Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.564
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38171360

RESUMEN

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Asunto(s)
Estructuras de la Membrana Celular , Miosinas , Tubo Neural , Transducción de Señal , Animales , Ratones , Transporte Biológico , Estructuras de la Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo
2.
Cell ; 186(10): 2078-2091.e18, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172562

RESUMEN

Neural tube (NT) defects arise from abnormal neurulation and result in the most common birth defects worldwide. Yet, mechanisms of primate neurulation remain largely unknown due to prohibitions on human embryo research and limitations of available model systems. Here, we establish a three-dimensional (3D) prolonged in vitro culture (pIVC) system supporting cynomolgus monkey embryo development from 7 to 25 days post-fertilization. Through single-cell multi-omics analyses, we demonstrate that pIVC embryos form three germ layers, including primordial germ cells, and establish proper DNA methylation and chromatin accessibility through advanced gastrulation stages. In addition, pIVC embryo immunofluorescence confirms neural crest formation, NT closure, and neural progenitor regionalization. Finally, we demonstrate that the transcriptional profiles and morphogenetics of pIVC embryos resemble key features of similarly staged in vivo cynomolgus and human embryos. This work therefore describes a system to study non-human primate embryogenesis through advanced gastrulation and early neurulation.


Asunto(s)
Defectos del Tubo Neural , Neurulación , Técnicas de Cultivo de Tejidos , Animales , Humanos , Blastocisto , Embrión de Mamíferos , Desarrollo Embrionario , Macaca fascicularis , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Técnicas de Cultivo de Tejidos/métodos
3.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38682273

RESUMEN

Neurulation is a highly synchronized biomechanical process leading to the formation of the brain and spinal cord, and its failure leads to neural tube defects (NTDs). Although we are rapidly learning the genetic mechanisms underlying NTDs, the biomechanical aspects are largely unknown. To understand the correlation between NTDs and tissue stiffness during neural tube closure (NTC), we imaged an NTD murine model using optical coherence tomography (OCT), Brillouin microscopy and confocal fluorescence microscopy. Here, we associate structural information from OCT with local stiffness from the Brillouin signal of embryos undergoing neurulation. The stiffness of neuroepithelial tissues in Mthfd1l null embryos was significantly lower than that of wild-type embryos. Additionally, exogenous formate supplementation improved tissue stiffness and gross embryonic morphology in nullizygous and heterozygous embryos. Our results demonstrate the significance of proper tissue stiffness in normal NTC and pave the way for future studies on the mechanobiology of normal and abnormal embryonic development.


Asunto(s)
Tubo Neural , Neurulación , Tomografía de Coherencia Óptica , Animales , Femenino , Ratones , Fenómenos Biomecánicos , Embrión de Mamíferos/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Formiatos/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones Noqueados , Microscopía Confocal , Mutación/genética , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Neurulación/genética , Tomografía de Coherencia Óptica/métodos
4.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300806

RESUMEN

Defective tissue fusion during mammalian embryogenesis results in congenital anomalies, such as exencephaly, spina bifida and cleft lip and/or palate. The highly conserved transcription factor grainyhead-like 2 (Grhl2) is a crucial regulator of tissue fusion, with mouse models lacking GRHL2 function presenting with a fully penetrant open cranial neural tube, facial and abdominal clefting (abdominoschisis), and an open posterior neuropore. Here, we show that GRHL2 interacts with the soluble morphogen protein and bone morphogenetic protein (BMP) inhibitor noggin (NOG) to impact tissue fusion during development. The maxillary prominence epithelium in embryos lacking Grhl2 shows substantial morphological abnormalities and significant upregulation of NOG expression, together with aberrantly distributed pSMAD5-positive cells within the neural crest cell-derived maxillary prominence mesenchyme, indicative of disrupted BMP signalling. Reducing this elevated NOG expression (by generating Grhl2-/-;Nog+/- embryos) results in delayed embryonic lethality, partial tissue fusion rescue, and restoration of tissue form within the craniofacial epithelia. These data suggest that aberrant epithelial maintenance, partially regulated by noggin-mediated regulation of BMP-SMAD pathways, may underpin tissue fusion defects in Grhl2-/- mice.


Asunto(s)
Labio Leporino , Fisura del Paladar , Defectos del Tubo Neural , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Mamíferos/metabolismo , Tubo Neural/metabolismo , Receptores Nogo/metabolismo
5.
Hum Mol Genet ; 33(2): 150-169, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37815931

RESUMEN

Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.


Asunto(s)
Cardiopatías Congénitas , Pez Cebra , Animales , Humanos , Polaridad Celular/genética , Células Germinativas/metabolismo , Mutación de Línea Germinal/genética , Cardiopatías Congénitas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
6.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756583

RESUMEN

Closed spinal dysraphisms are poorly understood malformations classified as neural tube (NT) defects. Several, including terminal myelocystocele, affect the distal spine. We have previously identified a NT closure-initiating point, Closure 5, in the distal spine of mice. Here, we document equivalent morphology of the caudal-most closing posterior neuropore (PNP) in mice and humans. Closure 5 forms in a region of active FGF signalling, and pharmacological FGF receptor blockade impairs its formation in cultured mouse embryos. Conditional genetic deletion of Fgfr1 in caudal embryonic tissues with Cdx2Cre diminishes neuroepithelial proliferation, impairs Closure 5 formation and delays PNP closure. After closure, the distal NT of Fgfr1-disrupted embryos dilates to form a fluid-filled sac overlying ventrally flattened spinal cord. This phenotype resembles terminal myelocystocele. Histological analysis reveals regional and progressive loss of SHH- and FOXA2-positive ventral NT domains, resulting in OLIG2 labelling of the ventral-most NT. The OLIG2 domain is also subsequently lost, eventually producing a NT that is entirely positive for the dorsal marker PAX3. Thus, a terminal myelocystocele-like phenotype can arise after completion of NT closure with localised spinal mis-patterning caused by disruption of FGFR1 signalling.


Asunto(s)
Defectos del Tubo Neural , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Disrafia Espinal , Animales , Humanos , Ratones , Defectos del Tubo Neural/patología , Fenotipo , Médula Espinal/patología , Columna Vertebral/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
7.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37102683

RESUMEN

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.


Asunto(s)
Proteínas de Homeodominio , Tretinoina , Ratones , Animales , Tretinoina/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones Transgénicos , Tubo Neural/metabolismo , Hibridación Fluorescente in Situ , Elementos de Facilitación Genéticos
8.
Dev Biol ; 507: 20-33, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154769

RESUMEN

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Asunto(s)
Ectodermo , Cresta Neural , Embrión de Pollo , Animales , Ectodermo/metabolismo , Cresta Neural/metabolismo , Pollos/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Uniones Estrechas/metabolismo
9.
Dev Biol ; 511: 26-38, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38580174

RESUMEN

In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.


Asunto(s)
Tubo Neural , Médula Espinal , Animales , Médula Espinal/embriología , Tubo Neural/embriología , Cresta Neural/embriología , Cresta Neural/citología , Cresta Neural/fisiología , Diferenciación Celular/fisiología , Neuroglía/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Humanos
10.
Development ; 149(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781329

RESUMEN

Cell fate determination is a necessary and tightly regulated process for producing different cell types and structures during development. Cranial neural crest cells (CNCCs) are unique to vertebrate embryos and emerge from the neural plate borders into multiple cell lineages that differentiate into bone, cartilage, neurons and glial cells. We have previously reported that Irf6 genetically interacts with Twist1 during CNCC-derived tissue formation. Here, we have investigated the mechanistic role of Twist1 and Irf6 at early stages of craniofacial development. Our data indicate that TWIST1 is expressed in endocytic vesicles at the apical surface and interacts with ß/δ-catenins during neural tube closure, and Irf6 is involved in defining neural fold borders by restricting AP2α expression. Twist1 suppresses Irf6 and other epithelial genes in CNCCs during the epithelial-to-mesenchymal transition (EMT) process and cell migration. Conversely, a loss of Twist1 leads to a sustained expression of epithelial and cell adhesion markers in migratory CNCCs. Disruption of TWIST1 phosphorylation in vivo leads to epidermal blebbing, edema, neural tube defects and CNCC-derived structural abnormalities. Altogether, this study describes a previously uncharacterized function of mammalian Twist1 and Irf6 in the neural tube and CNCCs, and provides new target genes for Twist1 that are involved in cytoskeletal remodeling.


Asunto(s)
Cresta Neural , Tubo Neural , Animales , Cateninas , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética , Cráneo/metabolismo , Catenina delta
11.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662330

RESUMEN

Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis.


Asunto(s)
Tubo Neural , Neurulación , Animales , Morfogénesis/fisiología , Placa Neural , Neurulación/fisiología , Xenopus laevis
12.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36268933

RESUMEN

The embryonic neural tube is the origin of the entire adult nervous system, and disturbances in its development cause life-threatening birth defects. However, the study of mammalian neural tube development is limited by the lack of physiologically realistic three-dimensional (3D) in vitro models. Here, we report a self-organizing 3D neural tube organoid model derived from single mouse embryonic stem cells that exhibits an in vivo-like tissue architecture, cell type composition and anterior-posterior (AP) patterning. Moreover, maturation of the neural tube organoids showed the emergence of multipotent neural crest cells and mature neurons. Single-cell transcriptome analyses revealed the sequence of transcriptional events in the emergence of neural crest cells and neural differentiation. Thanks to the accessibility of this model, phagocytosis of migrating neural crest cells could be observed in real time for the first time in a mammalian model. We thus introduce a tractable in vitro model to study some of the key morphogenetic and cell type derivation events during early neural development.


Asunto(s)
Tubo Neural , Organoides , Ratones , Animales , Cresta Neural , Desarrollo Embrionario , Neurogénesis , Diferenciación Celular , Mamíferos
13.
Development ; 149(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36125128

RESUMEN

Hippo signaling, an evolutionarily conserved kinase cascade involved in organ size control, plays key roles in various tissue developmental processes, but its role in craniofacial development remains poorly understood. Using the transgenic Wnt1-Cre2 driver, we inactivated the Hippo signaling components Lats1 and Lats2 in the cranial neuroepithelium of mouse embryos and found that the double conditional knockout (DCKO) of Lats1/2 resulted in neural tube and craniofacial defects. Lats1/2 DCKO mutant embryos had microcephaly with delayed and defective neural tube closure. Furthermore, neuroepithelial cell shape and architecture were disrupted within the cranial neural tube in Lats1/2 DCKO mutants. RNA sequencing of embryonic neural tubes revealed increased TGFB signaling in Lats1/2 DCKO mutants. Moreover, markers of epithelial-to-mesenchymal transition (EMT) were upregulated in the cranial neural tube. Inactivation of Hippo signaling downstream effectors, Yap and Taz, suppressed neuroepithelial defects, aberrant EMT and TGFB upregulation in Lats1/2 DCKO embryos, indicating that LATS1/2 function via YAP and TAZ. Our findings reveal important roles for Hippo signaling in modulating TGFB signaling during neural crest EMT.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Cráneo , Factor de Crecimiento Transformador beta/metabolismo
14.
Development ; 149(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35950911

RESUMEN

Coordinated migration of the mesoderm is essential for accurate organization of the body plan during embryogenesis. However, little is known about how mesoderm migration influences posterior neural tube closure in mammals. Here, we show that spinal neural tube closure and lateral migration of the caudal paraxial mesoderm depend on transmembrane protein 132A (TMEM132A), a single-pass type I transmembrane protein, the function of which is not fully understood. Our study in Tmem132a-null mice and cell models demonstrates that TMEM132A regulates several integrins and downstream integrin pathway activation as well as cell migration behaviors. Our data also implicates mesoderm migration in elevation of the caudal neural folds and successful closure of the caudal neural tube. These results suggest a requirement for paraxial mesodermal cell migration during spinal neural tube closure, disruption of which may lead to spina bifida.


Asunto(s)
Proteínas de la Membrana , Defectos del Tubo Neural , Tubo Neural , Animales , Integrinas/metabolismo , Proteínas de la Membrana/genética , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo
15.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588250

RESUMEN

Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.


Asunto(s)
Células-Madre Neurales , Ciclo Celular/fisiología , División Celular , Fase G1/fisiología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
16.
FASEB J ; 38(11): e23738, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38855924

RESUMEN

Maternal nutrition contributes to gene-environment interactions that influence susceptibility to common congenital anomalies such as neural tube defects (NTDs). Supplemental myo-inositol (MI) can prevent NTDs in some mouse models and shows potential for prevention of human NTDs. We investigated effects of maternal MI intake on embryonic MI status and metabolism in curly tail mice, which are genetically predisposed to NTDs that are inositol-responsive but folic acid resistant. Dietary MI deficiency caused diminished MI in maternal plasma and embryos, showing that de novo synthesis is insufficient to maintain MI levels in either adult or embryonic mice. Under normal maternal dietary conditions, curly tail embryos that developed cranial NTDs had significantly lower MI content than unaffected embryos, revealing an association between diminished MI status and failure of cranial neurulation. Expression of inositol-3-phosphate synthase 1, required for inositol biosynthesis, was less abundant in the cranial neural tube than at other axial levels. Supplemental MI or d-chiro-inositol (DCI) have previously been found to prevent NTDs in curly tail embryos. Here, we investigated the metabolic effects of MI and DCI treatments by mass spectrometry-based metabolome analysis. Among inositol-responsive metabolites, we noted a disproportionate effect on nucleotides, especially purines. We also found altered proportions of 5-methyltetrahydrolate and tetrahydrofolate in MI-treated embryos suggesting altered folate metabolism. Treatment with nucleotides or the one-carbon donor formate has also been found to prevent NTDs in curly tail embryos. Together, these findings suggest that the protective effect of inositol may be mediated through the enhanced supply of nucleotides during neural tube closure.


Asunto(s)
Inositol , Defectos del Tubo Neural , Inositol/metabolismo , Inositol/farmacología , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/prevención & control , Animales , Femenino , Ratones , Embarazo , Embrión de Mamíferos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Metaboloma , Ácido Fólico/metabolismo
17.
Cell Mol Life Sci ; 81(1): 70, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294527

RESUMEN

Cross-talk between Mirk/Dyrk1B kinase and Sonic hedgehog (Shh)/Gli pathway affects physiology and pathology. Here, we reveal a novel role for Dyrk1B in regulating ventral progenitor and neuron subtypes in the embryonic chick spinal cord (SC) via the Shh pathway. Using in ovo gain-and-loss-of-function approaches at E2, we report that Dyrk1B affects the proliferation and differentiation of neuronal progenitors at E4 and impacts on apoptosis specifically in the motor neuron (MN) domain. Especially, Dyrk1B overexpression decreases the numbers of ventral progenitors, MNs, and V2a interneurons, while the pharmacological inhibition of endogenous Dyrk1B kinase activity by AZ191 administration increases the numbers of ventral progenitors and MNs. Mechanistically, Dyrk1B overexpression suppresses Shh, Gli2 and Gli3 mRNA levels, while conversely, Shh, Gli2 and Gli3 transcription is increased in the presence of Dyrk1B inhibitor AZ191 or Smoothened agonist SAG. Most importantly, in phenotype rescue experiments, SAG restores the Dyrk1B-mediated dysregulation of ventral progenitors. Further at E6, Dyrk1B affects selectively the medial lateral motor neuron column (LMCm), consistent with the expression of Shh in this region. Collectively, these observations reveal a novel regulatory function of Dyrk1B kinase in suppressing the Shh/Gli pathway and thus affecting ventral subtypes in the developing spinal cord. These data render Dyrk1B a possible therapeutic target for motor neuron diseases.


Asunto(s)
Apoptosis , Proteínas Hedgehog , Animales , Proteínas Hedgehog/genética , Pollos , Interneuronas , Neuronas Motoras
18.
Proc Natl Acad Sci U S A ; 119(20): e2117075119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35561223

RESUMEN

Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.


Asunto(s)
Tubo Neural , Neurulación , Animales , Ectodermo/embriología , Humanos , Ratones , Placa Neural/embriología , Tubo Neural/embriología , Neurulación/fisiología , Notocorda/embriología
19.
Dev Dyn ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877839

RESUMEN

BACKGROUND: The Wnt signaling pathway is highly conserved in metazoans and regulates a large array of cellular processes including motility, polarity and fate determination, and stem cell homeostasis. Modulation of the actin cytoskeleton via the non-canonical Wnt pathway regulate cell polarity and cell migration that are required for proper vertebrate gastrulation and subsequent neurulation. However, the mechanism(s) of how the non-canonical pathway mediates actin cytoskeleton modulation is not fully understood. RESULTS: Herein, we characterize the role of the Formin-homology protein; dishevelled associated activator of morphogenesis 2 (Daam2) protein in the Wnt signaling pathway. Co-immunoprecipitation assays confirm the binding of Daam2 to dishevelled2 (Dvl2) as well as the domains within these proteins required for interaction; additionally, the interaction between Daam2 and Dvl2 was Wnt-regulated. Sub-cellular localization studies reveal Daam2 is cytoplasmic and regulates the cellular actin cytoskeleton by modulating actin filament formation. During Xenopus development, a knockdown or loss of Daam2 specifically produces neural tube closure defects indicative of a role in non-canonical signaling. Additionally, our studies did not identify any role for Daam2 in canonical Wnt signaling in mammalian culture cells or the Xenopus embryo. CONCLUSIONS: Our studies together identify Daam2 as a component of the non-canonical Wnt pathway and Daam2 is a regulator of neural tube morphogenesis during vertebrate development.

20.
Dev Dyn ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501709

RESUMEN

BACKGROUND: The brain and spinal cord formation is initiated in the earliest stages of mammalian pregnancy in a highly organized process known as neurulation. Environmental or genetic interferences can impair neurulation, resulting in clinically significant birth defects known collectively as neural tube defects. The Fuz gene encodes a subunit of the CPLANE complex, a macromolecular planar polarity effector required for ciliogenesis. Ablation of Fuz in mouse embryos results in exencephaly and spina bifida, including dysmorphic craniofacial structures due to defective cilia formation and impaired Sonic Hedgehog signaling. RESULTS: We demonstrate that knocking Fuz out during embryonic mouse development results in a hypoplastic hindbrain phenotype, displaying abnormal rhombomeres with reduced length and width. This phenotype is associated with persistent reduction of ventral neuroepithelial stiffness in a notochord adjacent area at the level of the rhombomere 5. The formation of cranial and paravertebral ganglia is also impaired in these embryos. CONCLUSIONS: This study reveals that hypoplastic hindbrain development, identified by abnormal rhombomere morphology and persistent loss of ventral neuroepithelial stiffness, precedes exencephaly in Fuz ablated murine mutants, indicating that the gene Fuz has a critical function sustaining normal neural tube development and neuronal differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA