Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(6): 1764-1780, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921230

RESUMEN

Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.


Asunto(s)
Minerales , Plantas , Hierro , Fósforo , Nutrientes
2.
Am J Physiol Endocrinol Metab ; 326(3): E382-E397, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294699

RESUMEN

The hypothalamus is a key integrating center that is involved in the initiation of the corticosteroid stress response, and in regulating nutrient homeostasis. Although cortisol, the principal glucocorticoid in humans and teleosts, plays a central role in feeding regulation, the mechanisms are far from clear. We tested the hypothesis that the metabolic changes to cortisol exposure signal an energy excess in the hypothalamus, leading to feeding suppression during stress in fish. Rainbow trout (Oncorhynchus mykiss) were administered a slow-release cortisol implant for 3 days, and the metabolite profiles in the plasma, hypothalamus, and the rest of the brain were assessed. Also, U-13C-glucose was injected into the hypothalamus by intracerebroventricular (ICV) route, and the metabolic fate of this energy substrate was followed in the brain regions by metabolomics. Chronic cortisol treatment reduced feed intake, and this corresponded with a downregulation of the orexigenic gene agrp, and an upregulation of the anorexigenic gene cart in the hypothalamus. The U-13C-glucose-mediated metabolite profiling indicated an enhancement of glycolytic flux and tricarboxylic acid intermediates in the rest of the brain compared with the hypothalamus. There was no effect of cortisol treatment on the phosphorylation status of AMPK or mechanistic target of rapamycin in the brain, whereas several endogenous metabolites, including leucine, citrate, and lactate were enriched in the hypothalamus, suggesting a tissue-specific metabolic shift in response to cortisol stimulation. Altogether, our results suggest that the hypothalamus-specific enrichment of leucine and the metabolic fate of this amino acid, including the generation of lipid intermediates, contribute to cortisol-mediated feeding suppression in fish.NEW & NOTEWORTHY Elevated cortisol levels during stress suppress feed intake in animals. We tested whether the feed suppression is associated with cortisol-mediated alteration in hypothalamus metabolism. The brain metabolome revealed a hypothalamus-specific metabolite profile suggesting nutrient excess. Specifically, we noted the enrichment of leucine and citrate in the hypothalamus, and the upregulation of pathways involved in leucine metabolism and fatty acid synthesis. This cortisol-mediated energy substrate repartitioning may modulate the feeding/satiety centers leading to the feeding suppression.


Asunto(s)
Oncorhynchus mykiss , Animales , Humanos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Hidrocortisona/metabolismo , Leucina/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Citratos/metabolismo , Citratos/farmacología
3.
Ecotoxicol Environ Saf ; 274: 116219, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492483

RESUMEN

Cadmium (Cd) is one of the most toxic elements in soil, affecting morphological, physiological, and biochemical processes in plants. Mineral plant nutrition was tested as an effective approach to mitigate Cd stress in several crop species. In this regard, the present study aimed to elucidate how different phosphorus (P) fertilization regimes can improve some bio-physiological processes in tomato plants exposed to Cd stress. In a hydroponic experiment, the impact of two phosphorus fertilizer forms (Polyphosphate (poly-P): condensed P-form with 100% polymerization rate and orthophosphate (ortho-P): from orthophosphoric acid) on the photosynthetic activity, plant growth, and nutrient uptake was assessed under three levels of Cd stress (0, 12, and 25 µM of CdCl2). The obtained results confirmed the negative effects of Cd stress on the chlorophyll content and the efficiency of the photosynthesis machinery. The application of poly-P fertilizer significantly improved the chlorophyll stability index (82%) under medium Cd stress (Cd12), as compared to the ortho-P form (55%). The analysis of the chlorophyll α fluorescence transient curve revealed that the amplitude of Cd effect on the different steps of electron transfer between PSII and PSI was significantly reduced under the poly-P fertilization regime compared to ortho-P, especially under Cd12. The evaluation of the RE0/RC parameter showed that the electron flux reducing end electron acceptors at the PSI acceptor side per reaction center was significantly improved in the poly-P treatment by 42% under Cd12 compared to the ortho-P treatment. Moreover, the use of poly-P fertilizer enhanced iron uptake and its stoichiometric homeostasis in the shoot tissue which maintained an adequate absorption of iron under Cd stress conditions. Findings from this study revealed for the first time that inorganic polyphosphate fertilizers can reduce Cd toxicity in tomato plants by enhancing photosynthesis activity, nutrient uptake, plant growth, and biomass accumulation despite the high level of cadmium accumulation in shoot tissues.


Asunto(s)
Contaminantes del Suelo , Solanum lycopersicum , Cadmio/análisis , Polifosfatos/farmacología , Fertilizantes/análisis , Fotosíntesis , Clorofila/análisis , Plantas , Hierro/análisis , Fósforo/farmacología , Fertilización , Contaminantes del Suelo/análisis
4.
J Exp Bot ; 74(19): 6131-6144, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37279530

RESUMEN

Plant growth and development depend on sufficient nutrient availability in soils. Agricultural soils are generally nitrogen (N) deficient, and thus soils need to be supplemented with fertilizers. Ammonium (NH4+) is a major inorganic N source. However, at high concentrations, NH4+ becomes a stressor that inhibits plant growth. The cause of NH4+ stress or toxicity is multifactorial, but the interaction of NH4+ with other nutrients is among the main determinants of plants' sensitivity towards high NH4+ supply. In addition, NH4+ uptake and assimilation provoke the acidification of the cell external medium (apoplast/rhizosphere), which has a clear impact on nutrient availability. This review summarizes current knowledge, at both the physiological and the molecular level, of the interaction of NH4+ nutrition with essential mineral elements that are absorbed as cations, both macronutrients (K+, Ca2+, Mg2+) and micronutrients (Fe2+/3+, Mn2+, Cu+/2+, Zn2+, Ni2+). We hypothesize that considering these nutritional interactions, and soil pH, when formulating fertilizers may be key in order to boost the use of NH4+-based fertilizers, which have less environmental impact compared with nitrate-based ones. In addition, we are convinced that better understanding of these interactions will help to identify novel targets with the potential to improve crop productivity.

5.
J Exp Bot ; 74(17): 5198-5217, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235689

RESUMEN

Natural variation among individuals and populations exists in all species, playing key roles in response to environmental stress and adaptation. Micro- and macronutrients have a wide range of functions in photosynthetic organisms, and mineral nutrition thus plays a sizable role in biomass production. To maintain nutrient concentrations inside the cell within physiological limits and prevent the detrimental effects of deficiency or excess, complex homeostatic networks have evolved in photosynthetic cells. The microalga Chlamydomonas reinhardtii (Chlamydomonas) is a unicellular eukaryotic model for studying such mechanisms. In this work, 24 Chlamydomonas strains, comprising field isolates and laboratory strains, were examined for intraspecific differences in nutrient homeostasis. Growth and mineral content were quantified in mixotrophy, as full nutrition control, and compared with autotrophy and nine deficiency conditions for macronutrients (-Ca, -Mg, -N, -P, and -S) and micronutrients (-Cu, -Fe, -Mn, and -Zn). Growth differences among strains were relatively limited. However, similar growth was accompanied by highly divergent mineral accumulation among strains. The expression of nutrient status marker genes and photosynthesis were scored in pairs of contrasting field strains, revealing distinct transcriptional regulation and nutrient requirements. Leveraging this natural variation should enable a better understanding of nutrient homeostasis in Chlamydomonas.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Fotosíntesis/fisiología , Chlamydomonas/metabolismo , Micronutrientes/metabolismo , Homeostasis
6.
Biometals ; 36(5): 1157-1169, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37198524

RESUMEN

Ionomics and transcriptomics were applied to demonstrate response of rice to arsenite [As(III)] stress in the current study. Rice plants were cultured in nutrient solutions treated with 0, 100 and 500 µg/L As(III) coded as CK, As1 and As5, respectively. The rice ionomes exhibited discriminatory response to environmental disturbances. Solid evidence of the effects of As(III) stress on binding, transport or metabolism of P, K, Ca, Zn and Cu was obtained in this work. Differentially expressed genes (DEGs) in the shoots were identified in three datasets: As1 vs CK, As5 vs CK and As5 vs As1. DEGs identified simultaneously in two or three datasets were selected for subsequent interaction and enrichment analyses. Upregulation of genes involved in protein kinase activity, phosphorus metabolic process and phosphorylation were detected in the rice treated with As(III), resulting in the maintenance of P homeostasis in the shoots. Zn and Ca binding genes were up-regulated since excess As inhibited the translocation of Zn and Ca from roots to shoots. Increased expression of responsive genes including HMA, WRKY, NAC and PUB genes conferred As tolerance in the rice plants to cope with external As(III) stress. The results suggested that As(III) stress could disturb the uptake and translocation of macro and essential elements by rice. Plants could regulate the expression of corresponding genes to maintain mineral nutrient homeostasis for essential metabolic processes.


Asunto(s)
Arsenitos , Oryza , Arsenitos/farmacología , Arsenitos/metabolismo , Oryza/genética , Oryza/metabolismo , Transcriptoma/genética , Homeostasis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37894886

RESUMEN

Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.


Asunto(s)
Empalme Alternativo , Arabidopsis , Fitomejoramiento , Empalme del ARN , Arabidopsis/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Precursores del ARN/genética
8.
Planta ; 256(2): 23, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35767117

RESUMEN

MAIN CONCLUSION: This minireview details the impact of iron-phosphate and zinc-phosphate interactions in plants and provides perspectives for further areas of research regarding nutrient homeostasis. Iron (Fe) and zinc (Zn) are among the most important micronutrients for plant growth and have numerous implications for human health and agriculture. While plants have developed efficient uptake and transport mechanisms for Fe and Zn, emerging research has shown that the availability of other nutrients in the environment influences the homeostasis of Fe and Zn within plants. In this minireview, we present the current knowledge regarding homeostatic interactions of Fe and Zn with the macronutrient phosphorous (P) and the resulting physiological responses to combined deficiencies of these nutrients. Fe and P interactions have been shown to influence root development, photosynthesis, and biological processes aiding Fe uptake. Zn and P interactions also influence root growth, and coordination of Zn-dependent transcriptional regulation contributes to phosphate (Pi) transport in the plant. Understanding homeostatic interactions among these different nutrients is of critical importance to obtain a more complete understanding of plant nutrition in complex soil environments.


Asunto(s)
Hierro , Fosfatos , Agricultura/métodos , Homeostasis , Plantas , Zinc
9.
J Exp Bot ; 73(22): 7417-7433, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36226742

RESUMEN

The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored. Using a combination of genetic and pharmacological tools, we investigated the interplay between cytokinin signaling and sulfur homeostasis. Exogenous cytokinin triggered sulfur starvation-like gene expression accompanied by a decrease in sulfate and glutathione content. This process was uncoupled from the activity of the major transcriptional regulator of sulfate starvation signaling SULFUR LIMITATION 1 and an important glutathione-degrading enzyme, γ-glutamyl cyclotransferase 2;1, expression of which was robustly up-regulated by cytokinin. Conversely, glutathione accumulation was observed in mutants lacking the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE 3 and in cytokinin-deficient plants. Cytokinin-deficient plants displayed improved root growth upon exposure to glutathione-depleting chemicals which was attributed to a higher capacity to maintain glutathione levels. These results shed new light on the interplay between cytokinin signaling and sulfur homeostasis. They position cytokinin as an important modulator of sulfur uptake, assimilation, and remobilization in plant defense against xenobiotics and root growth.


Asunto(s)
Citocininas , Azufre , Redes y Vías Metabólicas , Glutatión , Sulfatos
10.
Ecotoxicol Environ Saf ; 234: 113423, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35307619

RESUMEN

'Xuegan' (Citrus sinensis) seedlings were fertilized 6 times weekly for 24 weeks with 0.5 or 350 µM CuCl2 and 2.5, 10 or 25 µM H3BO3. Cu-toxicity increased Cu uptake per plant (UPP) and Cu concentrations in leaves, stems and roots, decreased water uptake and phosphorus, nitrogen, calcium, magnesium, potassium, sulfur, boron and iron UPP, and increased the ratios of magnesium, potassium, calcium and sulfur UPP to phosphorus UPP and the ratios of leaf magnesium, potassium and calcium concentrations to leaf phosphorus concentration. Many decaying and dead fibrous roots occurred in Cu-toxic seedlings. Cu-toxicity-induced alterations of these parameters and root damage decreased with the increase of boron supply. These results demonstrated that B supplementation lowered Cu uptake and its concentrations in leaves, stems and roots and subsequently alleviated Cu-toxicity-induced damage to root growth and function, thus improving plant nutrient (decreased Cu uptake and efficient maintenance of the other nutrient homeostasis and balance) and water status. Further analysis indicated that the improved nutrition and water status contributed to the boron-mediated amelioration of Cu-toxicity-induced inhibition of seedlings, decline of leaf pigments, large reduction of leaf CO2 assimilation and impairment of leaf photosynthetic electron transport chain revealed by greatly altered chlorophyll a fluorescence (OJIP) transients, reduced maximum quantum yield of primary photochemistry (Fv/Fm), quantum yield for electron transport (ETo/ABS) and total performance index (PIabs,total), and elevated dissipated energy per reaction center (DIo/RC). To conclude, our findings corroborate the hypothesis that B-mediated amelioration of Cu-toxicity involved reduced damage to roots and improved nutrient and water status. Principal component analysis showed that Cu-toxicity-induced changes of above physiological parameters generally decreased with the increase of B supply and that B supply-induced alterations of above physiological parameters was greater in 350 µM Cu-treated than in 0.5 µM Cu-treated seedlings. B and Cu had a significant interactive influence on C. sinensis seedlings.

11.
Genomics ; 113(6): 3935-3950, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606916

RESUMEN

Iron (Fe) and phosphorus (P) are the essential mineral nutrients for plant growth and development. However, the molecular interaction of the Fe and P pathways in crops remained largely obscure. In this study, we provide a comprehensive physiological and molecular analysis of hexaploid wheat response to single (Fe, P) and its combinatorial deficiencies. Our data showed that inhibition of the primary root growth occurs in response to Fe deficiency; however, growth was rescued when combinatorial deficiencies occurred. Analysis of RNAseq revealed that distinct molecular rearrangements during combined deficiencies with predominance for genes related to metabolic pathways and secondary metabolite biosynthesis primarily include genes for UDP-glycosyltransferase, cytochrome-P450s, and glutathione metabolism. Interestingly, the Fe-responsive cis-regulatory elements in the roots in Fe stress conditions were enriched compared to the combined stress. Our metabolome data also revealed the accumulation of distinct metabolites such as amino-isobutyric acid, arabinonic acid, and aconitic acid in the combined stress environment. Overall, these results are essential in developing new strategies to improve the resilience of crops in limited nutrients.


Asunto(s)
Plantones , Triticum , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Triticum/metabolismo
12.
Plant Cell Environ ; 44(10): 3358-3375, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34278584

RESUMEN

Zn deficiency is the most common micronutrient deficit in rice but Zn is also a widespread industrial pollutant. Zn deficiency responses in rice are well documented, but comparative responses to Zn deficiency and excess have not been reported. Therefore, we compared the physiological, transcriptional and biochemical properties of rice subjected to Zn starvation or excess at early and later treatment stages. Both forms of Zn stress inhibited root and shoot growth. Gene ontology analysis of differentially expressed genes highlighted the overrepresentation of Zn transport and antioxidative defense for both Zn stresses, whereas diterpene biosynthesis was solely induced by excess Zn. Divalent cations (Fe, Cu, Ca, Mn and Mg) accumulated in Zn-deficient shoots but Mg and Mn were depleted in the Zn excess shoots, mirroring the gene expression of non-specific Zn transporters and chelators. Ascorbate peroxidase activity was induced after 14 days of Zn starvation, scavenging H2 O2 more effectively to prevent leaf chlorosis via the Fe-dependent Fenton reaction. Conversely, excess Zn triggered the expression of genes encoding Mg/Mn-binding proteins (OsCPS2/4 and OsKSL4/7) required for antimicrobial diterpenoid biosynthesis. Our study reveals the potential role of divalent cations in the shoot, driving the unique responses of rice to each form of Zn stress.


Asunto(s)
Cationes Bivalentes/metabolismo , Nutrientes/metabolismo , Oryza/fisiología , Estrés Fisiológico , Zinc/metabolismo , Nutrientes/deficiencia , Zinc/deficiencia
13.
New Phytol ; 220(4): 1047-1058, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29888395

RESUMEN

1047 I. Introduction 1047 II. Mobilization of soil N/P by ECM fungi 1048 III. N/P uptake 1048 IV. N/P assimilation 1049 V. N/P storage and remobilization 1049 VI. Hyphal N/P efflux at the plant-fungus interface 1052 VII. Conclusion and research needs 1054 Acknowledgements 1055 References 1055 SUMMARY: Nutrient homeostasis is essential for fungal cells and thus tightly adapted to the local demand in a mycelium with hyphal specialization. Based on selected ectomycorrhizal (ECM) fungal models, we outlined current concepts of nitrogen and phosphate nutrition and their limitations, and included knowledge from Baker's yeast when major gaps had to be filled. We covered the entire pathway from nutrient mobilization, import and local storage, distribution within the mycelium and export at the plant-fungus interface. Even when nutrient import and assimilation were broad issues for ECM fungi, we focused mainly on nitrate and organic phosphorus uptake, as other nitrogen/phosphorus (N/P) sources have been covered by recent reviews. Vacuolar N/P storage and mobilization represented another focus point of this review. Vacuoles are integrated into cellular homeostasis and central for an ECM mycelium at two locations: soil-growing hyphae and hyphae of the plant-fungus interface. Vacuoles are also involved in long-distance transport. We further discussed potential mechanisms of bidirectional long-distance nutrient transport (distances from millimetres to metres). A final focus of the review was N/P export at the plant-fungus interface, where we compared potential efflux mechanisms and pathways, and discussed their prerequisites.


Asunto(s)
Micorrizas/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Hifa/metabolismo , Filogenia , Plantas/microbiología
14.
Int J Mol Sci ; 19(3)2018 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-29562647

RESUMEN

Mineral nutrient homeostasis is essential for plant growth and development. Recent research has demonstrated that the occurrence of interactions among the mechanisms regulating the homeostasis of different nutrients in plants is a general rule rather than an exception. Therefore, it is important to understand how plants regulate the homeostasis of these elements and how multiple mineral nutrient signals are wired to influence plant growth. Silicon (Si) is not directly involved in plant metabolism but it is an essential element for a high and sustainable production of crops, especially rice, because of its high content in the total shoot dry weight. Although some mechanisms underlying the role of Si in plants responses to both abiotic and biotic stresses have been proposed, the involvement of Si in regulating plant growth in conditions where the availability of essential macro- and micronutrients changes remains poorly investigated. In this study, the existence of an interaction between Si, phosphate (Pi), and iron (Fe) availability was examined in lowland (Suphanburi 1, SPR1) and upland (Kum Hom Chiang Mai University, KH CMU) rice varieties. The effect of Si and/or Fe deficiency on plant growth, Pi accumulation, Pi transporter expression (OsPHO1;2), and Pi root-to-shoot translocation in these two rice varieties grown under individual or combinatorial nutrient stress conditions were determined. The phenotypic, physiological, and molecular data of this study revealed an interesting tripartite Pi-Fe-Si homeostasis interaction that influences plant growth in contrasting manners in the two rice varieties. These results not only reveal the involvement of Si in modulating rice growth through an interaction with essential micro- and macronutrients, but, more importantly, they opens new research avenues to uncover the molecular basis of Pi-Fe-Si signaling crosstalk in plants.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Deficiencias de Hierro , Oryza/crecimiento & desarrollo , Fosfatos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Silicio/metabolismo , Variación Biológica Poblacional , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Hierro/química , Oryza/genética , Fosfatos/química , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Silicio/química
15.
Am J Physiol Endocrinol Metab ; 313(6): E651-E662, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28811293

RESUMEN

Pharmacological activation of the glucagon-like peptide-1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent on AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR). We found that pharmacological inhibition of glycolysis, and thus activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not acetyl-CoA carboxylase, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and Chinese hamster ovary (CHO)-K1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH Glp1r conferred no changes in energy balance in either chow- or high-fat-diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis.


Asunto(s)
Ingestión de Alimentos/fisiología , Alimentos , Receptor del Péptido 1 Similar al Glucagón/fisiología , Sensación/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Acetil-CoA Carboxilasa/metabolismo , Adenilato Quinasa/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Exenatida , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucólisis/efectos de los fármacos , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología , Sensación/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ponzoñas/farmacología , Núcleo Hipotalámico Ventromedial/metabolismo
16.
J Exp Bot ; 73(17): 5773-5778, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36178429
17.
Ecotoxicol Environ Saf ; 144: 369-379, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28647604

RESUMEN

The ameliorative effect of H2 on aluminum (Al)-induced stress remains poorly understood. We treated maize seedlings with Al and hydrogen-rich water (HRW) to determine the roles of H2 in the alleviation of Al toxicity. Our results demonstrated that Al stress triggered damage to the photosynthetic apparatus, plant growth inhibition, and reactive oxygen species (ROS) production, and boosted lipid peroxidation. However, the addition of HRW at 75% saturation markedly alleviated Al toxicity symptoms through the promotion of root elongation. These responses were related to the significantly increased activities of typical antioxidant enzymes (CAT, APX, SOD, and POD). In vivo imaging of plasma membrane integrity, lipid peroxidation, and the level of ROS provided further evidence that HRW could improve Al tolerance. Our results also indicate that 100% HRW mitigated Al toxicity less than 75% HRW. Moreover, different concentrations of HRW significantly improved photosynthesis and increased nutrient uptake. We conclude that exogenous H2 supplementation could enhance Al tolerance by reestablishing redox homeostasis and maintaining nutrient homeostasis.


Asunto(s)
Aluminio/toxicidad , Antioxidantes/metabolismo , Homeostasis/efectos de los fármacos , Hidrógeno/farmacología , Contaminantes del Suelo/toxicidad , Agua/química , Zea mays/efectos de los fármacos , Biomasa , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Estrés Oxidativo/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
18.
Plant Cell Physiol ; 57(7): 1568-1582, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27328696

RESUMEN

ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu uptake. Exogenous ABA inhibited pmCOPT expression and drastically modified COPT2-driven localization in roots. ABA regulated SPL7, the main transcription factor responsive for Cu deficiency responses, and subsequently affected expression of its targets. ABA biosynthesis (aba2) and signaling (hab1-1 abi1-2) mutants differentially responded to ABA according to Cu levels. Alteration of Cu homeostasis in the pmCOPT mutants affected ABA biosynthesis, transport and signaling as genes such as NCED3, WRKY40, HY5 and ABI5 were differentially modulated by Cu status, and also in the pmCOPT and ABA mutants. Altered Cu uptake resulted in modified plant sensitivity to salt-mediated increases in endogenous ABA. The overall results provide evidence for reciprocal cross-talk between Cu status and ABA metabolism and signaling.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Cobre/metabolismo , Homeostasis , Transducción de Señal , Ácido Abscísico/biosíntesis , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Genes de Plantas , Homeostasis/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
19.
Physiol Mol Biol Plants ; 22(3): 291-306, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27729716

RESUMEN

Hydroponically grown 12-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 150 mM NaCl alone and combined with 0.5 mM MnSO4. Salt stress resulted in disruption of ion homeostasis by Na+ influx and K+ efflux. Higher accumulation of Na+ and water imbalance under salinity caused osmotic stress, chlorosis, and growth inhibition. Salt-induced ionic toxicity and osmotic stress consequently resulted in oxidative stress by disrupting the antioxidant defense and glyoxalase systems through overproduction of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. The salt-induced damage increased with the increasing duration of stress. However, exogenous application of manganese (Mn) helped the plants to partially recover from the inhibited growth and chlorosis by improving ionic and osmotic homeostasis through decreasing Na+ influx and increasing water status, respectively. Exogenous application of Mn increased ROS detoxification by increasing the content of the phenolic compounds, flavonoids, and ascorbate (AsA), and increasing the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and catalase (CAT) in the salt-treated seedlings. Supplemental Mn also reinforced MG detoxification by increasing the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in the salt-affected seedlings. Thus, exogenous application of Mn conferred salt-stress tolerance through the coordinated action of ion homeostasis and the antioxidant defense and glyoxalase systems in the salt-affected seedlings.

20.
FEBS Lett ; 598(1): 32-47, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37758520

RESUMEN

Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.


Asunto(s)
Saccharomyces cerevisiae , Transducción de Señal , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Autofagia/fisiología , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA