Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293528

RESUMEN

Lipopolysaccharides (LPSs) are microbiome-derived glycolipids that are among the most potent pro-inflammatory neurotoxins known. In Homo sapiens, the major sources of LPSs are gastrointestinal (GI)-tract-resident facultative anaerobic Gram-negative bacilli, including Bacteroides fragilis and Escherichia coli. LPSs have been abundantly detected in aged human brain by multiple independent research investigators, and an increased abundance of LPSs around and within Alzheimer's disease (AD)-affected neurons has been found. Microbiome-generated LPSs and other endotoxins cross GI-tract biophysiological barriers into the systemic circulation and across the blood-brain barrier into the brain, a pathological process that increases during aging and in vascular disorders, including 'leaky gut syndrome'. Further evidence indicates that LPSs up-regulate pro-inflammatory transcription factor complex NF-kB (p50/p65) and subsequently a set of NF-kB-sensitive microRNAs, including miRNA-30b, miRNA-34a, miRNA-146a and miRNA-155. These up-regulated miRNAs in turn down-regulate a family of neurodegeneration-associated messenger RNA (mRNA) targets, including the mRNA encoding the neuron-specific neurofilament light (NF-L) chain protein. While NF-L has been reported to be up-regulated in peripheral biofluids in AD and other progressive and lethal pro-inflammatory neurodegenerative disorders, NF-L is significantly down-regulated within neocortical neurons, and this may account for neuronal atrophy, loss of axonal caliber and alterations in neuronal cell shape, modified synaptic architecture and network deficits in neuronal signaling capacity. This paper reviews and reveals the most current findings on the neurotoxic aspects of LPSs and how these pro-inflammatory glycolipids contribute to the biological mechanism of progressive, age-related and ultimately lethal neurodegenerative disorders. This recently discovered gut-microbiota-derived LPS-NF-kB-miRNA-30b-NF-L pathological signaling network: (i) underscores a direct positive pathological link between the LPSs of GI-tract microbes and the inflammatory neuropathology, disordered cytoskeleton, and disrupted synaptic-signaling of the AD brain and stressed human brain cells in primary culture; and (ii) is the first example of a microbiome-derived neurotoxic glycolipid having significant detrimental miRNA-mediated actions on the expression of NF-L, an abundant filamentous protein known to be important in the maintenance of neuronal and synaptic homeostasis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedades Neurodegenerativas , Síndromes de Neurotoxicidad , Humanos , Anciano , Enfermedad de Alzheimer/patología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , FN-kappa B/metabolismo , Neurotoxinas , Glucolípidos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero
2.
Pharmacol Res ; 161: 105252, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33086080

RESUMEN

Chronic stress can lead to depression due to elevated levels of stress hormones such as glucocorticoid. This is accompanied by an increase in reactive oxygen species (ROS) levels in the brain, which can cause dendritic spine loss and atrophy in neurons, followed by memory loss. Dicaffeoylquinic acids (diCQAs) are naturally occurring polyphenolic antioxidant compounds in Arctium lappa extracts (AL). The effects of natural derivatives of cafferoylqunic acid on stress hormone-induced depressive behavior and their underlying mechanisms are uncertain. In the current study, we showed that diCQAs reduced depressive behaviors including memory loss in corticosterone (CORT) treated mice. The mechanism of anti-depressants of diCQAs is likely through reduction of ROS production by inhibiting the activity of monoamine oxidase (MAO) type A and B in neurons and astrocytes. Among diCQAs, 3,4- and 3,5-diCQA significantly inhibited the activity of MAO enzymes followed by the reduction of ROS in neurons and astrocytes and also protected neuronal atrophy and synaptic transmission against stress hormone. These results suggest that 3,4- and 3,5-diCQAs effectively reduced depressive symptoms and inhibited ROS production to alleviate memory loss in stress hormone-induced depressive mice and hence, which provide some potential natural antidepressants.


Asunto(s)
Antidepresivos/farmacología , Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Memoria/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácido Quínico/análogos & derivados , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Corticosterona , Depresión/inducido químicamente , Depresión/metabolismo , Depresión/psicología , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/psicología , Ratones Endogámicos ICR , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ácido Quínico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transmisión Sináptica/efectos de los fármacos
3.
Brain Behav Immun ; 81: 329-340, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31255679

RESUMEN

Synaptic deficits and neuronal dystrophy in the prefrontal cortex (PFC) are linked to behavioral and cognitive symptoms in depressed individuals. Preclinical studies indicate that chronic stress causes synaptic deficits on pyramidal neurons in the PFC that contribute to behavioral and cognitive impairments. Our recent work shows that chronic stress provokes microglia-mediated neuronal remodeling via neuronal colony stimulating factor (CSF)-1 signaling, leading to synaptic deficits and depressive-like behaviors. Other reports indicate that elevated corticosterone causes pyramidal neuron atrophy and microglia activation in the medial PFC, implicating glucocorticoid signaling in microglia-mediated neuronal remodeling following chronic stress. In this study, male mice were exposed to chronic unpredictable stress (CUS) and received daily administration of glucocorticoid receptor antagonist RU486 (25 mg/kg, i.p.). As expected, CUS exposure caused adrenal hypertrophy and elevated plasma corticosterone levels. Glucocorticoid receptor blockade prevented behavioral despair and cognitive impairments following CUS. Moreover, RU486 administration diminished CUS-induced CSF1 signaling in the PFC and reduced markers of phagocytosis on purified microglia. Confocal imaging in Thy1-GFP(M) mice showed that CUS increased microglia-mediated neuronal remodeling, and RU486 administration attenuated microglial engulfment of neuronal elements and prevented dendritic spine density deficits on pyramidal neurons following CUS. These results demonstrate that chronic stress-induced glucocorticoid signaling promotes CSF1 signaling and microglia-mediated neuronal remodeling in the medial PFC, which contributes to development of behavioral despair and cognitive impairments. This study presents primary evidence that neuroendocrine responses engage neuron-microglia interactions in the PFC; further implicating microglia in stress-induced neuronal remodeling, PFC dysfunction, and associated behavioral consequences.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/sangre , Depresión , Hipocampo/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Mifepristona/farmacología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores
4.
Mol Ther ; 26(6): 1552-1567, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29628303

RESUMEN

The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
5.
J Neurochem ; 135(6): 1099-112, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26364854

RESUMEN

Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging.


Asunto(s)
Daño del ADN/efectos de los fármacos , ADN/efectos de los fármacos , Quimioterapia , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Compuestos Organoplatinos/farmacología , Platino (Metal)/farmacología , Animales , Proteínas de Transporte de Catión/efectos de los fármacos , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Oxaliplatino , Ratas
6.
J Neurosci Res ; 93(5): 736-44, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25557339

RESUMEN

Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments.


Asunto(s)
Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/patología , Vibración/efectos adversos , Análisis de Varianza , Animales , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Suspensión Trasera , Masculino , Aprendizaje por Laberinto/fisiología , Microscopía Electrónica de Transmisión , Arteria Cerebral Media/patología , Arteria Cerebral Media/ultraestructura , Fuerza Muscular/fisiología , Conducción Nerviosa/fisiología , Neuronas/patología , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley
7.
J Stroke Cerebrovasc Dis ; 24(12): 2759-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26433438

RESUMEN

BACKGROUND: Insidious cumulative brain injury from motor vehicle-induced whole-body vibration (MV-WBV) has not yet been studied. The objective of the present study is to validate whether whole-body vibration for long periods causes cumulative brain injury and impairment of the cerebral function. We also explored a preventive method for MV-WBV injury. METHODS: A study simulating whole-body vibration was conducted in 72 male Sprague-Dawley rats divided into 9 groups (N = 8): (1) 2-week normal control; (2) 2-week sham control (in the tube without vibration); (3) 2-week vibration (exposed to whole-body vibration at 30 Hz and .5 G acceleration for 4 hours/day, 5 days/week for 2 weeks; vibration parameters in the present study are similar to the most common driving conditions); (4) 4-week sham control; (5) 4-week vibration; (6) 4-week vibration with human apolipoprotein A-I molecule mimetic (4F)-preconditioning; (7) 8-week sham control; (8) 8-week vibration; and (9) 8-week 4F-preconditioning group. All the rats were evaluated by behavioral, physiological, and histological studies of the brain. RESULTS: Brain injury from vibration is a cumulative process starting with cerebral vasoconstriction, squeezing of the endothelial cells, increased free radicals, decreased nitric oxide, insufficient blood supply to the brain, and repeated reperfusion injury to brain neurons. In the 8-week vibration group, which indicated chronic brain edema, shrunken neuron numbers increased and whole neurons atrophied, which strongly correlated with neural functional impairment. There was no prominent brain neuronal injury in the 4F groups. CONCLUSIONS: The present study demonstrated cumulative brain injury from MV-WBV and validated the preventive effects of 4F preconditioning.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Péptidos/uso terapéutico , Vibración , Accidentes de Tránsito , Animales , Lesiones Encefálicas/prevención & control , Masculino , Ratas , Ratas Sprague-Dawley
8.
Behav Brain Res ; 471: 115115, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38897418

RESUMEN

Diabetes mellitus (DM) is a metabolic disorder impacting cerebral function. The administration of Streptozotocin (STZ) is a well-known animal model of insulinopenic type 1 DM in rats. STZ-induced DM results in a myriad of alteration in the periphery and central nervous system (CNS). Cerebrolysin (CBL) is a neuropeptide preparation that promotes synaptic and neuronal plasticity in various animal models. In all cases, CBL was administered when the model was established. This research aims to investigate the neuroprotective and neurorepair effect of CBL on the cytoarchitecture of neurons and spine density in pyramidal neurons of the prefrontal (PFC) and the CA1 region of the dorsal hippocampus, as well as spheroidal neurons of the dentate gyrus (DG), in STZ-induced DM. In the first experimental condition, STZ and CBL are administered at the same time to evaluate the potential preventive effect of CBL. In the second experimental condition, CBL was administered two months after establishing the DM model to measure the potential neurorepair effect of CBL. STZ-induced hyperglycemia remained unaltered by the administration of CBL in both experimental conditions. In the first experimental condition, CBL treatment preserved the neuronal morphology in PFC layer 3, PFC layer 5 and the DG of the hippocampus, while also maintaining spine density in the PFC-3, DG and CA1 hippocampus. Furthermore, CBL induced neurorepair in neurons within the PFC-3, PFC-5 and CA1 regions of the hippocampus, along with an increase in spine density in the PFC-3, DG and CA1 hippocampus. These findings suggest that CBL´s effects on neuroplasticity could be observed before or after the damage was evident.


Asunto(s)
Aminoácidos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fármacos Neuroprotectores , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Aminoácidos/farmacología , Aminoácidos/administración & dosificación , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Estreptozocina/farmacología , Modelos Animales de Enfermedad , Ratas Wistar , Ratas , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Corteza Prefrontal/efectos de los fármacos , Hipocampo/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos
9.
Eur J Pharmacol ; 957: 175931, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37495038

RESUMEN

In recent years, a new target closely linked to a variety of diseases has appeared in the researchers' vision, which is the NLRP3 inflammasome. With the deepening of the study of NLRP3 inflammasome, it was found that it plays an extremely important role in a variety of physiological pathological processes, and NLRP3 inflammasome was also found to be associated with some age-related diseases. It is associated with the development of insulin resistance, Alzheimer's disease, Parkinson's, cardiovascular aging, hearing and vision loss. At present, the only clinical approach to the treatment of NLRP3 inflammasome-related diseases is to use anti-IL-1ß antibodies, but NLRP3-specific inhibitors may be better than the IL-1ß antibodies. This article reviews the relationship between NLRP3 inflammasome and aging diseases: summarizes some of the relevant experimental results reported in recent years, and introduces the biological signals or pathways closely related to the NLRP3 inflammasome in a variety of aging diseases, and also introduces some promising small molecule inhibitors of NLRP3 inflammasome for clinical treatment, such as: ZYIL1, DFV890 and OLT1177, they have excellent pharmacological effects and good pharmacokinetics.


Asunto(s)
Envejecimiento , Inflamasomas , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología
10.
ASN Neuro ; 14: 17590914221099112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35503242

RESUMEN

Traumatic brain injury (TBI) has consequences that last for years following injury. While TBI can precipitate a variety of diffuse pathologies, the mechanisms involved in injury-induced neuronal membrane disruption remain elusive. The lysosomal cysteine protease, Cathepsin B (Cath B), and specifically its redistribution into the cytosol has been implicated in cell death. Little is known about Cath B or neuronal membrane disruption chronically following diffuse TBI. Therefore, the current study evaluated Cath B and diffuse neuronal membrane disruption over a more chronic post-injury window (6 h-4 w). We evaluated Cath B in adult male Sprague-Dawley rats following central fluid percussion injury (CFPI). Expression of Cath B, as well as Cath B-associated pro (Bak and AIF) and anti-apoptotic (Bcl-xl) proteins, were assessed using western blot analysis. Cath B activity was also assessed. Localization of Cath B was evaluated in the membrane disrupted and non-disrupted population following CFPI using immunohistochemistry paired with quantitative image analysis and ultrastructural verification. There was no difference in expression or activity of Cath B or any of the associated proteins between sham and CFPI at any time post-injury. Immunohistological studies, however, showed a sub-cellular re-localization of Cath B at 2 w and 4 w post-injury in the membrane disrupted neuronal population as compared to the time-point matched non-disrupted neurons. Both membrane disruption and Cath B relocalization appear linked to neuronal atrophy. These observations are indicative of a late secondary pathology that represents an opportunity for therapeutic treatment of these neurons following diffuse TBI. Summary Statement Lysosomal cathepsin B relocalizes to the cytosol in neurons with disrupted plasmalemmal membranes weeks following diffuse brain injury. Both the membrane disrupted and cathepsin B relocalized neuronal subpopulations displayed smaller soma and nucleus size compared to non-pathological neurons, indicating atrophy.


Asunto(s)
Traumatismos Difusos del Encéfalo , Lesiones Traumáticas del Encéfalo , Animales , Atrofia/metabolismo , Atrofia/patología , Traumatismos Difusos del Encéfalo/metabolismo , Traumatismos Difusos del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Catepsina B/análisis , Catepsina B/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Biomedicines ; 10(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35453615

RESUMEN

Traumatic brain injury (TBI) leads to long-term cognitive impairments, with an increased risk for neurodegenerative and psychiatric disorders. Among these various impairments, olfactory dysfunction is one of the most common symptoms in TBI patients. However, there are very few studies that show the association between olfactory dysfunction and repetitive TBI. To investigate the effects of repetitive TBI on olfactory functioning and the related pathological neuronal injuries in mice, we applied a weight-drop model of TBI and performed neuropathological examinations and electroencephalography (EEG) in olfactory-bulb-associated areas. Through neuropathological examinations, we found significant increases of amyloid precursor protein (APP) and phosphorylated Tau (p-Tau) (S202/T205) in olfactory-bulb-associated areas. Neuronal atrophy in the lateral anterior olfactory nucleus (AOL), granule layer olfactory bulb (GrO), and dorsal tenia tecta (DTT) was also found to be correlated with p-Tau levels. However, there was no difference in the total Tau levels in the olfactory-bulb-associated areas of TBI mice. Electroencephalography (EEG) of repetitive TBI mouse models showed impaired spontaneous delta oscillation, as well as altered cross-frequency coupling between delta phase and amplitudes of the fast oscillations in the resting-state olfactory bulb. Furthermore, abnormal alterations in EEG band powers were observed during the olfactory oddball paradigm test. TBI also led to impairments of the olfactory-function-associated behaviors. This study provides evidence of behavioral, neuropathological, and physiological alterations in the mouse olfactory system caused by repetitive TBI. Together, p-Tau alterations and EEG impairments may serve as important biomarkers of olfactory-track-associated dysfunctions in repetitive TBI.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34881359

RESUMEN

Neurofilaments (NFs) are critical scaffolding components of the axoskeleton of healthy neurons interacting directly with multiple synaptic-phosphoproteins to support and coordinate neuronal cell shape, cytoarchitecture, synaptogenesis and neurotransmission. While neuronal presynaptic proteins such as synapsin-2 (SYN II) degrade rapidly via the ubiquitin-proteasome pathway, a considerably more stable neurofilament light (NF-L) chain protein turns over much more slowly, and in several neurological diseases is accompanied by a pathological shift from an intracellular neuronal cytoplasmic location into various biofluid compartments. NF-L has been found to be significantly elevated in peripheral biofluids in multiple neurodegenerative disorders, however it is not as widely appreciated that NF-L expression within neurons undergoing inflammatory neurodegeneration exhibit a significant down-regulation in these neuron-specific intermediate-filament components. Down-regulated NF-L in neurons correlates well with the observed axonal and neuronal atrophy, neurite deterioration and synaptic disorganization in tissues affected by Alzheimer's disease (AD) and other progressive, age-related neurological diseases. This Review paper: (i) will briefly assess the remarkably high number of neurological disorders that exhibit NF-L depolymerization, liberation from neuron-specific compartments, mobilization and enrichment into pathological biofluids; (ii) will evaluate how NF-L exhibits compartmentalization effects in age-related neurological disorders; (iii) will review how the shift of NF-L compartmentalization from within the neuronal cytoskeleton into peripheral biofluids may be a diagnostic biomarker for neuronal-decline in all cause dementia most useful in distinguishing between closely related neurological disorders; and (iv) will review emerging evidence that deficits in plasma membrane barrier integrity, pathological transport and/or vesicle-mediated trafficking dysfunction of NF-L may contribute to neuronal decline, with specific reference to AD wherever possible.

13.
Exp Neurol ; 328: 113260, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32109447

RESUMEN

Among the most devastating sequelae of spinal cord injury (SCI) are genitourinary and gastrointestinal dysfunctions. Post-ganglionic neurons in pelvic ganglia (PG) directly innervate and regulate the function of the lower urinary tract (LUT), bowel, and sexual organs. A better understanding of how SCI affects PG neurons is essential to develop therapeutic strategies for devastating gastrointestinal and genitourinary complications ensuing after injury. To evaluate the impact of SCI on the morphology of PG neurons, we used a well- characterized rat model of upper thoracic SCI (T3 transection) that causes severe autonomic dysfunction. Using immunohistochemistry for neuronal markers, the neuronal profile size frequency distribution was quantified at one-, four-, and eight-weeks post SCI using recursive translation. Our investigation revealed an SCI-dependent leftward shift in neuronal size (i.e. atrophy), observable as early as one-week post injury. However, this effect was more pronounced at four and eight-weeks post-SCI. These findings demonstrate the first characterization of SCI-associated temporal changes in morphology of PG neurons and warrant further investigation to facilitate development of therapeutic strategies for recovery of autonomic functions following SCI.


Asunto(s)
Atrofia/patología , Ganglios Autónomos/patología , Plexo Hipogástrico/patología , Neuronas/patología , Traumatismos de la Médula Espinal/patología , Animales , Atrofia/etiología , Masculino , Pelvis , Ratas , Ratas Wistar , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones
14.
Epilepsia Open ; 5(1): 50-60, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32140643

RESUMEN

OBJECTIVE: To investigate the effect of water extract of Gastrodiae Rhizoma (GR) on the development of acquired temporal lobe epilepsy (TLE) and on regulating the expression of the mammalian target of rapamycin (mTOR) and semaphorin 3F (SEMA3F). METHODS: A pilocarpine-induced status epilepticus (SE) model was adopted to precipitate injury in the limbic systems. GR and carbamazepine (CBZ) treatments were given to mice for 14 days prior to SE induction to demonstrate the antiepileptic effects and continued for 5 more days to illustrate the effects on histologic studies. RESULTS: Our results consolidated that GR treatment (92.1 minutes) could delay the SE onset in comparison with the control group (61.5 minutes, P = .041). Fewer mice had reached SE with GR treatment (41.7%) when compared with the control group (83.3%, P = .044). GR treatment (2.1 hours/mouse) could suppress the number of acute seizures in post-SE survival mice when compared with the control group (4.5 hours/mouse, P < .001). The effects of GR treatment were elucidated with the mechanism of actions. GR treatment reduced the overexpression of mTOR (0.27 vs 0.67 AU/mg protein, P = .047). GR treatment increased the underexpression of SEMA3F (0.51 vs 0.16 µg/mg protein, P = .034). In the histochemical study of microtubule-associated protein 2 (MAP2) staining, our results showed that GR prevented neuronal loss in the GR treatment group (64.8% positively stained pixel area) as compared with the control group (59%, P = .014) in the hippocampus. In glial fibrillary acidic protein (GFAP) staining, the severity of astrogliosis was mitigated by the GR treatment (4.1% positively stained pixel area) when compared to the control group (5.6%, P = .047) in the hippocampus. SIGNIFICANCE: These results provide preclinical evidence to support the use of GR, which could suppress acute seizures and relieve pathological changes in pilocarpine-induced TLE mice. We demonstrated that the antiepileptic effects of GR could be accompanied by mTOR reduction and astrogliosis attenuation.

15.
Neuropharmacology ; 99: 527-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26279492

RESUMEN

Forkhead box O (FoxO) transcription factors play important roles in cellular physiology and biology. Recent findings indicate that FoxOs are also involved in the development of major depressive disorder. Alterations in the upstream molecules of FoxOs, such as brain derived neurotrophic factor or protein kinase B, have been linked to depression. Antidepressants, such as imipramine and venlafaxine, modify the FoxOs phosphorylation. Furthermore, FoxOs could be regulated by serotonin and norepinephrine receptor signaling as well as the hypothalamic-pituitary-adrenal axis, all of which are involved in the pathogenesis of depression. FoxOs also regulate neuronal morphology, synaptogenesis and adult hippocampal neurogenesis, which are viewed as candidate mechanisms for the etiology of depression. In this review, we emphasize the possible roles of FoxOs during the development of depression and make some strategic recommendations for future research. We propose that FoxOs and its signaling pathways may constitute potential therapeutic targets in the treatment of depression.


Asunto(s)
Trastorno Depresivo Mayor/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
16.
Dialogues Clin Neurosci ; 6(2): 157-69, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22034207

RESUMEN

Neural plasticity is emerging as a fundamental and critical mechanism of neuronal function, which allows the brain to receive information and make the appropriate adaptive responses to subsequent related stimuli. Elucidation of the molecular and cellular mechanisms underlying neural plasticity is a major goal of neuroscience research, and significant advances have been made in recent years. These mechanisms include regulation of signal transduction and gene expression, and also structural alterations of neuronal spines and processes, and even the birth of new neurons in the adult brain. Altered plasticity could thereby contribute to psychiatric and neurological disorders. This article revievi/s the literature demonstrating altered plasticity in response to stress, and evidence that chronic antidepressant treatment can reverse or block the effects, and even induce neural piasiicity-iike responses. Continued elucidation of the mechanisms underlying neural plasticity will lead to novel drug targets that could prove to be effective and rapidly acting therapeutic interventions.

17.
J Neurol Disord ; 2(4)2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25505790

RESUMEN

Emerging evidence indicates that neuroimmunological changes in the brain can modify intrinsic brain processes that are involved in regulating neuroplasticity. Increasing evidence suggests that in some forms of motor neuron injury, many neurons do not die, but reside in an atrophic state for an extended period of time. In mice, facial motor neurons in the brain undergo a protracted period of degeneration or atrophy following resection of their peripheral axons. Reinjuring the proximal nerve stump of the chronically resected facial nerve stimulates a robust reversal of motor neuron atrophy which results in marked increases in both the number and size of injured motor neurons in the facial motor nucleus. In this brief review, we describe research from our lab which indicates that the reversal of atrophy in this injury model is dependent on normal cellular immunity. The role of T cells in this unique form of neuroplasticity following injury and in brain aging, are discussed. The potential role of yet undiscover intrinsic actions of recombination activating genes in the brain are considered. Further research using the facial nerve reinjury model could identify molecular signals involved in neuroplasticity, and lead to new ways to stimulate neuroregenerative processes in neurotrauma and other forms of brain insult and disease.

18.
Artículo en Inglés | MEDLINE | ID: mdl-24058743

RESUMEN

Loss of neuronal phenotype and reversal of neuronal atrophy have been demonstrated in different models of central nervous system (CNS) injury. These processes may be generalizable to different types of brain neurons and circuitry. The idea that some injured neurons may lose their phenotype and/or atrophy with the potential to rejuvenate is a remarkable and potentially promising form of neuronal plasticity that is not well understood. In this paper, we present some of our laboratory's basic neuroimmunology research showing that peripheral T cells entering the CNS, and brain-derived interleukin-2 (IL-2), play significant roles in these intriguing processes. Our findings suggest, for example, that T cell immunosenesence could be involved in related processes of brain aging and contribute to neurodegenerative disease. Neuroimmunological approaches may provide new insights into yet undiscovered factors and brain mechanisms that regulate changes in neuronal integrity associated with aging and disease. Such findings could have important implications for discovering more effective strategies for treating patients with neurotrauma and neurodegenerative diseases (e.g., Alzheimer's disease).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA