Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Liver Int ; 43(9): 2026-2038, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349903

RESUMEN

BACKGROUND & AIMS: PIEZO1 and TRPV4 are mechanically and osmotically regulated calcium-permeable channels. The aim of this study was to determine the relevance and relationship of these channels in the contractile tone of the hepatic portal vein, which experiences mechanical and osmotic variations as it delivers blood to the liver from the intestines, gallbladder, pancreas and spleen. METHODS: Wall tension was measured in freshly dissected portal veins from adult male mice, which were genetically unmodified or modified for either a non-disruptive tag in native PIEZO1 or endothelial-specific PIEZO1 deletion. Pharmacological agents were used to activate or inhibit PIEZO1, TRPV4 and associated pathways, including Yoda1 and Yoda2 for PIEZO1 and GSK1016790A for TRPV4 agonism, respectively. RESULTS: PIEZO1 activation leads to nitric oxide synthase- and endothelium-dependent relaxation of the portal vein. TRPV4 activation causes contraction, which is also endothelium-dependent but independent of nitric oxide synthase. The TRPV4-mediated contraction is suppressed by inhibitors of phospholipase A2 and cyclooxygenases and mimicked by prostaglandin E2 , suggesting mediation by arachidonic acid metabolism. TRPV4 antagonism inhibits the effect of agonising TRPV4 but not PIEZO1. Increased wall stretch and hypo-osmolality inhibit TRPV4 responses while lacking effects on or amplifying PIEZO1 responses. CONCLUSIONS: The portal vein contains independently functioning PIEZO1 channels and TRPV4 channels in the endothelium, the pharmacological activation of which leads to opposing effects of vessel relaxation (PIEZO1) and contraction (TRPV4). In mechanical and osmotic strain, the PIEZO1 mechanism dominates. Modulators of these channels could present important new opportunities for manipulating liver perfusion and regeneration in disease and surgical procedures.


Asunto(s)
Canales Iónicos , Óxido Nítrico , Vena Porta , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Endotelio/metabolismo , Óxido Nítrico Sintasa/metabolismo , Presión Osmótica , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Vasodilatación , Canales Iónicos/genética , Canales Iónicos/metabolismo
2.
J Exp Bot ; 73(3): 631-635, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34661650

RESUMEN

Programmed cell death is a tightly regulated genetically controlled process that leads to cell suicide and eliminates cells that are either no longer needed or damaged/harmful. Nucleotide-binding leucine-rich repeat proteins have recently emerged as a novel class of Ca2+-permeable channels that operate in plant immune responses. This viewpoint argues that the unique structure of this channel, its permeability to other cations, and specificity of its operation make it an ideal candidate to mediate cell signaling and adaptive responses not only to pathogens but also to a broad range of abiotic stress factors.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Plantas , Adaptación Fisiológica , Nucleótidos/metabolismo , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Transducción de Señal
3.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884612

RESUMEN

Clinical and animal studies have demonstrated that chemotherapeutic doxorubicin (DOX) increases arterial stiffness, a predictor of cardiovascular risk. Despite consensus about DOX-impaired endothelium-dependent vasodilation as a contributing mechanism, some studies have reported conflicting results on vascular smooth muscle cell (VSMC) function after DOX treatment. The present study aimed to investigate the effects of DOX on VSMC function. To this end, mice received a single injection of 4 mg DOX/kg, or mouse aortic segments were treated ex vivo with 1 µM DOX, followed by vascular reactivity evaluation 16 h later. Phenylephrine (PE)-induced VSMC contraction was decreased after DOX treatment. DOX did not affect the transient PE contraction dependent on Ca2+ release from the sarcoplasmic reticulum (0 mM Ca2+), but it reduced the subsequent tonic phase characterised by Ca2+ influx. These findings were supported by similar angiotensin II and attenuated endothelin-1 contractions. The involvement of voltage-gated Ca2+ channels in DOX-decreased contraction was excluded by using levcromakalim and diltiazem in PE-induced contraction and corroborated by similar K+ and serotonin contractions. Despite the evaluation of multiple blockers of transient receptor potential channels, the exact mechanism for DOX-decreased VSMC contraction remains elusive. Surprisingly, DOX reduced ex vivo but not in vivo arterial stiffness, highlighting the importance of appropriate timing for evaluating arterial stiffness in DOX-treated patients.


Asunto(s)
Calcio/metabolismo , Doxorrubicina/toxicidad , Endotelio Vascular/patología , Contracción Muscular , Músculo Liso Vascular/patología , Rigidez Vascular/efectos de los fármacos , Vasoconstricción , Animales , Antibióticos Antineoplásicos/toxicidad , Canales de Calcio/metabolismo , Endotelio Vascular/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos
4.
Plant Cell Physiol ; 61(2): 403-415, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693150

RESUMEN

Although control of xylem ion loading is essential to confer salinity stress tolerance, specific details behind this process remain elusive. In this work, we compared the kinetics of xylem Na+ and K+ loading between two halophytes (Atriplex lentiformis and quinoa) and two glycophyte (pea and beans) species, to understand the mechanistic basis of the above process. Halophyte plants had high initial amounts of Na+ in the leaf, even when grown in the absence of the salt stress. This was matched by 7-fold higher xylem sap Na+ concentration compared with glycophyte plants. Upon salinity exposure, the xylem sap Na+ concentration increased rapidly but transiently in halophytes, while in glycophytes this increase was much delayed. Electrophysiological experiments using the microelectrode ion flux measuring technique showed that glycophyte plants tend to re-absorb Na+ back into the stele, thus reducing xylem Na+ load at the early stages of salinity exposure. The halophyte plants, however, were capable to release Na+ even in the presence of high Na+ concentrations in the xylem. The presence of hydrogen peroxide (H2O2) [mimicking NaCl stress-induced reactive oxygen species (ROS) accumulation in the root] caused a massive Na+ and Ca2+ uptake into the root stele, while triggering a substantial K+ efflux from the cytosol into apoplast in glycophyte but not halophytes species. The peak in H2O2 production was achieved faster in halophytes (30 min vs 4 h) and was attributed to the increased transcript levels of RbohE. Pharmacological data suggested that non-selective cation channels are unlikely to play a major role in ROS-mediated xylem Na+ loading.


Asunto(s)
Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/fisiología , Xilema/fisiología , Atriplex/fisiología , Chenopodium quinoa/fisiología , Fenómenos Electrofisiológicos , Fabaceae/fisiología , Peróxido de Hidrógeno/metabolismo , Iones , Cinética , Pisum sativum/fisiología , Hojas de la Planta , Raíces de Plantas/metabolismo , Potasio , Especies Reactivas de Oxígeno , Salinidad , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal/genética , Sodio , Transcriptoma
5.
Exp Eye Res ; 161: 61-70, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28603015

RESUMEN

Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca2+-dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca2+- and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca2+-activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H2O2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca2+- and H2O2-activated non-selective cation channels with properties of TRPM2.


Asunto(s)
Calcio/metabolismo , Cationes/metabolismo , Células Epiteliales/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Cristalino/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Anoctaminas , Western Blotting , Línea Celular , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Cristalino/metabolismo , Potenciales de la Membrana , Técnicas de Placa-Clamp , Proteínas de Transferencia de Fosfolípidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPC/metabolismo
6.
Pharm Biol ; 55(1): 2136-2144, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28982307

RESUMEN

CONTEXT: Fructus Psoralea, Psoralea corylifolia L. (Leguminosae), has been widely used in traditional medicines for the treatment of dermatitis, leukoderma, asthma and osteoporosis. OBJECTIVES: In this study, we sought to study mechanisms underlying the vasoactive properties of Psoralea corylifolia extract (PCE) and its active ingredients. MATERIALS AND METHODS: To study mechanisms underlying the vasoactive properties of PCE prepared by extracting dried seeds of Psoralea corylifolia with 70% ethanol, isometric tension recordings of rat aortic rings and the ionic currents through TRPC3 (transient receptor potential canonical 3) channels were measured with the cumulative concentration (10-600 µg/mL) of PCE or its constituents. RESULTS: Cumulative treatment with PCE caused the relaxation of pre-contracted aortic rings in the presence and absence of endothelium with EC50 values of 61.27 ± 3.11 and 211.13 ± 18.74 µg/mL, respectively. Pretreatment with inhibitors of nitric oxide (NO) synthase, guanylate cyclase, or cyclooxygenase and pyrazole 3, a selective TRPC3 channel blocker, significantly decreased PCE-induced vasorelaxation (p < 0.01). The PCE constituents, bakuchiol, isobavachalcone, isopsoralen and psoralen, inhibited hTRPC3 currents (inhibited by 40.6 ± 2.7, 27.1 ± 7.9, 35.1 ± 4.8 and 47.4 ± 3.9%, respectively). Furthermore, these constituents significantly relaxed pre-contracted aortic rings (EC50 128.9, 4.5, 32.1 and 114.9 µg/mL, respectively). DISCUSSION AND CONCLUSIONS: Taken together, our data indicate that the vasodilatory actions of PCE are dependent on endothelial NO/cGMP and also involved in prostaglandin production. PCE and its active constituents, bakuchiol, isobavachalcone, isopsoralen and psoralen, caused dose-dependent inhibition of TRPC3 channels, indicating that those ingredients attenuate Phe-induced vasoconstriction.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Endotelio Vascular/efectos de los fármacos , Prostaglandinas , Psoralea , Canales Catiónicos TRPC/antagonistas & inhibidores , Vasodilatación/efectos de los fármacos , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/aislamiento & purificación , Endotelio Vascular/fisiología , Células HEK293 , Humanos , Masculino , Técnicas de Cultivo de Órganos , Prostaglandinas/metabolismo , Ratas , Ratas Sprague-Dawley , Semillas , Canales Catiónicos TRPC/metabolismo , Vasodilatación/fisiología
8.
Adv Exp Med Biol ; 898: 251-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27161232

RESUMEN

Transient receptor potential canonical subfamily, member 7 (TRPC7) is the most recently identified member of the TRPC family of Ca(2+)-permeable non-selective cation channels. The gene encoding the TRPC7 channel plasma membrane protein was first cloned from mouse brain. TRPC7 mRNA and protein have been detected in cell types derived from multiple organ systems from various species including humans. Gq-coupled protein receptor activation is the predominant mode of TRPC7 activation. Lipid metabolites involved in the phospholipase C (PLC) signaling pathway, including diacylglycerol (DAG) and its precursor the phosphatidylinositol-4,5-bisphosphate (PIP2), have been shown to be direct regulators of TRPC7 channel. TRPC7 channels have been linked to the regulation of various cellular functions however, the depth of our understanding of TRPC7 channel function and regulation is limited in comparison to other TRP channel family members. This review takes a historical look at our current knowledge of TRPC7 mechanisms of activation and its role in cellular physiology and pathophysiology.


Asunto(s)
Calcio/metabolismo , Canales Catiónicos TRPC/fisiología , Animales , Señalización del Calcio , Transporte Iónico , Ratones , Conformación Proteica , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/metabolismo
9.
Br J Pharmacol ; 180(16): 2039-2063, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36457143

RESUMEN

BACKGROUND AND PURPOSE: The protein PIEZO1 forms mechanically activated, calcium-permeable, non-selective cation channels in numerous cell types from several species. Options for pharmacological modulation are limited and so we modified a small-molecule agonist at PIEZO1 channels (Yoda1) to increase the ability to modulate these channels. EXPERIMENTAL APPROACH: Medicinal chemistry generated Yoda1 analogues that were tested in intracellular calcium and patch-clamp assays on cultured cells exogenously expressing human or mouse PIEZO1 or mouse PIEZO2. Physicochemical assays and wire myography assays on veins from mice with genetic disruption of PIEZO1. KEY RESULTS: A Yoda1 analogue (KC159) containing 4-benzoic acid instead of the pyrazine of Yoda1 and its potassium salt (KC289) have equivalent or improved reliability, efficacy and potency, compared with Yoda1 in functional assays. Tested against overexpressed mouse PIEZO1 in calcium assays, the order of potency (as EC50 values, nM) was KC289, 150 > KC159 280 > Yoda1, 600). These compounds were selective for PIEZO1 over other membrane proteins, and the physicochemical properties were more suited to physiological conditions than those of Yoda1. The vasorelaxant effects were consistent with PIEZO1 agonism. In contrast, substitution with 2-benzoic acid failed to generate a modulator. CONCLUSION AND IMPLICATIONS: 4-Benzoic acid modification of Yoda1 improves PIEZO1 agonist activity at PIEZO1 channels. We suggest naming this new modulator Yoda2. It should be a useful tool compound in physiological assays and facilitate efforts to identify a binding site. Such compounds may have therapeutic potential, for example, in diseases linked genetically to PIEZO1 such as lymphatic dysplasia.


Asunto(s)
Calcio , Mecanotransducción Celular , Ratones , Humanos , Animales , Calcio/metabolismo , Reproducibilidad de los Resultados , Mecanotransducción Celular/fisiología , Sitios de Unión , Canales de Calcio/metabolismo , Canales Iónicos/metabolismo
10.
Front Physiol ; 12: 743094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707512

RESUMEN

Handbooks of physiology state that the strategy adopted by red blood cells (RBCs) to preserve cell volume is to maintain membrane permeability for cations at its minimum. However, enhanced cation permeability can be measured and observed in specific physiological and pathophysiological situations such as in vivo senescence, storage at low temperature, sickle cell anemia and many other genetic defects affecting transporters, membrane or cytoskeletal proteins. Among cation pathways, cation channels are able to dissipate rapidly the gradients that are built and maintained by the sodium and calcium pumps. These situations are very well-documented but a mechanistic understanding of complex electrophysiological events underlying ion transports is still lacking. In addition, non-selective cation (NSC) channels present in the RBC membrane have proven difficult to molecular identification and functional characterization. For instance, NSC channel activity can be elicited by Low Ionic Strength conditions (LIS): the associated change in membrane potential triggers its opening in a voltage dependent manner. But, whereas this depolarizing media produces a spectacular activation of NSC channel, Gárdos channel-evoked hyperpolarization's have been shown to induce sodium entry through a pathway thought to be conductive and termed P cat. Using the CCCP method, which allows to follow fast changes in membrane potential, we show here (i) that hyperpolarization elicited by Gárdos channel activation triggers sodium entry through a conductive pathway, (ii) that chloride conductance inhibition unveils such conductive cationic conductance, (iii) that the use of the specific chloride conductance inhibitor NS3623 (a derivative of Neurosearch compound NS1652), at concentrations above what is needed for full anion channel block, potentiates the non-selective cation conductance. These results indicate that a non-selective cation channel is likely activated by the changes in the driving force for cations rather than a voltage dependence mechanism per se.

11.
Plants (Basel) ; 9(2)2020 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050442

RESUMEN

Cadmium (Cd) is present in many soils and, when entering the food chain, represents a major health threat to humans. Reducing Cd accumulation in plants is complicated by the fact that most known Cd transporters also operate in the transport of essential nutrients such as Zn, Fe, Mn, or Cu. This work summarizes the current knowledge of mechanisms mediating Cd uptake, radial transport, and translocation within the plant. It is concluded that real progress in the field may be only achieved if the transport of Cd and the above beneficial micronutrients is uncoupled, and we discuss the possible ways of achieving this goal. Accordingly, we suggest that the major focus of research in the field should be on the structure-function relations of various transporter isoforms and the functional assessment of their tissue-specific operation. Of specific importance are two tissues. The first one is a xylem parenchyma in plant roots; a major "controller" of Cd loading into the xylem and its transport to the shoot. The second one is a phloem tissue that operates in the last step of a metal transport. Another promising and currently underexplored avenue is to understand the role of non-selective cation channels in Cd uptake and reveal mechanisms of their regulation.

12.
Cell Rep ; 31(5): 107596, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375046

RESUMEN

Hypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca2+-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells. Genetic deletion of TMEM63B results in necroptosis of outer hair cells (OHCs) and progressive hearing loss. Mechanistically, the TMEM63B channel mediates hypo-osmolarity-induced Ca2+ influx, which activates Ca2+-dependent K+ channels required for the maintenance of OHC morphology. These findings demonstrate that TMEM63B is an osmosensor of the mammalian inner ear and the long-sought cation channel mediating Ca2+-dependent RVD.


Asunto(s)
Audición/efectos de los fármacos , Soluciones Hipotónicas/farmacología , Transporte Iónico/fisiología , Concentración Osmolar , Canales de Potasio/metabolismo , Animales , Calcio/metabolismo , Cationes/metabolismo , Tamaño de la Célula/efectos de los fármacos , Ratones Noqueados , Potasio/metabolismo , Canales de Potasio/genética , Transducción de Señal/efectos de los fármacos
13.
Cells ; 9(1)2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947602

RESUMEN

(1) Background: Members of the TRPC3/TRPC6/TRPC7 subfamily of canonical transient receptor potential (TRP) channels share an amino acid similarity of more than 80% and can form heteromeric channel complexes. They are directly gated by diacylglycerols in a protein kinase C-independent manner. To assess TRPC3 channel functions without concomitant protein kinase C activation, direct activators are highly desirable. (2) Methods: By screening 2000 bioactive compounds in a Ca2+ influx assay, we identified artemisinin as a TRPC3 activator. Validation and characterization of the hit was performed by applying fluorometric Ca2+ influx assays and electrophysiological patch-clamp experiments in heterologously or endogenously TRPC3-expressing cells. (3) Results: Artemisinin elicited Ca2+ entry through TRPC3 or heteromeric TRPC3:TRPC6 channels, but did not or only weakly activated TRPC6 and TRPC7. Electrophysiological recordings confirmed the reversible and repeatable TRPC3 activation by artemisinin that was inhibited by established TRPC3 channel blockers. Rectification properties and reversal potentials were similar to those observed after stimulation with a diacylglycerol mimic, indicating that artemisinin induces a similar active state as the physiological activator. In rat pheochromocytoma PC12 cells that endogenously express TRPC3, artemisinin induced a Ca2+ influx and TRPC3-like currents. (4) Conclusions: Our findings identify artemisinin as a new biologically active entity to activate recombinant or native TRPC3-bearing channel complexes in a membrane-confined fashion.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Canales Catiónicos TRPC/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
14.
Free Radic Res ; 53(1): 94-103, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30526150

RESUMEN

Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30 nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.


Asunto(s)
Arterias/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Peróxido de Hidrógeno/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Vasoconstricción/efectos de los fármacos , Animales , Arterias/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
15.
Front Chem ; 6: 142, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755973

RESUMEN

Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 µM) and AqB011 (IC50 14 µM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P), or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 µM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.

16.
Front Immunol ; 8: 842, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785264

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a major etiologic agent of bacterial pneumonia. Autolysis and antibiotic-mediated lysis of pneumococci induce release of the pore-forming toxin, pneumolysin (PLY), their major virulence factor, which is a prominent cause of acute lung injury. PLY inhibits alveolar liquid clearance and severely compromises alveolar-capillary barrier function, leading to permeability edema associated with pneumonia. As a consequence, alveolar flooding occurs, which can precipitate lethal hypoxemia by impairing gas exchange. The α subunit of the epithelial sodium channel (ENaC) is crucial for promoting Na+ reabsorption across Na+-transporting epithelia. However, it is not known if human lung microvascular endothelial cells (HL-MVEC) also express ENaC-α and whether this subunit is involved in the regulation of their barrier function. METHODS: The presence of α, ß, and γ subunits of ENaC and protein phosphorylation status in HL-MVEC were assessed in western blotting. The role of ENaC-α in monolayer resistance of HL-MVEC was examined by depletion of this subunit by specific siRNA and by employing the TNF-derived TIP peptide, a specific activator that directly binds to ENaC-α. RESULTS: HL-MVEC express all three subunits of ENaC, as well as acid-sensing ion channel 1a (ASIC1a), which has the capacity to form hybrid non-selective cation channels with ENaC-α. Both TIP peptide, which specifically binds to ENaC-α, and the specific ASIC1a activator MitTx significantly strengthened barrier function in PLY-treated HL-MVEC. ENaC-α depletion significantly increased sensitivity to PLY-induced hyperpermeability and in addition, blunted the protective effect of both the TIP peptide and MitTx, indicating an important role for ENaC-α and for hybrid NSC channels in barrier function of HL-MVEC. TIP peptide blunted PLY-induced phosphorylation of both calmodulin-dependent kinase II (CaMKII) and of its substrate, the actin-binding protein filamin A (FLN-A), requiring the expression of both ENaC-α and ASIC1a. Since non-phosphorylated FLN-A promotes ENaC channel open probability and blunts stress fiber formation, modulation of this activity represents an attractive target for the protective actions of ENaC-α in both barrier function and liquid clearance. CONCLUSION: Our results in cultured endothelial cells demonstrate a previously unrecognized role for ENaC-α in strengthening capillary barrier function that may apply to the human lung. Strategies aiming to activate endothelial NSC channels that contain ENaC-α should be further investigated as a novel approach to improve barrier function in the capillary endothelium during pneumonia.

17.
Curr Top Behav Neurosci ; 33: 17-50, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27909990

RESUMEN

Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX1 and OX2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells - mainly neurons but also other types of cells - and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.


Asunto(s)
Orexinas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Receptores de Orexina/metabolismo
18.
Cardiovasc Res ; 108(1): 21-30, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26272755

RESUMEN

TRPM4 forms a non-selective cation channel activated by internal Ca(2+). Its functional expression was demonstrated in cardiomyocytes of several mammalian species including humans, but the channel is also present in many other tissues. The recent characterization of the TRPM4 inhibitor 9-phenanthrol, and the availability of transgenic mice have helped to clarify the role of TRPM4 in cardiac electrical activity, including diastolic depolarization from the sino-atrial node cells in mouse, rat, and rabbit, as well as action potential duration in mouse cardiomyocytes. In rat and mouse, pharmacological inhibition of TRPM4 prevents cardiac ischaemia-reperfusion injuries and decreases the occurrence of arrhythmias. Several studies have identified TRPM4 mutations in patients with inherited cardiac diseases including conduction blocks and Brugada syndrome. This review identifies TRPM4 as a significant actor in cardiac electrophysiology.


Asunto(s)
Corazón/fisiología , Canales Catiónicos TRPM/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Diástole/fisiología , Humanos , ARN Mensajero/análisis , Canales Catiónicos TRPM/genética
19.
Br J Pharmacol ; 171(7): 1600-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24433510

RESUMEN

The phenanthrene-derivative 9-phenanthrol is a recently identified inhibitor of the transient receptor potential melastatin (TRPM) 4 channel, a Ca(2+) -activated non-selective cation channel whose mechanism of action remains to be determined. Subsequent studies performed on other ion channels confirm the specificity of the drug for TRPM4. In addition, 9-phenanthrol modulates a variety of physiological processes through TRPM4 current inhibition and thus exerts beneficial effects in several pathological conditions. 9-Phenanthrol modulates smooth muscle contraction in bladder and cerebral arteries, affects spontaneous activity in neurons and in the heart, and reduces lipopolysaccharide-induced cell death. Among promising potential applications, 9-phenanthrol exerts cardioprotective effects against ischaemia-reperfusion injuries and reduces ischaemic stroke injuries. In addition to reviewing the biophysical effects of 9-phenanthrol, here we present information about its appropriate use in physiological studies and possible clinical applications.


Asunto(s)
Moduladores del Transporte de Membrana/farmacología , Fenantrenos/farmacología , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Potenciales de la Membrana , Moduladores del Transporte de Membrana/química , Estructura Molecular , Fenantrenos/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Canales Catiónicos TRPM/metabolismo
20.
Cell Calcium ; 55(1): 59-68, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24406294

RESUMEN

TRPV3, a thermosensitive cation channel, is predominantly expressed in keratinocytes. It contributes to physiological processes such as thermosensation, nociception, and skin development. TRPV3 is polymodally regulated by chemical agonists, innocuous heat, intracellular acidification or by membrane depolarization. By manipulating the content of plasma membrane cholesterol, a key modulator of the physicochemical properties of biological membranes, we here addressed the question, how the lipid environment influences TRPV3. Cholesterol supplementation robustly potentiated TRPV3 channel activity by sensitising it to lower concentrations of chemical activators. In addition, the thermal activation of TRPV3 is significantly shifted to lower temperatures in cholesterol-enriched cells. The sensitising effect of cholesterol was not caused by an increased plasma membrane targeting of the channel. In HaCaT keratinocytes, which natively express TRPV3, a cholesterol-mediated sensitisation of TRPV3-like responses was reproduced. The cholesterol-dependent modulation of TRPV3 activity may provide a molecular mechanism to interpret its involvement in keratinocyte differentiation.


Asunto(s)
Alcanfor/farmacología , Colesterol/fisiología , Monoterpenos/farmacología , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/fisiología , Temperatura , Calcio/fisiología , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Cimenos , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos/fisiología , Células HEK293 , Humanos , Queratinocitos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA