Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.188
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(12): 2057-2070.e15, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688133

RESUMEN

Spinal muscular atrophy (SMA) is a motor-neuron disease caused by mutations of the SMN1 gene. The human paralog SMN2, whose exon 7 (E7) is predominantly skipped, cannot compensate for the lack of SMN1. Nusinersen is an antisense oligonucleotide (ASO) that upregulates E7 inclusion and SMN protein levels by displacing the splicing repressors hnRNPA1/A2 from their target site in intron 7. We show that by promoting transcriptional elongation, the histone deacetylase inhibitor VPA cooperates with a nusinersen-like ASO to promote E7 inclusion. Surprisingly, the ASO promotes the deployment of the silencing histone mark H3K9me2 on the SMN2 gene, creating a roadblock to RNA polymerase II elongation that inhibits E7 inclusion. By removing the roadblock, VPA counteracts the chromatin effects of the ASO, resulting in higher E7 inclusion without large pleiotropic effects. Combined administration of the nusinersen-like ASO and VPA in SMA mice strongly synergizes SMN expression, growth, survival, and neuromuscular function.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Animales , Cromatina , Exones , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Empalme del ARN
2.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38309276

RESUMEN

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Asunto(s)
Poliadenilación , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Regiones no Traducidas 3'/genética , Regulación de la Expresión Génica , Intrones
3.
Mol Cell ; 77(5): 1044-1054.e3, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31924448

RESUMEN

Antisense oligonucleotides (ASOs) that trigger RNase-H-mediated cleavage are commonly used to knock down transcripts for experimental or therapeutic purposes. In particular, ASOs are frequently used to functionally interrogate long noncoding RNAs (lncRNAs) and discriminate lncRNA loci that produce functional RNAs from those whose activity is attributable to the act of transcription. Transcription termination is triggered by cleavage of nascent transcripts, generally during polyadenylation, resulting in degradation of the residual RNA polymerase II (Pol II)-associated RNA by XRN2 and dissociation of elongating Pol II. Here, we show that ASOs act upon nascent transcripts and, consequently, induce premature transcription termination downstream of the cleavage site in an XRN2-dependent manner. Targeting the transcript 3' end with ASOs, however, allows transcript knockdown while preserving Pol II association with the gene body. These results demonstrate that the effects of ASOs on transcription must be considered for appropriate experimental and therapeutic use of these reagents.


Asunto(s)
Cromatina/metabolismo , Oligonucleótidos Antisentido/metabolismo , Precursores del ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Terminación de la Transcripción Genética , Cromatina/genética , Exorribonucleasas/metabolismo , Células HCT116 , Células HEK293 , Humanos , Modelos Genéticos , Oligonucleótidos Antisentido/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , Factores de Tiempo
4.
Mol Cell ; 79(5): 710-727, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32853546

RESUMEN

The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.


Asunto(s)
Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Genoma Viral , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , ARN Viral/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/química , Alanina/uso terapéutico , Amidas/química , Amidas/uso terapéutico , Antivirales/química , Betacoronavirus/genética , Betacoronavirus/patogenicidad , COVID-19 , Infecciones por Coronavirus/virología , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Terapia Molecular Dirigida/métodos , Mutación , Neumonía Viral/virología , Pirazinas/química , Pirazinas/uso terapéutico , ARN Viral/antagonistas & inhibidores , ARN Viral/metabolismo , Ribonucleósidos/química , Ribonucleósidos/uso terapéutico , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Transcripción Genética , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
5.
EMBO J ; 42(21): e114760, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37728251

RESUMEN

RNA-based therapeutics have the potential to revolutionize the treatment and prevention of human diseases. While early research faced setbacks, it established the basis for breakthroughs in RNA-based drug design that culminated in the extraordinarily fast development of mRNA vaccines to combat the COVID-19 pandemic. We have now reached a pivotal moment where RNA medicines are poised to make a broad impact in the clinic. In this review, we present an overview of different RNA-based strategies to generate novel therapeutics, including antisense and RNAi-based mechanisms, mRNA-based approaches, and CRISPR-Cas-mediated genome editing. Using three rare genetic diseases as examples, we highlight the opportunities, but also the challenges to wide-ranging applications of this class of drugs.


Asunto(s)
Pandemias , ARN , Humanos , Edición Génica , Interferencia de ARN , Terapia Genética
6.
Immunol Rev ; 313(1): 402-419, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369963

RESUMEN

The complement alternative pathway (AP) is implicated in numerous diseases affecting many organs, ranging from the rare hematological disease paroxysmal nocturnal hemoglobinuria (PNH), to the common blinding disease age-related macular degeneration (AMD). Critically, the AP amplifies any activating trigger driving a downstream inflammatory response; thus, components of the pathway have become targets for drugs of varying modality. Recent validation from clinical trials using drug modalities such as inhibitory antibodies has paved the path for gene targeting of the AP or downstream effectors. Gene targeting in the complement field currently focuses on supplementation or suppression of complement regulators in AMD and PNH, largely because the eye and liver are highly amenable to drug delivery through local (eye) or systemic (liver) routes. Targeting the liver could facilitate treatment of numerous diseases as this organ generates most of the systemic complement pool. This review explains key concepts of RNA and DNA targeting and discusses assets in clinical development for the treatment of diseases driven by the alternative pathway, including the RNA-targeting therapeutics ALN-CC5, ARO-C3, and IONIS-FB-LRX, and the gene therapies GT005 and HMR59. These therapies are but the spearhead of potential drug candidates that might revolutionize the field in coming years.


Asunto(s)
Proteínas del Sistema Complemento , Hemoglobinuria Paroxística , Humanos , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Hemoglobinuria Paroxística/tratamiento farmacológico , Hemoglobinuria Paroxística/genética , Marcación de Gen , Vía Alternativa del Complemento
7.
RNA ; 30(6): 710-727, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38423625

RESUMEN

All kinds of RNA molecules can be produced by in vitro transcription using T7 RNA polymerase using DNA templates obtained by solid-phase chemical synthesis, primer extension, PCR, or DNA cloning. The oligonucleotide design, however, is a challenge to nonexperts as this relies on a set of rules that have been established empirically over time. Here, we describe a Python program to facilitate the rational design of oligonucleotides, calculated with kinetic parameters for enhanced in vitro transcription (ROCKET). The Python tool uses thermodynamic parameters, performs folding-energy calculations, and selects oligonucleotides suitable for the polymerase extension reaction. These oligonucleotides improve yields of template DNA. With the oligonucleotides selected by the program, the tRNA transcripts can be prepared by a one-pot reaction of the DNA polymerase extension reaction and the transcription reaction. Also, the ROCKET-selected oligonucleotides provide greater transcription yields than that from oligonucleotides selected by Primerize, a leading software for designing oligonucleotides for in vitro transcription, due to the enhancement of template DNA synthesis. Apart from over 50 tRNA genes tested, an in vitro transcribed self-cleaving ribozyme was found to have catalytic activity. In addition, the program can be applied to the synthesis of mRNA, demonstrating the wide applicability of the ROCKET software.


Asunto(s)
Oligonucleótidos , Programas Informáticos , Transcripción Genética , Oligonucleótidos/química , Oligonucleótidos/genética , Oligonucleótidos/síntesis química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Catalítico/química , Termodinámica , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Cinética , ARN Mensajero/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(27): e2217423120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364129

RESUMEN

Xeroderma pigmentosum (XP) is a genodermatosis defined by cutaneous photosensitivity with an increased risk of skin tumors because of DNA repair deficiency. The worldwide prevalence of XP is ~1 to 4 in million, with higher incidence in some countries and regions including Japan (1 in 22,000) and North Africa due to founder mutations and a high degree of consanguinity. Among XP, the complementation group F (XP-F), is a rare form (1% of worldwide XP); however, this is underdiagnosed, because the ERCC4/XPF gene is essential for fetal development and most of previously reported ERCC4/XPF pathogenic variants are hypomorphs causing relatively mild phenotypes. From the largest Japanese XP cohort study, we report 17 XP-F cases bearing two pathogenic variants, both identified in deep intronic regions of the ERCC4/XPF gene. The first variant, located in intron 1, is a Japanese founder mutation, which additionally accounts for ~10% of the entire Japanese XP cases (MAF = 0.00196), causing an aberrant pre-mRNA splicing due to a miss-binding of U1snRNA. The second mutation located in intron eight induces an alternative polyadenylation. Both mutations cause a reduction of the ERCC4/XPF gene expression, resulting in XP clinical manifestations. Most cases developed early-onset skin cancers, indicating that these variants need critical attention. We further demonstrate that antisense oligonucleotides designed for the mutations can restore the XPF protein expression and DNA repair capacity in the patients' cells. Collectively, these pathogenic variants can be potential therapeutic targets for XP.


Asunto(s)
Dermatitis , Xerodermia Pigmentosa , Humanos , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/terapia , Xerodermia Pigmentosa/metabolismo , Reparación del ADN/genética , Intrones/genética , Estudios de Cohortes , Mutación , Dermatitis/genética
9.
Trends Biochem Sci ; 46(5): 351-365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33309323

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently creating a global health emergency. This crisis is driving a worldwide effort to develop effective vaccines, prophylactics, and therapeutics. Nucleic acid (NA)-based treatments hold great potential to combat outbreaks of coronaviruses (CoVs) due to their rapid development, high target specificity, and the capacity to increase druggability. Here, we review key anti-CoV NA-based technologies, including antisense oligonucleotides (ASOs), siRNAs, RNA-targeting clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas), and mRNA vaccines, and discuss improved delivery methods and combination therapies with other antiviral drugs.


Asunto(s)
Vacunas contra la COVID-19 , Sistemas CRISPR-Cas , ARN Mensajero , ARN Viral , SARS-CoV-2 , COVID-19/genética , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/terapia , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Humanos , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo
10.
Plant J ; 118(6): 2296-2317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459738

RESUMEN

Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , Técnicas de Genotipaje/métodos , Cartilla de ADN/genética , Sitios de Carácter Cuantitativo/genética , Oryza/genética , Triticum/genética , Solanum lycopersicum/genética , Mapeo Cromosómico , ADN de Plantas/genética , Glycine max/genética , Biblioteca de Genes , Polimorfismo Genético , Productos Agrícolas/genética , Genotipo
11.
Circulation ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155863

RESUMEN

BACKGROUND: Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS: We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS: Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in CalmN98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS: These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.

12.
Circulation ; 150(9): 724-735, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39186530

RESUMEN

Familial hypercholesterolemia (FH) is a genetic disease that leads to elevated low-density lipoprotein cholesterol levels and risk of coronary heart disease. Current therapeutic options for FH remain relatively limited and only partially effective in both lowering low-density lipoprotein cholesterol and modifying coronary heart disease risk. The unique characteristics of nucleic acid therapies to target the underlying cause of the disease can offer solutions unachievable with conventional medications. DNA- and RNA-based therapeutics have the potential to transform the care of patients with FH. Recent advances are overcoming obstacles to clinical translation of nucleic acid-based medications, including greater stability of the formulations as well as site-specific delivery, making gene-based therapy for FH an alternative approach for treatment of FH.


Asunto(s)
Terapia Genética , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Terapia Genética/métodos , Animales , LDL-Colesterol/sangre
14.
RNA ; 29(4): 402-414, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36725319

RESUMEN

Glycol nucleic acid (GNA) is an acyclic nucleic acid analog connected via phosphodiester bonds. Crystal structures of RNA-GNA chimeric duplexes indicated that nucleotides of the right-handed (S)-GNA were better accommodated in the right-handed RNA duplex than were the left-handed (R)-isomers. GNA nucleotides adopt a rotated nucleobase orientation within all duplex contexts, pairing with complementary RNA in a reverse Watson-Crick mode, which explains the inabilities of GNA C and G to form strong base pairs with complementary nucleotides. Transposition of the hydrogen bond donor and acceptor pairs using novel (S)-GNA isocytidine and isoguanosine nucleotides resulted in stable base-pairing with the complementary G and C ribonucleotides, respectively. GNA nucleotide or dinucleotide incorporation into an oligonucleotide increased resistance against 3'-exonuclease-mediated degradation. Consistent with the structural observations, small interfering RNAs (siRNAs) modified with (S)-GNA had greater in vitro potencies than identical sequences containing (R)-GNA. (S)-GNA is well tolerated in the seed regions of antisense and sense strands of a GalNAc-conjugated siRNA in vitro. The siRNAs containing a GNA base pair in the seed region had in vivo potency when subcutaneously injected into mice. Importantly, seed pairing destabilization resulting from a single GNA nucleotide at position 7 of the antisense strand mitigated RNAi-mediated off-target effects in a rodent model. Two GNA-modified siRNAs have shown an improved safety profile in humans compared with their non-GNA-modified counterparts, and several additional siRNAs containing the GNA modification are currently in clinical development.


Asunto(s)
Ácidos Nucleicos , Humanos , Animales , Ratones , Ácidos Nucleicos/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Tratamiento con ARN de Interferencia , Glicoles/química , Nucleótidos/química , Conformación de Ácido Nucleico
15.
RNA ; 29(8): 1288-1300, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105714

RESUMEN

Synthetic RNA oligonucleotides composed of canonical and modified ribonucleotides are highly effective for RNA antisense therapeutics and RNA-based genome engineering applications utilizing CRISPR-Cas9. Yet, synthesis of synthetic RNA using phosphoramidite chemistry is highly inefficient and expensive relative to DNA oligonucleotides, especially for relatively long RNA oligonucleotides. Thus, new biotechnologies are needed to significantly reduce costs, while increasing synthesis rates and yields of synthetic RNA. Here, we engineer human DNA polymerase theta (Polθ) variants and demonstrate their ability to synthesize long (95-200 nt) RNA oligonucleotides with canonical ribonucleotides and ribonucleotide analogs commonly used for stabilizing RNA for therapeutic and genome engineering applications. In contrast to natural promoter-dependent RNA polymerases, Polθ variants synthesize RNA by initiating from DNA or RNA primers, which enables the production of RNA without short abortive byproducts. Remarkably, Polθ variants show the lower capacity to misincorporate ribonucleotides compared to T7 RNA polymerase. Automation of this enzymatic RNA synthesis technology can potentially increase yields while reducing costs of synthetic RNA oligonucleotide production.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN , Humanos , ARN/genética , ARN Polimerasas Dirigidas por ADN/genética , ADN/genética , Ribonucleótidos/genética , Oligonucleótidos , ADN Polimerasa theta
16.
Brain ; 147(4): 1231-1246, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37812817

RESUMEN

Dravet syndrome is an intractable developmental and epileptic encephalopathy caused by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel Nav1.1. We showed previously that administration of the antisense oligonucleotide STK-001, also called ASO-22, generated using targeted augmentation of nuclear gene output technology to prevent inclusion of the nonsense-mediated decay, or poison, exon 20N in human SCN1A, increased productive Scn1a transcript and Nav1.1 expression and reduced the incidence of electrographic seizures and sudden unexpected death in epilepsy in a mouse model of Dravet syndrome. Here, we investigated the mechanism of action of ASO-84, a surrogate for ASO-22 that also targets splicing of SCN1A exon 20N, in Scn1a+/- Dravet syndrome mouse brain. Scn1a +/- Dravet syndrome and wild-type mice received a single intracerebroventricular injection of antisense oligonucleotide or vehicle at postnatal Day 2. We examined the electrophysiological properties of cortical pyramidal neurons and parvalbumin-positive fast-spiking interneurons in brain slices at postnatal Days 21-25 and measured sodium currents in parvalbumin-positive interneurons acutely dissociated from postnatal Day 21-25 brain slices. We show that, in untreated Dravet syndrome mice, intrinsic cortical pyramidal neuron excitability was unchanged while cortical parvalbumin-positive interneurons showed biphasic excitability with initial hyperexcitability followed by hypoexcitability and depolarization block. Dravet syndrome parvalbumin-positive interneuron sodium current density was decreased compared to wild-type. GABAergic signalling to cortical pyramidal neurons was reduced in Dravet syndrome mice, suggesting decreased GABA release from interneurons. ASO-84 treatment restored action potential firing, sodium current density and GABAergic signalling in Dravet syndrome parvalbumin-positive interneurons. Our work suggests that interneuron excitability is selectively affected by ASO-84. This new work provides critical insights into the mechanism of action of this antisense oligonucleotide and supports the potential of antisense oligonucleotide-mediated upregulation of Nav1.1 as a successful strategy to treat Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas , Oligonucleótidos Antisentido , Ratones , Animales , Humanos , Oligonucleótidos Antisentido/farmacología , Parvalbúminas/metabolismo , Epilepsias Mioclónicas/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Interneuronas/metabolismo , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad
17.
Mol Ther ; 32(5): 1359-1372, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429929

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.


Asunto(s)
Ataxina-3 , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph , Oligodendroglía , Oligonucleótidos Antisentido , Animales , Oligodendroglía/metabolismo , Ratones , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , Enfermedad de Machado-Joseph/patología , Enfermedad de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ratones Transgénicos
18.
Mol Ther ; 32(3): 580-608, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38291757

RESUMEN

Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Humanos , ARN , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia
19.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38243599

RESUMEN

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Empalme del ARN , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Stargardt/genética , Mutación , Células Fotorreceptoras
20.
Proc Natl Acad Sci U S A ; 119(36): e2207956119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037350

RESUMEN

Recent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues. TMOs are composed of a morpholino nucleoside joined by thiophosphoramidate internucleotide linkages. Unlike phosphorodiamidate morpholino oligomers (PMOs) that are currently used in various splice-switching ASO drugs, TMOs can be synthesized using solid-phase oligonucleotide synthesis methodologies. In this study, we synthesized various TMOs and evaluated their efficacy to induce exon skipping in a Duchenne muscular dystrophy (DMD) in vitro model using H2K mdx mouse myotubes. Our experiments demonstrated that TMOs can efficiently internalize and induce excellent exon 23 skipping potency compared with a conventional PMO control and other widely used nucleotide analogs, such as 2'-O-methyl and 2'-O-methoxyethyl ASOs. Notably, TMOs performed well at low concentrations (5-20 nM). Therefore, the dosages can be minimized, which may improve the drug safety profile. Based on the present study, we propose that TMOs represent a new, promising class of nucleic acid analogs for future oligonucleotide therapeutic development.


Asunto(s)
Terapia Genética , Morfolinos , Distrofia Muscular de Duchenne , Empalme del ARN , Animales , Modelos Animales de Enfermedad , Terapia Genética/métodos , Técnicas In Vitro , Ratones , Ratones Endogámicos mdx , Morfolinos/genética , Morfolinos/farmacología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleótidos/genética , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA