Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.787
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(5): 445-456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433044

RESUMEN

TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.


Asunto(s)
Glicoproteínas de Membrana , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/química , Animales , Dominios Proteicos , Transducción de Señal , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/química , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/química
2.
Traffic ; 25(1): e12926, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084815

RESUMEN

In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.


Asunto(s)
Glucólisis , NAD , NAD/metabolismo , Glucólisis/fisiología , Axones/metabolismo , Adenosina Trifosfato/metabolismo , Piruvatos/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(3): e2214833120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36634145

RESUMEN

We have previously shown that recovery of visual responses to a deprived eye during the critical period in mouse primary visual cortex requires phosphorylation of the TrkB receptor for BDNF [M. Kaneko, J. L. Hanover, P. M. England, M. P. Stryker, Nat. Neurosci. 11, 497-504 (2008)]. We have now studied the temporal relationship between the production of mature BDNF and the recovery of visual responses under several different conditions. Visual cortical responses to an eye whose vision has been occluded for several days during the critical period and is then re-opened recover rapidly during binocular vision or much more slowly following reverse occlusion, when the previously intact fellow eye is occluded in a model of "patch therapy" for amblyopia. The time to recovery of visual responses differed by more than 18 h between these two procedures, but in each, the production of mature BDNF preceded the physiological recovery. These findings suggest that a spurt of BDNF production is permissive for the growth of connections serving the deprived eye to restore visual responses. Attenuation of recovery of deprived-eye responses by interference with TrkB receptor activation or reduction of BDNF production by interference with homeostatic synaptic scaling had effects consistent with this suggestion.


Asunto(s)
Ambliopía , Corteza Visual , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Corteza Visual/fisiología , Visión Ocular , Privación Sensorial/fisiología , Plasticidad Neuronal/fisiología
4.
J Biol Chem ; 300(6): 107411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38796067

RESUMEN

The myocyte enhancer factor (MEF2) family of transcription factors, originally discovered for its pivotal role in muscle development and function, has emerged as an essential regulator in various aspects of brain development and neuronal plasticity. The MEF2 transcription factors are known to regulate numerous important genes in the nervous system, including brain-derived neurotrophic factor (BDNF), a small secreted neurotrophin responsible for promoting the survival, growth, and differentiation of neurons. The expression of the Bdnf gene is spatiotemporally controlled by various transcription factors binding to both its proximal and distal regulatory regions. While previous studies have investigated the connection between MEF2 transcription factors and Bdnf, the endogenous function of MEF2 factors in the transcriptional regulation of Bdnf remains largely unknown. Here, we aimed to deepen the knowledge of MEF2 transcription factors and their role in the regulation of Bdnf comparatively in rat cortical and hippocampal neurons. As a result, we demonstrate that the MEF2 transcription factor-dependent enhancer located at -4.8 kb from the Bdnf gene regulates the endogenous expression of Bdnf in hippocampal neurons. In addition, we confirm neuronal activity-dependent activation of the -4.8 kb enhancer in vivo. Finally, we show that specific MEF2 family transcription factors have unique roles in the regulation of Bdnf, with the specific function varying based on the particular brain region and stimuli. Altogether, we present MEF2 family transcription factors as crucial regulators of Bdnf expression, fine-tuning Bdnf expression through both distal and proximal regulatory regions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Elementos de Facilitación Genéticos , Hipocampo , Factores de Transcripción MEF2 , Neuronas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Animales , Hipocampo/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Neuronas/citología , Ratas , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Regulación de la Expresión Génica , Células Cultivadas , Ratas Sprague-Dawley
5.
J Cell Sci ; 136(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36458801

RESUMEN

Aberrant angiogenesis is a hallmark of cardiovascular and retinal neovascular disease. The STAT3 signaling pathway represents a potential pharmacological target for these diseases due to its impact on angiogenesis. Surprisingly, some STAT3 activators, such as the IL-6 cytokine family member oncostatin M (OSM), enhance angiogenesis, whereas others, such as ciliary neurotropic factor (CNTF), reduce it. This study aimed to clarify these conflicting effects. In contrast to the anti-angiogenic cytokine CNTF, the pro-angiogenic cytokine OSM was able to activate intracellular signaling pathways beyond the STAT3 pathway, including the ERK and AKT pathways. These differences translated into transcriptomic and metabolic shifts. siRNA-mediated STAT3 knockdown experiments showed a decrease in VEGF-induced endothelial migration and sprouting, enhancing the pro-angiogenic drive of OSM and switching the CNTF response from anti-angiogenic to pro-angiogenic. These effects correlated with a transcriptomic shift representing enhanced STAT1 and ERK activity following STAT3 knockdown, including a compensatory prolonged phosphorylated STAT1 activity. In conclusion, the angiogenic effect of STAT3 appears to be determined by cytokine-induced STAT3 specificity and simultaneous activity of other intracellular signaling pathways, whereas the STAT3 pathway, predominantly recognized for its pro-angiogenic phenotypes, reveals novel anti-angiogenic potential.


Asunto(s)
Citocinas , Interleucina-6 , Citocinas/metabolismo , Interleucina-6/metabolismo , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/farmacología , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
6.
Gastroenterology ; 166(3): 437-449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37995867

RESUMEN

BACKGROUND & AIMS: RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility. METHODS: RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells. RESULTS: Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), both of which can alter motility. RET kinase inhibition exaggerated PYY and GLP-1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET. CONCLUSIONS: RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Lactante , Humanos , Masculino , Ratones , Animales , Péptido YY , Serotonina , Enfermedad de Hirschsprung/genética , Células Enteroendocrinas , Intestino Delgado , Péptido 1 Similar al Glucagón , Proteínas Proto-Oncogénicas c-ret/genética
7.
FASEB J ; 38(1): e23340, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031959

RESUMEN

Facial nerve regeneration still lacks a well-defined and practical clinical intervention. The survival of central facial motoneuron is a critical component in the successful peripheral facial nerve regeneration. Endogenous GDNF is vital for facial nerve regeneration according to earlier investigations. Nevertheless, the low endogenous GDNF level makes it challenging to achieve therapeutic benefits. Thus, we crushed the main trunk of facial nerve in SD rats to provide a model of peripheral facial paralysis, and we administered exogenous GDNF and Rapa treatments. We observed changes in the animal behavior scores, the morphology of facial nerve and buccinator muscle, the electrophysiological of facial nerve, and the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the facial motoneurons. We discovered that GDNF could boost axon regeneration, hasten the recovery of facial paralysis symptoms and nerve conduction function, and increase the expression of GDNF, GAP-43, and PI3K/AKT/mTOR signaling pathway-related molecules in the central facial motoneurons. Therefore, exogenous GDNF injection into the buccinator muscle can enhance facial nerve regeneration following crushing injury and protect facial neurons via the PI3K/AKT/mTOR signaling pathway. This will offer a fresh perspective and theoretical foundation for the management of clinical facial nerve regeneration.


Asunto(s)
Axones , Nervio Facial , Ratas , Animales , Ratas Sprague-Dawley , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteína GAP-43 , Regeneración Nerviosa/fisiología , Neuronas Motoras/fisiología , Serina-Treonina Quinasas TOR , Transducción de Señal
8.
Circ Res ; 132(7): 867-881, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36884028

RESUMEN

BACKGROUND: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, ß-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the ß-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS: We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, ß3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS: In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the ß3AR-agonist, BRL-37344, increased myocyte BDNF content, while ß3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the ß1AR blocker, metoprolol, via upregulated ß3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS: BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac ß3AR stimulation, or ß-blockers (via upregulated ß3AR), is another BDNF-based means to fend off chronic postischemic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Neuroblastoma , Disfunción Ventricular Izquierda , Ratas , Ratones , Humanos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Endoteliales/metabolismo , Neuroblastoma/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Receptores Adrenérgicos beta/metabolismo
9.
Brain ; 147(1): 122-134, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37633263

RESUMEN

Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.


Asunto(s)
Síndrome de Rett , Humanos , Femenino , Ratones , Animales , Síndrome de Rett/terapia , Factor de Crecimiento Nervioso/metabolismo , Distribución Tisular , Proteína 2 de Unión a Metil-CpG/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad
10.
Mol Ther ; 32(5): 1407-1424, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429927

RESUMEN

Maintaining functional adipose innervation is critical for metabolic health. We found that subcutaneous white adipose tissue (scWAT) undergoes peripheral neuropathy (PN) with obesity, diabetes, and aging (reduced small-fiber innervation and nerve/synaptic/growth-cone/vesicle markers, altered nerve activity). Unlike with nerve injuries, peripheral nerves do not regenerate with PN, and therefore new therapies are needed for treatment of this condition affecting 20-30 million Americans. Here, we validated a gene therapy approach using an adipocyte-tropic adeno-associated virus (AAV; serotype Rec2) to deliver neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) directly to scWAT to improve tissue-specific PN as a proof-of-concept approach. AAVRec2-BDNF intra-adipose delivery improved tissue innervation in obese/diabetic mice with PN, but after longer periods of dietary obesity there was reduced efficacy, revealing a key time window for therapies. AAVRec2-NGF also increased scWAT innervation in obese mice and was more effective than BDNF, likely because Rec2 targeted adipocytes, the tissue's endogenous NGF source. AAVRec2-NGF also worked well even after 25 weeks of dietary obesity, unlike BDNF, which likely needs a vector that targets its physiological cellular source (stromal vascular fraction cells). Given the differing effects of AAVs carrying NGF versus BDNF, a combined therapy may be ideal for PN.


Asunto(s)
Adipocitos , Factor Neurotrófico Derivado del Encéfalo , Dependovirus , Terapia Genética , Vectores Genéticos , Obesidad , Grasa Subcutánea , Animales , Dependovirus/genética , Obesidad/terapia , Obesidad/metabolismo , Ratones , Terapia Genética/métodos , Adipocitos/metabolismo , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Grasa Subcutánea/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Técnicas de Transferencia de Gen , Humanos , Masculino , Enfermedades del Sistema Nervioso Periférico/terapia , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Transducción Genética
11.
Proc Natl Acad Sci U S A ; 119(26): e2202912119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727967

RESUMEN

VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.


Asunto(s)
Movimientos Oculares , Neuronas Motoras , Terminales Presinápticos , Factor A de Crecimiento Endotelial Vascular , Animales , Anticuerpos Neutralizantes , Axotomía , Gatos , Movimientos Oculares/efectos de los fármacos , Movimientos Oculares/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Músculos Oculomotores/efectos de los fármacos , Músculos Oculomotores/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiología
12.
J Cell Mol Med ; 28(8): e18246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520223

RESUMEN

Here, it was aimed to investigate the effects of intracerebroventricular (ICV) Brain Derived Neurotrophic Factor (BDNF) infusion for 7 days following cerebral ischemia (CI) on autophagy in neurons in the penumbra. Focal CI was created by the occlusion of the right middle cerebral artery. A total of 60 rats were used and divided into 4 groups as Control, Sham CI, CI and CI + BDNF. During the 7-day reperfusion period, aCSF (vehicle) was infused to Sham CI and CI groups, and BDNF infusion was administered to the CI + BDNF group via an osmotic minipump. By the end of the 7th day of reperfusion, Beclin-1, LC3, p62 and cleaved caspase-3 protein levels in the penumbra area were evaluated using Western blot and immunofluorescence. BDNF treatment for 7 days reduced the infarct area after CI, induced the autophagic proteins Beclin-1, LC3 and p62 and suppressed the apoptotic protein cleaved caspase-3. Furthermore, rotarod and adhesive removal test times of BDNF treatment started to improve from the 4th day, and the neurological deficit score from the 5th day. ICV BDNF treatment following CI reduced the infarct area by inducing autophagic proteins Beclin-1, LC3 and p62 and inhibiting the apoptotic caspase-3 protein while its beneficial effects were apparent in neurological tests from the 4th day.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Sprague-Dawley , Caspasa 3 , Beclina-1 , Isquemia Encefálica/metabolismo , Apoptosis , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Autofagia , Infarto , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
13.
J Biol Chem ; 299(2): 102897, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36639028

RESUMEN

Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , ARN Mensajero , Regiones no Traducidas , Animales , Bovinos , Ratas , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Exones , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas/fisiología
14.
Glia ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961612

RESUMEN

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.

15.
Stroke ; 55(3): 643-650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38235585

RESUMEN

BACKGROUND: BDNF (brain-derived neurotrophic factor) is widely implicated in the pathophysiological process of stroke, but the effect of BDNF on poststroke cognitive impairment (PSCI) remains unclear. We aimed to investigate the association between baseline serum BDNF and the risk of PSCI at 3 months in a multicenter study based on a preplanned ancillary study of the CATIS trial (China Antihypertensive Trial in Acute Ischemic Stroke). METHODS: We examined serum BDNF levels at baseline and used the Mini-Mental State Examination and Montreal Cognitive Assessment to evaluate cognitive function at 3-month follow-up after ischemic stroke. PSCI was defined as Mini-Mental State Examination score <27 or Montreal Cognitive Assessment score <25. Logistic regression analyses were performed to evaluate the association between serum BDNF and the risk of 3-month PSCI. RESULTS: In this ancillary study, a total of 660 patients with ischemic stroke with hypertension were included, and 593 patients (mean age, 59.90±10.44 years; 410 males and 183 females) were finally included in this analysis. According to mini-mental state examination score, after adjustment for age, sex, education, baseline National Institutes of Health Stroke Scale score, APOE ɛ4 carriers, and other potential confounders, the odds ratio of PSCI for the highest tertile of BDNF was 0.60 ([95% CI, 0.39-0.94]; P=0.024) compared with the lowest tertile. Multiple-adjusted spline regression model showed a linear association of serum BDNF levels with PSCI at 3 months (P value for linearity=0.010). Adding serum BDNF to conventional prognostic factors slightly improved the risk reclassification of PSCI (net reclassification improvement: 27.46%, P=0.001; integrated discrimination index: 1.02%, P=0.015). Similar significant findings were observed when PSCI was defined by the Montreal Cognitive Assessment score. CONCLUSIONS: Elevated serum BDNF levels were associated with a decreased risk of PSCI at 3 months, suggesting that serum BDNF might be a potential predictive biomarker for PSCI among patients with ischemic stroke with hypertension.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Hipertensión , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Accidente Cerebrovascular Isquémico/complicaciones , Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/complicaciones , Hipertensión/epidemiología , Hipertensión/complicaciones
16.
Mol Cancer ; 23(1): 81, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658978

RESUMEN

The Neurotrophic tyrosine receptor kinase (NTRK) family plays important roles in tumor progression and is involved in tumor immunogenicity. Here, we conducted a comprehensive bioinformatic and clinical analysis to investigate the characteristics of NTRK mutations and their association with the outcomes in pan-cancer immunotherapy. In 3888 patients across 12 cancer types, patients with NTRK-mutant tumors showed more benefit from immunotherapy in terms of objective response rate (ORR; 41.7% vs. 27.5%; P < 0.001), progress-free survival (PFS; HR = 0.80; 95% CI, 0.68-0.96; P = 0.01), and overall survival (OS; HR = 0.71; 95% CI, 0.61-0.82; P < 0.001). We further constructed and validated a nomogram to estimate survival probabilities after the initiation of immunotherapy. Multi-omics analysis on intrinsic and extrinsic immune landscapes indicated that NTRK mutation was associated with enhanced tumor immunogenicity, enriched infiltration of immune cells, and improved immune responses. In summary, NTRK mutation may promote cancer immunity and indicate favorable outcomes in immunotherapy. Our results have implications for treatment decision-making and developing immunotherapy for personalized care.


Asunto(s)
Inmunoterapia , Mutación , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/mortalidad , Biomarcadores de Tumor/genética , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Nomogramas , Biología Computacional/métodos
17.
Neurobiol Dis ; 199: 106608, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025271

RESUMEN

BACKGROUND: Myokines play vital roles in both stable coronary artery disease (SCAD) and depression. Meanwhile, there is a pressing necessity to find effective biomarkers for early predictor of major adverse cardiovascular events (MACE) in SCAD patients with depressive symptoms. METHODS: A single-center, 5-year follow-up study was investigated. MACE was defined as composite end points, including cardiovascular death, non-fatal stroke, non-fatal myocardial infarction, coronary artery revascularization, or hospitalization for unstable angina. RESULTS: A total of 116 SCAD patients were enrolled, consisting of 30 cases (25.9%) without depressive symptoms and 86 cases (74.1%) with depressive symptoms. During the follow-up, 3 patients (2.6%) were lost. Out of 113 patients, 51 (45.1%) experienced MACE. In the subgroup of 84 SCAD patients with depressive symptoms, 44 cases (52.4%) of MACE were observed. Finally, mature brain-derived neurotrophic factor (mBDNF), pro-brain-derived neurotrophic factor, receptor activator of nuclear factor-κB ligand, smoking history, hypertension and cystatin C were incorporated into the predictive model. CONCLUSIONS: Depressive symptoms represent an independent risk factor for MACE in patients with SCAD. Additionally, low mBDNF expression may be an important early predictor for MACE in SCAD patients with depressive symptoms. The predictive model may exhibit a commendable predictive performance for MACE in SCAD patients with depressive symptoms.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Enfermedad de la Arteria Coronaria , Depresión , Humanos , Masculino , Femenino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de la Arteria Coronaria/psicología , Persona de Mediana Edad , Estudios de Seguimiento , Depresión/metabolismo , Anciano , Valor Predictivo de las Pruebas , Biomarcadores
18.
Neurobiol Dis ; 190: 106377, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092270

RESUMEN

Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Humanos , Factor Neurotrófico Derivado del Encéfalo , Neuronas Motoras/fisiología , Tropomiosina , Receptor trkB
19.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583640

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Asunto(s)
Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Humanos , Ratones Transgénicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutación
20.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608784

RESUMEN

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Modelos Animales de Enfermedad , Enfermedad de Huntington , Neuronas , Sinapsis , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Ratones Transgénicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA