies, much of the work still needs to be carried out manually. The common "linear list" format of writing biochemical reactions makes it difficult to intuit what is at the root of the inconsistent behaviour. Unfortunately, we have frequently observed that model builders do not correct their models past the abilities of automated tools, leaving many widely used models significantly inconsistent. RESULTS: We have developed the software ModelExplorer, which main purpose is to fill this gap by providing an intuitive and visual framework that allows the user to explore and correct inconsistencies in genome-scale metabolic models. The software will automatically visualize metabolic networks as graphs with distinct separation and delineation of cellular compartments. ModelExplorer highlights reactions and species that are unable to carry flux (blocked), with several different consistency checking modes available. Our software also allows the automatic identification of neighbours and production pathways of any species or reaction. Additionally, the user may focus on any chosen inconsistent part of the model on its own. This facilitates a rapid and visual identification of reactions and species responsible for model inconsistencies. Finally, ModelExplorer lets the user freely edit, add or delete model elements, allowing straight-forward correction of discovered issues. CONCLUSION: Overall, ModelExplorer is currently the fastest real-time metabolic network visualization program available. It implements several consistency checking algorithms, which in combination with its set of tracking tools, gives an efficient and systematic model-correction process.


Asunto(s)
Genoma , Redes y Vías Metabólicas/genética , Programas Informáticos , Algoritmos , Factores de Tiempo
13.
J Proteome Res ; 18(2): 623-632, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30450911

RESUMEN

Protein networks have become a popular tool for analyzing and visualizing the often long lists of proteins or genes obtained from proteomics and other high-throughput technologies. One of the most popular sources of such networks is the STRING database, which provides protein networks for more than 2000 organisms, including both physical interactions from experimental data and functional associations from curated pathways, automatic text mining, and prediction methods. However, its web interface is mainly intended for inspection of small networks and their underlying evidence. The Cytoscape software, on the other hand, is much better suited for working with large networks and offers greater flexibility in terms of network analysis, import, and visualization of additional data. To include both resources in the same workflow, we created stringApp, a Cytoscape app that makes it easy to import STRING networks into Cytoscape, retains the appearance and many of the features of STRING, and integrates data from associated databases. Here, we introduce many of the stringApp features and show how they can be used to carry out complex network analysis and visualization tasks on a typical proteomics data set, all through the Cytoscape user interface. stringApp is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/stringapp .


Asunto(s)
Análisis de Datos , Proteómica/métodos , Programas Informáticos , Biología Computacional/métodos , Internet , Mapas de Interacción de Proteínas , Interfaz Usuario-Computador
14.
Biotechnol Bioeng ; 116(6): 1341-1354, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739313

RESUMEN

Mucin-type O-glycans have profound effects on the structure and stability of glycoproteins. O-Glycans on the cell surface proteins also modulate the cell's interactions with the surrounding environments and other cells. The synthetic pathway of O-glycans involves a large number of enzymes with diverse substrate specificity. The expression pattern of these enzymes is cell and tissue-specific, thus making the pathway highly diverse. To facilitate pathway analysis in a cell and tissue-specific fashion, we developed an integrated platform of RING (Rule Input Network Generator) and O-GlycoVis. RING uses an English-like reaction language to describe the substrate specificity of enzymes and additional constraints on the formation of the glycan products. Using this information, the RING generates a list of possible glycans, which is used as input into O-Glycovis. O-GlycoVis displays the glycan distribution in the pathway and potential reaction paths leading to each glycan. With the input glycan data, O-GlycoVis also traces all possible reaction paths leading to each glycan and outputs pathway maps with the relative abundance levels of glycans overlaid. O-Glycan profiles from two breast cancer cell lines, MCF7 and T47d, human umbilical vascular endothelium cells, Chinese Hamster Ovary cells were generated based on transcriptional data and compared with experimentally observed O-glycans. This RING-based program allows rules to be added or subtracted for network generation and visualization of networks of O-glycosylation network of different tissues and species.


Asunto(s)
Vías Biosintéticas , Polisacáridos/metabolismo , Animales , Biocatálisis , Neoplasias de la Mama/metabolismo , Células CHO , Cricetulus , Femenino , Glicosilación , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Programas Informáticos , Especificidad por Sustrato
15.
BMC Bioinformatics ; 19(1): 403, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400817

RESUMEN

BACKGROUND: Systems biology takes a holistic approach by handling biomolecules and their interactions as big systems. Network based approach has emerged as a natural way to model these systems with the idea of representing biomolecules as nodes and their interactions as edges. Very often the input data come from various sorts of omics analyses. Those resulting networks sometimes describe a wide range of aspects, for example different experiment conditions, species, tissue types, stimulating factors, mutants, or simply distinct interaction features of the same network produced by different algorithms. For these scenarios, synchronous visualization of more than one distinct network is an excellent mean to explore all the relevant networks efficiently. In addition, complementary analysis methods are needed and they should work in a workflow manner in order to gain maximal biological insights. RESULTS: In order to address the aforementioned needs, we have developed a Synchronous Network Data Integration (SyNDI) framework. This framework contains SyncVis, a Cytoscape application for user-friendly synchronous and simultaneous visualization of multiple biological networks, and it is seamlessly integrated with other bioinformatics tools via the Galaxy platform. We demonstrated the functionality and usability of the framework with three biological examples - we analyzed the distinct connectivity of plasma metabolites in networks associated with high or low latent cardiovascular disease risk; deeper insights were obtained from a few similar inflammatory response pathways in Staphylococcus aureus infection common to human and mouse; and regulatory motifs which have not been reported associated with transcriptional adaptations of Mycobacterium tuberculosis were identified. CONCLUSIONS: Our SyNDI framework couples synchronous network visualization seamlessly with additional bioinformatics tools. The user can easily tailor the framework for his/her needs by adding new tools and datasets to the Galaxy platform.


Asunto(s)
Biología Computacional/métodos , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Mycobacterium tuberculosis/genética , Programas Informáticos , Staphylococcus aureus/genética , Algoritmos , Animales , Humanos , Ratones , Modelos Biológicos
16.
Mol Biol Evol ; 34(7): 1799-1811, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28383661

RESUMEN

With the advent of low cost, high-throughput genome sequencing technology, population genomic data sets are being generated for hundreds of species of pathogenic, industrial, and agricultural importance. The challenge is how best to analyze and visually display these complex data sets to yield intuitive representations capable of capturing complex evolutionary relationships. Here we present PopNet, a novel computational method that identifies regions of shared ancestry in the chromosomes of related strains through clustering patterns of genetic variation. These relationships are subsequently visualized within a network by a novel implementation of chromosome painting. We apply PopNet to three diverse populations that feature differential rates of recombination and demonstrate its ability to capture evolutionary relationships as well as associate traits to specific loci. Compared with existing tools, PopNet provides substantial advances by both removing the need to predefine a single reference genome that can bias interpretation of population structure, as well as its ability to visualize multiple evolutionary relationships, such as recombination events and shared ancestry, across hundreds of strains.


Asunto(s)
Genética de Población/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Secuencia de Bases , Mapeo Cromosómico/métodos , Análisis por Conglomerados , Variación Genética/genética , Genoma/genética , Desequilibrio de Ligamiento/genética , Cadenas de Markov , Metagenómica/métodos , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética/genética
17.
Mol Biol Evol ; 34(12): 3292-3298, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961984

RESUMEN

PhyloNetworks is a Julia package for the inference, manipulation, visualization, and use of phylogenetic networks in an interactive environment. Inference of phylogenetic networks is done with maximum pseudolikelihood from gene trees or multi-locus sequences (SNaQ), with possible bootstrap analysis. PhyloNetworks is the first software providing tools to summarize a set of networks (from a bootstrap or posterior sample) with measures of tree edge support, hybrid edge support, and hybrid node support. Networks can be used for phylogenetic comparative analysis of continuous traits, to estimate ancestral states or do a phylogenetic regression. The software is available in open source and with documentation at https://github.com/crsl4/PhyloNetworks.jl.


Asunto(s)
Biología Computacional/métodos , Filogenia , Algoritmos , Evolución Molecular , Programas Informáticos
18.
J Biomed Inform ; 54: 121-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25659452

RESUMEN

The knowledge on protein-protein interactions (PPI) and their related pathways are equally important to understand the biological functions of the living cell. Such information on human proteins is highly desirable to understand the mechanism of several diseases such as cancer, diabetes, and Alzheimer's disease. Because much of that information is buried in biomedical literature, an automated text mining system for visualizing human PPI and pathways is highly desirable. In this paper, we present HPIminer, a text mining system for visualizing human protein interactions and pathways from biomedical literature. HPIminer extracts human PPI information and PPI pairs from biomedical literature, and visualize their associated interactions, networks and pathways using two curated databases HPRD and KEGG. To our knowledge, HPIminer is the first system to build interaction networks from literature as well as curated databases. Further, the new interactions mined only from literature and not reported earlier in databases are highlighted as new. A comparative study with other similar tools shows that the resultant network is more informative and provides additional information on interacting proteins and their associated networks.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Mapeo de Interacción de Proteínas/métodos , Enfermedad de Alzheimer/metabolismo , Gráficos por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Teóricos , Interfaz Usuario-Computador
19.
Comput Biol Med ; 172: 108258, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467093

RESUMEN

Artificial intelligence (AI) has revolutionized many fields, and its potential in healthcare has been increasingly recognized. Based on diverse data sources such as imaging, laboratory tests, medical records, and electrophysiological data, diagnostic AI has witnessed rapid development in recent years. A comprehensive understanding of the development status, contributing factors, and their relationships in the application of AI to medical diagnostics is essential to further promote its use in clinical practice. In this study, we conducted a bibliometric analysis to explore the evolution of task-specific to general-purpose AI for medical diagnostics. We used the Web of Science database to search for relevant articles published between 2010 and 2023, and applied VOSviewer, the R package Bibliometrix, and CiteSpace to analyze collaborative networks and keywords. Our analysis revealed that the field of AI in medical diagnostics has experienced rapid growth in recent years, with a focus on tasks such as image analysis, disease prediction, and decision support. Collaborative networks were observed among researchers and institutions, indicating a trend of global cooperation in this field. Additionally, we identified several key factors contributing to the development of AI in medical diagnostics, including data quality, algorithm design, and computational power. Challenges to progress in the field include model explainability, robustness, and equality, which will require multi-stakeholder, interdisciplinary collaboration to tackle. Our study provides a holistic understanding of the path from task-specific, mono-modal AI toward general-purpose, multimodal AI for medical diagnostics. With the continuous improvement of AI technology and the accumulation of medical data, we believe that AI will play a greater role in medical diagnostics in the future.


Asunto(s)
Algoritmos , Inteligencia Artificial , Bibliometría , Exactitud de los Datos , Bases de Datos Factuales
20.
Front Artif Intell ; 7: 1208874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646414

RESUMEN

Background: Public health policy researchers face a persistent challenge in identifying and integrating relevant data, particularly in the context of the U.S. opioid crisis, where a comprehensive approach is crucial. Purpose: To meet this new workforce demand health policy and health economics programs are increasingly introducing data analysis and data visualization skills. Such skills facilitate data integration and discovery by linking multiple resources. Common linking strategies include individual or aggregate level linking (e.g., patient identifiers) in primary clinical data and conceptual linking (e.g., healthcare workforce, state funding, burnout rates) in secondary data. Often, the combination of primary and secondary datasets is sought, requiring additional skills, for example, understanding metadata and constructing interlinkages. Methods: To help improve those skills, we developed a 2-step process using a scoping method to discover data and network visualization to interlink metadata. Results: We show how these new skills enable the discovery of relationships among data sources pertinent to public policy research related to the opioid overdose crisis and facilitate inquiry across heterogeneous data resources. In addition, our interactive network visualization introduces (1) a conceptual approach, drawing from recent systematic review studies and linked by the publications, and (2) an aggregate approach, constructed using publicly available datasets and linked through crosswalks. Conclusions: These novel metadata visualization techniques can be used as a teaching tool or a discovery method and can also be extended to other public policy domains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA