Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
EMBO J ; 41(1): e108341, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34747040

RESUMEN

Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/metabolismo , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Microscopía por Crioelectrón , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/ultraestructura , Humanos , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Protones , Sodio/metabolismo
2.
Ecotoxicol Environ Saf ; 263: 115282, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37494734

RESUMEN

Nearly all modern life depends on artificial light; however, it does cause health problems. With certain restrictions of artificial light emitting technology, the influence of the light spectrum is inevitable. The most remarkable problem is its overload in the short wavelength component. Short wavelength artificial light has a wide range of influences from ocular development to mental problems. The visual neuronal pathway, as the primary light-sensing structure, may contain the fundamental mechanism of all light-induced abnormalities. However, how the artificial light spectrum shapes the visual neuronal pathway during development in mammals is poorly understood. We placed C57BL/6 mice in three different spectrum environments (full-spectrum white light: 400-750 nm; violet light: 400 ± 20 nm; green light: 510 ± 20 nm) beginning at eye opening, with a fixed light time of 7:00-19:00. During development, we assessed the ocular axial dimension, visual function and retinal neurons. After two weeks under short wavelength conditions, the ocular axial length (AL), anterior chamber depth (ACD) and length of lens thickness, real vitreous chamber depth and retinal thickness (LLVR) were shorter, visual acuity (VA) decreased, and retinal electrical activity was impaired. The density of S-cones in the dorsal and ventral retinas both decreased after one week under short wavelength conditions. In the ventral retina, it increased after three weeks. Retinal ganglion cell (RGC) density and axon thickness were not influenced; however, the axonal terminals in the lateral geniculate nucleus (LGN) were less clustered and sparse. Amacrine cells (ACs) were significantly more activated. Green light has few effects. The KEGG and GO enrichment analyses showed that many genes related to neural circuitry, synaptic formation and neurotransmitter function were differentially expressed in the short wavelength light group. In conclusion, exposure to short wavelength artificial light in the early stage of vision-dependent development in mice delayed the development of the visual pathway. The axon terminus structure and neurotransmitter function may be the major suffering.


Asunto(s)
Retina , Células Fotorreceptoras Retinianas Conos , Animales , Ratones , Ratones Endogámicos C57BL , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/fisiología , Vías Nerviosas , Mamíferos
3.
J Biol Chem ; 295(44): 14936-14947, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32820048

RESUMEN

Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Mutación Puntual , Transporte Biológico , Transportador 2 de Aminoácidos Excitadores/química , Humanos , Técnicas de Placa-Clamp , Probabilidad
4.
J Biol Chem ; 294(32): 12180-12190, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235523

RESUMEN

Plasma membrane-associated glutamate transporters play a key role in signaling by the major excitatory neurotransmitter glutamate. Uphill glutamate uptake into cells is energetically driven by coupling to co-transport of three Na+ ions. In exchange, one K+ ion is counter-transported. Currently accepted transport mechanisms assume that Na+ and K+ effects are exclusive, resulting from competition of these cations at the binding level. Here, we used electrophysiological analysis to test the effects of K+ and Na+ on neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1; the rat homologue of human excitatory amino acid transporter 3 (EAAT3)). Unexpectedly, extracellular K+ application to EAAC1 induced anion current, but only in the presence of Na+ This result could be explained with a K+/Na+ co-binding state in which the two cations simultaneously bind to the transporter. We obtained further evidence for this co-binding state, and its anion conductance, by analyzing transient currents when Na+ was exchanged for K+ and effects of the [K+]/[Na+] ratio on glutamate affinity. Interestingly, we observed the K+/Na+ co-binding state not only in EAAC1 but also in the subtypes EAAT1 and -2, which, unlike EAAC1, conducted anions in response to K+ only. We incorporated these experimental findings in a revised transport mechanism, including the K+/Na+ co-binding state and the ability of K+ to activate anion current. Overall, these results suggest that differentiation between Na+ and K+ does not occur at the binding level but is conferred by coupling of cation binding to conformational changes. These findings have implications also for other exchangers.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Unión Competitiva , Cationes/química , Transportador 3 de Aminoácidos Excitadores/química , Transportador 3 de Aminoácidos Excitadores/genética , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Cinética , Técnicas de Placa-Clamp , Potasio/química , Unión Proteica , Sodio/química
5.
J Biol Chem ; 294(17): 6957-6971, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30824538

RESUMEN

The dopamine transporter (DAT) regulates dopamine neurotransmission via reuptake of dopamine released into the extracellular space. Interactions with partner proteins alter DAT function and thereby dynamically shape dopaminergic tone important for normal brain function. However, the extent and nature of these interactions are incompletely understood. Here, we describe a novel physical and functional interaction between DAT and the voltage-gated K+ channel Kv2.1 (potassium voltage-gated channel subfamily B member 1 or KCNB1). To examine the functional consequences of this interaction, we employed a combination of immunohistochemistry, immunofluorescence live-cell microscopy, co-immunoprecipitation, and electrophysiological approaches. Consistent with previous reports, we found Kv2.1 is trafficked to membrane-bound clusters observed both in vivo and in vitro in rodent dopamine neurons. Our data provide evidence that clustered Kv2.1 channels decrease DAT's lateral mobility and inhibit its internalization, while also decreasing canonical transporter activity by altering DAT's conformational equilibrium. These results suggest that Kv2.1 clusters exert a spatially discrete homeostatic braking mechanism on DAT by inducing a relative increase in inward-facing transporters. Given recent reports of Kv2.1 dysregulation in neurological disorders, it is possible that alterations in the functional interaction between DAT and Kv2.1 affect dopamine neuron activity.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Endocitosis , Canales de Potasio Shab/metabolismo , Animales , Dopamina/metabolismo , Femenino , Masculino , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
6.
J Biol Chem ; 293(19): 7250-7262, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29559554

RESUMEN

Genetic factors are known to significantly contribute to the etiology of psychiatric diseases such as attention deficit hyperactivity disorder (ADHD) and autism spectrum and bipolar disorders, but the underlying molecular processes remain largely elusive. The dopamine transporter (DAT) has received continuous attention as a potential risk factor for psychiatric disease, as it is critical for dopamine homeostasis and serves as principal target for ADHD medications. Constrain metrics for the DAT-encoding gene, solute carrier family 6 member 3 (SLC6A3), indicate that missense mutations are under strong negative selection, pointing to pathophysiological outcomes when DAT function is compromised. Here, we systematically characterized six rare genetic variants of DAT (I312F, T356M, D421N, A559V, E602G, and R615C) identified in patients with neuropsychiatric disorders. We evaluated dopamine uptake and ligand interactions, along with ion coordination and electrophysiological properties, to elucidate functional phenotypes, and applied Zn2+ exposure and a substituted cysteine-accessibility approach to identify shared structural changes. Three variants (I312F, T356M, and D421N) exhibited impaired dopamine uptake associated with changes in ligand binding, ion coordination, and distinct conformational disturbances. Remarkably, we found that all three variants displayed gain-of-function electrophysiological phenotypes. I312F mediated an increased uncoupled anion conductance previously suggested to modulate neuronal excitability. T356M and D421N both mediated a cocaine-sensitive leakage of cations, which for T356M was potentiated by Zn2+, concurrent with partial functional rescue. Collectively, our findings support that gain of disruptive functions due to missense mutations in SLC6A3 may be key to understanding how dopaminergic dyshomeostasis arises in heterozygous carriers.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Trastorno Bipolar/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Variación Genética , Animales , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno del Espectro Autista/fisiopatología , Trastorno Bipolar/fisiopatología , Células COS , Estimulantes del Sistema Nervioso Central/metabolismo , Chlorocebus aethiops , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Frecuencia de los Genes , Marcadores Genéticos , Homeostasis , Humanos , Transporte Iónico , Mutación Missense , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica , Zinc/metabolismo
7.
J Biol Chem ; 293(37): 14200-14209, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30026234

RESUMEN

In the brain, glutamate transporters terminate excitatory neurotransmission by removing this neurotransmitter from the synapse via cotransport with three sodium ions into the surrounding cells. Structural studies have identified the binding sites of the three sodium ions in glutamate transporters. The residue side-chains directly interact with the sodium ions at the Na1 and Na3 sites and are fully conserved from archaeal to eukaryotic glutamate transporters. The Na2 site is formed by three main-chain oxygens on the extracellular reentrant hairpin loop HP2 and one on transmembrane helix 7. A glycine residue on HP2 is located closely to the three main-chain oxygens in all glutamate transporters, except for the astroglial transporter GLT-1, which has a serine residue at that position. Unlike for WT GLT-1, substitution of the serine residue to glycine enables sustained glutamate transport also when sodium is replaced by lithium. Here, using functional and simulation studies, we studied the role of this serine/glycine switch on cation selectivity of substrate transport. Our results indicate that the side-chain oxygen of the serine residues can form a hydrogen bond with a main-chain oxygen on transmembrane helix 7. This leads to an expansion of the Na2 site such that water can participate in sodium coordination at Na2. Furthermore, we found other molecular determinants of cation selectivity on the nearby HP1 loop. We conclude that subtle changes in the composition of the two reentrant hairpin loops determine the cation specificity of acidic amino acid transport by glutamate transporters.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Sodio/metabolismo , Sitios de Unión , Cationes/metabolismo , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/química , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Glicina/metabolismo , Células HeLa , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Serina/metabolismo
8.
J Biol Chem ; 292(10): 4235-4243, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28096460

RESUMEN

The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 µm and inhibition at 10 µm A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Metales/metabolismo , Elementos de Transición/metabolismo , Zinc/metabolismo , Regulación Alostérica , Sitios de Unión , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Humanos , Unión Proteica , Especificidad por Sustrato
9.
J Biol Chem ; 292(47): 19250-19265, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28972153

RESUMEN

Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-µ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-µ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Drosophila melanogaster/efectos de los fármacos , Ibogaína/análogos & derivados , Mutación , Trastornos Parkinsonianos/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Humanos , Ibogaína/farmacología , Masculino , Trastornos Parkinsonianos/genética , Transmisión Sináptica
10.
J Biol Chem ; 292(13): 5418-5428, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28213519

RESUMEN

The GABA transporter GAT-1 mediates electrogenic transport of its substrate together with sodium and chloride. It is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Compared with all other neurotransmitter:sodium:symporters, GAT-1 and other members of the GABA transporter subfamily all contain an extra amino acid residue at or near a conserved glycine in transmembrane segment 10. Therefore, we studied the functional impact of deletion and replacement mutants of Gly-457 and its two adjacent residues in GAT-1. The glycine replacement mutants were devoid of transport activity, but remarkably the deletion mutant was active, as were mutants obtained by deleting positions on either side of Gly-457. However, the inward rectification of GABA-induced transport currents by all three deletion mutants was diminished, and the charge-to-flux ratio was increased by more than 2.5-fold, both of which indicate substantial uncoupled transport. These observations suggest that the deletions render the transporters less tightly packed. Consistent with this interpretation, the inactive G457A mutant was partially rescued by removing the adjacent serine residue. Moreover, the activity of several gating mutants was also partially rescued upon deletion of Gly-457. Structural modeling showed that the stretch surrounding Gly-457 is likely to form a π-helix. Our data indicate that the "extra" residue in transmembrane domain 10 of the GABA transporter GAT-1 provides extra bulk, probably in the form of a π-helix, which is required for stringent gating and tight coupling of ion and substrate fluxes in the GABA transporter family.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Glicina/genética , Transporte Iónico , Mutagénesis Sitio-Dirigida , Aminoácidos , Secuencia Conservada/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Células HeLa , Humanos , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad
11.
J Biol Chem ; 292(9): 3603-3613, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28104804

RESUMEN

The serotonin transporter (SERT) and other monoamine transporters operate in either a forward transport mode where the transporter undergoes a full transport cycle or an exchange mode where the transporter seesaws through half-cycles. Amphetamines trigger the exchange mode, leading to substrate efflux. This efflux was proposed to rely on the N terminus, which was suggested to adopt different conformations in the inward facing, outward facing and amphetamine-bound states. This prediction was verified by tryptic digestion of SERT-expressing membranes: in the absence of Na+, the N terminus was rapidly digested. Amphetamine conferred protection against cleavage, suggesting a relay between the conformational states of the hydrophobic core and the N terminus. We searched for a candidate segment that supported the conformational switch by serial truncation removing 22 (ΔN22), 32 (ΔN32), or 42 (ΔN42) N-terminal residues. This did not affect surface expression, inhibitor binding, and substrate influx. However, amphetamine-induced efflux by SERT-ΔN32 or SERT-ΔN42 (but not by SERT-ΔN22) was markedly diminished. We examined the individual steps in the transport cycle by recording transporter-associated currents: the recovery rate of capacitive peak, but not of steady state, currents was significantly lower for SERT-ΔN32 than that of wild type SERT and SERT-ΔN22. Thus, the exchange mode of SERT-ΔN32 was selectively impaired. Our observations show that the N terminus affords the switch between transport modes. The findings are consistent with a model where the N terminus acts as a lever to support amphetamine-induced efflux by SERT.


Asunto(s)
Anfetaminas/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas Bacterianas/química , Biotinilación , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Proteínas Luminiscentes/química , Microscopía Confocal , Neurotransmisores/química , Técnicas de Placa-Clamp , Conformación Proteica , Dominios Proteicos , Serotonina/química , Sodio/química , Tripsina/química
12.
J Biol Chem ; 292(18): 7372-7384, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28320858

RESUMEN

Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by the reuptake of released neurotransmitters. This active accumulation of substrate against its concentration gradient is driven by the transmembrane Na+ gradient and requires that the transporter traverses several conformational states. LeuT, a prokaryotic NSS homolog, has been crystallized in outward-open, outward-occluded, and inward-open states. Two crystal structures of another prokaryotic NSS homolog, the multihydrophobic amino acid transporter (MhsT) from Bacillus halodurans, have been resolved in novel inward-occluded states, with the extracellular vestibule closed and the intracellular portion of transmembrane segment 5 (TM5i) in either an unwound or a helical conformation. We have investigated the potential involvement of TM5i in binding and unbinding of Na2, i.e. the Na+ bound in the Na2 site, by carrying out comparative molecular dynamics simulations of the models derived from the two MhsT structures. We find that the helical TM5i conformation is associated with a higher propensity for Na2 release, which leads to the repositioning of the N terminus and transition to an inward-open state. By using comparative interaction network analysis, we also identify allosteric pathways connecting TM5i and the Na2 binding site to the extracellular and intracellular regions. Based on our combined computational and mutagenesis studies of MhsT and LeuT, we propose that TM5i plays a key role in Na2 binding and release associated with the conformational transition toward the inward-open state, a role that is likely to be shared across the NSS family.


Asunto(s)
Bacillus/química , Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/química , Sodio/química , Regulación Alostérica , Sistemas de Transporte de Aminoácidos , Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Dominios Proteicos , Sodio/metabolismo
13.
J Biol Chem ; 291(50): 25864-25876, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27756841

RESUMEN

The plasmalemmal monoamine transporters clear the extracellular space from their cognate substrates and sustain cellular monoamine stores even during neuronal activity. In some instances, however, the transporters enter a substrate-exchange mode, which results in release of intracellular substrate. Understanding what determines the switch between these two transport modes demands time-resolved measurements of intracellular (co-)substrate binding and release. Here, we report an electrophysiological investigation of intracellular solute-binding to the human serotonin transporter (SERT) expressed in HEK-293 cells. We measured currents induced by rapid application of serotonin employing varying intracellular (co-)substrate concentrations and interpreted the data using kinetic modeling. Our measurements revealed that the induction of the substrate-exchange mode depends on both voltage and intracellular Na+ concentrations because intracellular Na+ release occurs before serotonin release and is highly electrogenic. This voltage dependence was blunted by electrogenic binding of intracellular K+ and, notably, also H+ In addition, our data suggest that Cl- is bound to SERT during the entire catalytic cycle. Our experiments, therefore, document an essential role of electrogenic binding of K+ or of H+ to the inward-facing conformation of SERT in (i) cancelling out the electrogenic nature of intracellular Na+ release and (ii) in selecting the forward-transport over the substrate-exchange mode. Finally, the kinetics of intracellular Na+ release and K+ (or H+) binding result in a voltage-independent rate-limiting step where SERT may return to the outward-facing state in a KCl- or HCl-bound form.


Asunto(s)
Potenciales de la Membrana/fisiología , Potasio/metabolismo , Protones , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Sodio/metabolismo , Cationes Monovalentes/metabolismo , Células HEK293 , Humanos , Transporte Iónico/fisiología , Serotonina/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética
14.
J Biol Chem ; 291(22): 11852-64, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27044739

RESUMEN

Glutamate transporters actively take up glutamate into the cell, driven by the co-transport of sodium ions down their transmembrane concentration gradient. It was proposed that glutamate binds to its binding site and is subsequently transported across the membrane in the negatively charged form. With the glutamate binding site being located partially within the membrane domain, the possibility has to be considered that glutamate binding is dependent on the transmembrane potential and, thus, is electrogenic. Experiments presented in this report test this possibility. Rapid application of glutamate to the wild-type glutamate transporter subtype EAAC1 (excitatory amino acid carrier 1) through photo-release from caged glutamate generated a transient inward current, as expected for the electrogenic inward movement of co-transported Na(+) In contrast, glutamate application to a transporter with the mutation A334E induced transient outward current, consistent with movement of negatively charged glutamate into its binding site within the dielectric of the membrane. These results are in agreement with electrostatic calculations, predicting a valence for glutamate binding of -0.27. Control experiments further validate and rule out other possible explanations for the transient outward current. Electrogenic glutamate binding can be isolated in the mutant glutamate transporter because reactions, such as glutamate translocation and/or Na(+) binding to the glutamate-bound state, are inhibited by the A334E substitution. Electrogenic glutamate binding has to be considered together with other voltage-dependent partial reactions to cooperatively determine the voltage dependence of steady-state glutamate uptake and glutamate buffering at the synapse.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Sodio/metabolismo , Sitios de Unión , Transporte Biológico , Electrofisiología , Transportador 3 de Aminoácidos Excitadores/química , Transportador 3 de Aminoácidos Excitadores/genética , Humanos , Cinética , Potenciales de la Membrana , Simulación de Dinámica Molecular , Mutación/genética , Técnicas de Placa-Clamp , Conformación Proteica , Especificidad por Sustrato
15.
J Biol Chem ; 291(38): 19786-99, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27474737

RESUMEN

Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K(+) ions from the intracellular side toward the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na(+) Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K(+) binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both Na(+) ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na(+) in the same apo system. Analysis of >50-µs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu(290), either charged or neutral, point to the Glu(290) protonation state as a main determinant in the structural reconfiguration of the extracellular vestibule of LeuT in which a "water gate" opens through coordinated motions of residues Leu(25), Tyr(108), and Phe(253) The resulting water channel enables the binding/dissociation of the Na(+) and K(+) ions that are prevalent, respectively, in the extracellular and intracellular environments.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Proteínas de Transporte de Neurotransmisores/química , Potasio/química , Sodio/química , Animales , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cationes Monovalentes/química , Cationes Monovalentes/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Proteínas de Transporte de Neurotransmisores/genética , Proteínas de Transporte de Neurotransmisores/metabolismo , Potasio/metabolismo , Estructura Secundaria de Proteína , Sodio/metabolismo , Homología Estructural de Proteína
16.
J Biol Chem ; 291(11): 5634-5651, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26786096

RESUMEN

The norepinephrine transporter (NET) mediates reuptake of synaptically released norepinephrine in central and peripheral noradrenergic neurons. The molecular processes governing availability of NET in the plasma membrane are poorly understood. Here we use the fluorescent cocaine analogue JHC 1-64, as well as several other approaches, to investigate the trafficking itinerary of NET in live noradrenergic neurons. Confocal imaging revealed extensive constitutive internalization of JHC 1-64-labeled NET in the neuronal somata, proximal extensions and presynaptic boutons. Phorbol 12-myristate 13-acetate increased intracellular accumulation of JHC 1-64-labeled NET and caused a parallel reduction in uptake capacity. Internalized NET strongly colocalized with the "long loop" recycling marker Rab11, whereas less overlap was seen with the "short loop" recycling marker Rab4 and the late endosomal marker Rab7. Moreover, mitigating Rab11 function by overexpression of dominant negative Rab11 impaired NET function. Sorting of NET to the Rab11 recycling compartment was further supported by confocal imaging and reversible biotinylation experiments in transfected differentiated CATH.a cells. In contrast to NET, the dopamine transporter displayed markedly less constitutive internalization and limited sorting to the Rab11 recycling compartment in the differentiated CATH.a cells. Exchange of domains between the two homologous transporters revealed that this difference was determined by non-conserved structural elements in the intracellular N terminus. We conclude that NET displays a distinct trafficking itinerary characterized by continuous shuffling between the plasma membrane and the Rab11 recycling compartment and that the functional integrity of the Rab11 compartment is critical for maintaining proper presynaptic NET function.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Animales , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/análisis , Endocitosis , Endosomas/metabolismo , Células HEK293 , Humanos , Neuronas/citología , Neuronas/metabolismo , Norepinefrina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/análisis , Ésteres del Forbol/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Coloración y Etiquetado , Proteínas de Unión al GTP rab/análisis , Proteínas de Unión al GTP rab/metabolismo
17.
J Biol Chem ; 290(52): 31069-76, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26504078

RESUMEN

The dopamine transporter shapes dopaminergic neurotransmission by clearing extracellular dopamine and by replenishing vesicular stores. The dopamine transporter carries an endogenous binding site for Zn(2+), but the nature of the Zn(2+)-dependent modulation has remained elusive: both, inhibition and stimulation of DAT have been reported. Here, we exploited the high time resolution of patch-clamp recordings to examine the effects of Zn(2+) on the transport cycle of DAT: we recorded peak currents associated with substrate translocation and steady-state currents reflecting the forward transport mode of DAT. Zn(2+) depressed the peak current but enhanced the steady-state current through DAT. The parsimonious explanation is preferential binding of Zn(2+) to the outward facing conformation of DAT, which allows for an allosteric activation of DAT, in both, the forward transport mode and substrate exchange mode. We directly confirmed that Zn(2+) dissociated more rapidly from the inward- than from the outward-facing state of DAT. Finally, we formulated a kinetic model for the action of Zn(2+) on DAT that emulated all current experimental observations and accounted for all previous (in part contradictory) findings. Importantly, the model predicts that the intracellular Na(+) concentration determines whether substrate uptake by DAT is stimulated or inhibited by Zn(2+). This prediction was directly verified. The mechanistic framework provided by the current model is of relevance for the rational design of allosteric activators of DAT. These are of interest for treating de novo loss-of-function mutations of DAT associated with neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD).


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Potenciales de la Membrana , Zinc/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Transporte Biológico Activo/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Células HEK293 , Humanos , Mutación
18.
J Biol Chem ; 290(23): 14582-94, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25903124

RESUMEN

The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Unión Proteica , Conformación Proteica , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
19.
J Biol Chem ; 290(48): 28988-96, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26475859

RESUMEN

Crystal structures of the archaeal homologue GltPh have provided important insights into the molecular mechanism of transport of the excitatory neurotransmitter glutamate. Whereas mammalian glutamate transporters can translocate both glutamate and aspartate, GltPh is only one capable of aspartate transport. Most of the amino acid residues that surround the aspartate substrate in the binding pocket of GltPh are highly conserved. However, in the brain transporters, Thr-352 and Met-362 of the reentrant hairpin loop 2 are replaced by the smaller Ala and Thr, respectively. Therefore, we have studied the effects of T352A and M362T on binding and transport of aspartate and glutamate by GltPh. Substrate-dependent intrinsic fluorescence changes were monitored in transporter constructs containing the L130W mutation. GltPh-L130W/T352A exhibited an ~15-fold higher apparent affinity for l-glutamate than the wild type transporter, and the M362T mutation resulted in an increased affinity of ~40-fold. An even larger increase of the apparent affinity for l-glutamate, around 130-fold higher than that of wild type, was observed with the T352A/M362T double mutant. Radioactive uptake experiments show that GltPh-T352A not only transports aspartate but also l-glutamate. Remarkably, GltPh-M362T exhibited l-aspartate but not l-glutamate transport. The double mutant retained the ability to transport l-glutamate, but its kinetic parameters were very similar to those of GltPh-T352A alone. The differential impact of mutation on binding and transport of glutamate suggests that hairpin loop 2 not only plays a role in the selection of the substrate but also in its translocation.


Asunto(s)
Ácido Aspártico/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Ácido Glutámico/química , Mutación Missense , Proteínas del Tejido Nervioso/química , Sustitución de Aminoácidos , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Transporte Iónico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato/genética
20.
J Biol Chem ; 290(51): 30429-40, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26515061

RESUMEN

The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show that Abcc5(-/-) mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5(-/-) brain. The metabolites that accumulated in Abcc5(-/-) tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5(-/-) brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs.


Asunto(s)
Encéfalo/metabolismo , Dipéptidos/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Dipéptidos/farmacología , Humanos , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacocinética , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas del Tejido Nervioso/genética , Urea/análogos & derivados , Urea/farmacocinética , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA