Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.562
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(11): 1860-1874.e12, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35568033

RESUMEN

Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.


Asunto(s)
Bacteriófagos , Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Fibrosis Quística/tratamiento farmacológico , Humanos , Pulmón , Masculino , Infecciones por Mycobacterium no Tuberculosas/terapia , Mycobacterium abscessus/fisiología
2.
Annu Rev Microbiol ; 76: 661-680, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35709500

RESUMEN

Mycobacterium tuberculosis is a globally distributed, lethal pathogen of humans. The virulence armamentarium of M. tuberculosis appears to have been developed on a scaffold of antiphagocytic defenses found among diverse, mostly free-living species of Mycobacterium. Pathoadaptation was further aided by the modularity, flexibility, and interactivity characterizing mycobacterial effectors and their regulators. During emergence of M. tuberculosis, novel genetic material was acquired, created, and integrated with existing tools. The major mutational mechanisms underlying these adaptations are discussed in this review, with examples. During its evolution, M. tuberculosis lost the ability and/or opportunity to engage in lateral gene transfer, but despite this it has retained the adaptability that characterizes mycobacteria. M. tuberculosis exemplifies the evolutionary genomic mechanisms underlying adoption of the pathogenic niche, and studies of its evolution have uncovered a rich array of discoveries about how new pathogens are made.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Evolución Molecular , Transferencia de Gen Horizontal , Humanos , Mycobacterium tuberculosis/genética , Tuberculosis/microbiología , Virulencia/genética , Factores de Virulencia/genética
3.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630725

RESUMEN

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Asunto(s)
Mycobacterium abscessus , Humanos , Proteínas Bacterianas/genética , Lipopolisacáridos/química , Mutación
4.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165935

RESUMEN

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Asunto(s)
Antiinfecciosos , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Humanos , Animales , Ratones , Espectinomicina/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Antibacterianos/farmacología , Micobacterias no Tuberculosas , Antiinfecciosos/farmacología , Etilenos/farmacología , Pruebas de Sensibilidad Microbiana
5.
Eur J Immunol ; 54(7): e2350610, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576227

RESUMEN

Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Pulmón , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Animales , Mycobacterium abscessus/inmunología , Ratones , Infecciones por Mycobacterium no Tuberculosas/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Modelos Animales de Enfermedad , Macrófagos/inmunología , Células TH1/inmunología , Ratones Endogámicos C3H , Femenino
6.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016030

RESUMEN

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Asunto(s)
Bronquiectasia , Fibrosis Quística , Humanos , Bronquiolos , Dilatación Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrosis , ARN , Mucina 5AC/genética
7.
Immunol Rev ; 301(1): 62-83, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565103

RESUMEN

Upon infection, mycobacteria, such as Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria (NTM), are recognized by host innate immune cells, triggering a series of intracellular processes that promote mycobacterial killing. Mycobacteria, however, have developed multiple counter-strategies to persist and survive inside host cells. By manipulating host effector mechanisms, including phagosome maturation, vacuolar escape, autophagy, antigen presentation, and metabolic pathways, pathogenic mycobacteria are able to establish long-lasting infection. Counteracting these mycobacteria-induced host modifying mechanisms can be accomplished by host-directed therapeutic (HDT) strategies. HDTs offer several major advantages compared to conventional antibiotics: (a) HDTs can be effective against both drug-resistant and drug-susceptible bacteria, as well as potentially dormant mycobacteria; (b) HDTs are less likely to induce bacterial drug resistance; and (c) HDTs could synergize with, or shorten antibiotic treatment by targeting different pathways. In this review, we will explore host-pathogen interactions that have been identified for Mtb for which potential HDTs impacting both innate and adaptive immunity are available, and outline those worthy of future research. We will also discuss possibilities to target NTM infection by HDT, although current knowledge regarding host-pathogen interactions for NTM is limited compared to Mtb. Finally, we speculate that combinatorial HDT strategies can potentially synergize to achieve optimal mycobacterial host immune control.


Asunto(s)
Mycobacterium tuberculosis , Micobacterias no Tuberculosas , Antibacterianos/uso terapéutico , Autofagia , Interacciones Huésped-Patógeno
8.
J Infect Dis ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407452

RESUMEN

BACKGROUND: The therapeutic challenges posed by nontuberculous mycobacterial pulmonary disease (NTM-PD) contribute to an unmet medical need. In this study, we aimed to investigate NTM-PD-specific metabolic pathways using serum metabolomics to understand disease pathogenesis. METHODS: Mass spectrometry-based untargeted metabolomic profiling of serum from patients with NTM-PD (n = 50), patients with bronchiectasis (n = 50), and healthy controls (n = 60) was performed. Selected metabolites were validated by an independent cohort and subjected to pathway analysis and classification modeling. RESULTS: Leucine, tyrosine, inosine, proline, 5-oxoproline, and hypoxanthine levels increased in the NTM-PD group compared with the healthy control group. Furthermore, levels of antioxidant metabolites (ferulic acid, α-lipoic acid, biotin, and 2,8-phenazinediamine) decreased in patients with NTM-PD. These changes were associated with arginine- and proline-related metabolism, leading to generation of reactive oxygen species. Interestingly, the observed metabolic changes in the NTM-PD group overlapped with those in the bronchiectasis group. CONCLUSION: In NTM-PD, 11 metabolites linked to increased oxidative stress were significantly altered from those in healthy controls. Our findings enhance a comprehensive understanding of NTM-PD pathogenesis and provide insights for novel treatment approaches.

9.
J Infect Dis ; 230(2): e241-e246, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38150401

RESUMEN

Cure rates for pulmonary disease caused by the Mycobacterium avium complex (MAC) are poor. While ß-lactam are front line antibiotics against Mycobacterium abscessus pulmonary disease, they have not been used or recommended to treat MAC lung infections. Through a comprehensive screen of oral ß-lactams, we have discovered that selected pairs combining either a penem/carbapenem or penicillin with a cephalosporin are strongly bactericidal at clinically achieved concentrations. These dual ß-lactam combinations include tebipenem and sulopenem, both in phase 3, and Food and Drug Administration-approved amoxicillin and cefuroxime. They could therefore immediately enter clinical trials or clinical practice.


Asunto(s)
Antibacterianos , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , beta-Lactamas , Humanos , Complejo Mycobacterium avium/efectos de los fármacos , beta-Lactamas/uso terapéutico , beta-Lactamas/administración & dosificación , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Administración Oral , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Pruebas de Sensibilidad Microbiana
10.
Clin Infect Dis ; 78(6): 1690-1697, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563246

RESUMEN

BACKGROUND: Improving health-related quality of life (HRQOL) has emerged as a priority in the management of nontuberculous mycobacterial pulmonary disease (NTM-PD). We aimed to evaluate HRQOL and its changes after 6 months' treatment in patients with NTM-PD. METHODS: The NTM-KOREA is a nationwide prospective cohort enrolling patients initiating treatment for NTM-PD in 8 institutions across South Korea. We conducted the Quality of Life-Bronchiectasis (QOL-B) at 6-month intervals and evaluated baseline scores (higher scores indicate better quality of life) and changes after 6 months' treatment. Multivariate logistic regression was performed to identify factors associated with improvement in the QOL-B physical functioning and respiratory symptoms domains. RESULTS: Between February 2022 and August 2023, 411 patients were included in the analysis. Baseline scores (95% confidence interval [CI]) for physical functioning and respiratory symptoms were 66.7 (46.7-86.7) and 81.5 (70.4-92.6), respectively. Among 228 patients who completed the QOL-B after 6 months' treatment, improvements in physical functioning and respiratory symptoms were observed in 61 (26.8%) and 71 (31.1%) patients, respectively. A lower score (adjusted odds ratio; 95% CI) for physical functioning (0.93; 0.91-0.96) and respiratory symptoms (0.92; 0.89-0.95) at treatment initiation was associated with a greater likelihood of physical functioning and respiratory symptom improvement, respectively; achieving culture conversion was not associated with improvement in physical functioning (0.62; 0.28-1.39) or respiratory symptoms (1.30; 0.62-2.74). CONCLUSIONS: After 6 months of antibiotic treatment for NTM-PD, HRQOL improved in almost one-third, especially in patients with severe initial symptoms, regardless of culture conversion. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identifier: NCT03934034.


Asunto(s)
Antibacterianos , Infecciones por Mycobacterium no Tuberculosas , Calidad de Vida , Humanos , Masculino , Femenino , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , República de Corea , Antibacterianos/uso terapéutico , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Micobacterias no Tuberculosas/efectos de los fármacos , Resultado del Tratamiento
11.
BMC Genomics ; 25(1): 376, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632539

RESUMEN

BACKGROUND: Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS: At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION: Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.


Asunto(s)
Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Humanos , Anciano , Complejo Mycobacterium avium/genética , Transcriptoma , Infección por Mycobacterium avium-intracellulare/microbiología , Perfilación de la Expresión Génica , Estrés Oxidativo , Nitrógeno , Azufre
12.
Emerg Infect Dis ; 30(9): 1841-1849, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173659

RESUMEN

Nontuberculous mycobacterial pulmonary disease (NTM-PD) prevalence is a rising public health concern. We assessed the long-term healthcare systems perspective of costs incurred by 147 NTM-PD patients at a tertiary hospital in South Korea. Median cumulative total medical cost in managing NTM-PD patients was US $5,044 (interquartile range US $3,586-$9,680) over 49.7 months (interquartile range 33.0-68.2 months) of follow-up. The major cost drivers were diagnostic testing and medication, accounting for 59.6% of total costs. Higher costs were associated with hospitalization for Mycobacterium abscessus infection and pulmonary comorbidities. Of the total medical care costs, 50.2% were patient co-payments resulting from limited national health insurance coverage. As South Korea faces significant problems of poverty during old age and increasing NTM-PD prevalence, the financial and socio-economic burden of NTM-PD may become a major public health concern that should be considered with regard to adequate strategies for NTM-PD patients.


Asunto(s)
Costos de la Atención en Salud , Infecciones por Mycobacterium no Tuberculosas , Humanos , República de Corea/epidemiología , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Infecciones por Mycobacterium no Tuberculosas/economía , Infecciones por Mycobacterium no Tuberculosas/microbiología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Micobacterias no Tuberculosas , Enfermedades Pulmonares/epidemiología , Enfermedades Pulmonares/economía , Enfermedades Pulmonares/microbiología , Historia del Siglo XXI , Prevalencia
13.
Emerg Infect Dis ; 30(9): 1755-1762, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173666

RESUMEN

Nontuberculous mycobacteria (NTM) are emerging as notable causative agents of opportunistic infections. To examine clinical significance, species distribution, and temporal trends of NTM in Denmark, we performed a nationwide register-based study of all unique persons with NTM isolated in the country during 1991-2022. We categorized patients as having definite disease, possible disease, or isolation by using a previously validated method. The incidence of pulmonary NTM increased throughout the study period, in contrast to earlier findings. Mycobacterium malmoense, M. kansasii, M. szulgai, and M. avium complex were the most clinically significant species based on microbiologic findings; M. avium dominated in incidence. This study shows the need for surveillance for an emerging infection that is not notifiable in most countries, provides evidence to support clinical decision-making, and highlights the importance of not considering NTM as a single entity.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Micobacterias no Tuberculosas , Humanos , Relevancia Clínica , Dinamarca/epidemiología , Historia del Siglo XX , Historia del Siglo XXI , Incidencia , Infecciones por Mycobacterium no Tuberculosas/epidemiología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/aislamiento & purificación , Micobacterias no Tuberculosas/clasificación , Sistema de Registros
14.
Emerg Infect Dis ; 30(3): 548-554, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407146

RESUMEN

Because epidemiologic and environmental risk factors for nontuberculous mycobacteria (NTM) have been reported only infrequently, little information exists about those factors. The state of Virginia, USA, requires certain ecologic features to be included in reports to the Virginia Department of Health, presenting a unique opportunity to study those variables. We analyzed laboratory reports of Mycobacterium avium complex (MAC) and M. abscessus infections in Virginia during 2021-2023. MAC/M. abscessus was isolated from 6.19/100,000 persons, and 2.37/100,000 persons had MAC/M. abscessus lung disease. M. abscessus accounted for 17.4% and MAC for 82.6% of cases. Saturated vapor pressure was associated with MAC/M. abscessus prevalence (prevalence ratio 1.414, 95% CI 1.011-1.980; p = 0.043). Self-supplied water use was a protective factor (incidence rate ratio 0.304, 95% CI 0.098-0.950; p = 0.041). Our findings suggest that a better understanding of geographic clustering and environmental water exposures could help develop future targeted prevention and control efforts.


Asunto(s)
Carbamatos , Mycobacterium abscessus , Micobacterias no Tuberculosas , Pirazinas , Piridinas , Virginia/epidemiología , Complejo Mycobacterium avium , Agua
15.
Antimicrob Agents Chemother ; 68(1): e0071723, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38018963

RESUMEN

The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.


Asunto(s)
Antagonistas del Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Antagonistas del Ácido Fólico/farmacología , Trimetoprim/farmacología , Mycobacterium tuberculosis/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico
16.
Antimicrob Agents Chemother ; 68(3): e0091723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38334410

RESUMEN

Mycobacterium avium complex (MAC) is a serious disease that is mainly caused by infection with the non-tuberculous mycobacteria (NTM), Mycobacterium avium and Mycobacterium intracellulare. Seven new compounds, designated mavintramycins A-G (1-7), were isolated along with structurally related compounds, including amicetin (9) and plicacetin (10), from the culture broth of Streptomyces sp. OPMA40551 as anti-MAC compounds that were active against M. avium and M. intracellulare. Among them, mavintramycin A showed the most potent and selective inhibition of M. avium and M. intracellulare. Furthermore, mavintramycin A was active against more than 40 clinically isolated M. avium, including multidrug-resistant strains, and inhibited the growth of M. avium in a persistent infection cell model using THP-1 macrophages. Mavintramycin A also exhibited in vivo efficacy in silkworm and mouse infection assays with NTM. An experiment to elucidate its mechanism of action revealed that mavintramycin A inhibits protein synthesis by binding to 23S ribosomal RNA in NTM. Mavintramycin A, with a different chemical structure from those of clinically used agents, is a promising drug candidate for the treatment of MAC infectious disease.


Asunto(s)
Enfermedades Transmisibles , Infección por Mycobacterium avium-intracellulare , Animales , Ratones , Complejo Mycobacterium avium , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Mycobacterium avium
17.
Antimicrob Agents Chemother ; : e0168423, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656138

RESUMEN

Novel antimicrobials are needed to treat rising nontuberculous mycobacteria (NTM) infections. Using standard broth microdilution methods, 68 NTM isolates were tested against gepotidacin, a new, first-in-class, oral triazaacenaphthylene bacterial topoisomerase inhibitor. MICs varied (0.25 to >64 µg/mL) with the lowest being M. fortuitum complex (0.25-8 µg/mL), M. mucogenicum complex (1-2 µg/mL), M. kansasii (0.25-8 µg/mL), and M. marinum (4-16 µg/mL). Testing greater numbers of some species is suggested to better understand gepotidacin activity against NTM.

18.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259101

RESUMEN

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Asunto(s)
Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Rifampin/farmacología , Rifampin/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Etambutol/farmacología , Etambutol/uso terapéutico , Azitromicina/farmacología , Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Complejo Mycobacterium avium , Enfermedades Pulmonares/microbiología
19.
Antimicrob Agents Chemother ; : e0121324, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377582

RESUMEN

This single-center retrospective study aimed to analyze the variability of macrolide resistance (MR) in 68 patients with Mycobacterium avium complex pulmonary disease. Among 25 patients treated without macrolides, 13 (52%) reverted to macrolide-susceptible (MS) profiles. Only one (2%) of 43 patients who continued macrolide treatment showed this change. We compared 30 MR isolates with recent specimens. Among them, seven shifted to MS (five attributed to clonally related strains; two resulting from reinfection or polyclonal infection).

20.
Biochem Biophys Res Commun ; 690: 149249, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000294

RESUMEN

The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Antituberculosos/farmacología , Diarilquinolinas/farmacología , Diarilquinolinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintasa/metabolismo , Adenosina Trifosfato/metabolismo , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA