Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(15): e2306821, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009496

RESUMEN

Low-dimensional perovskites afford improved stability against moisture, heat, and ionic migration. However, the low dimensionality typically results in a wide bandgap and strong electron-phonon coupling, which is undesirable for optoelectronic applications. Herein, semiconducting A-site organic cation engineering by electron-acceptor bipyridine (bpy) cations (2,2'-bpy2+ and 4,4'-bpy2+) is employed to optimize band structure in low-dimensional perovskites. Benefiting from the merits of lower lowest unoccupied molecular orbital (LUMO) energy for 4,4'-bpy2+ cation, the corresponding (4,4'-bpy)PbI4 is endowed with a smaller bandgap (1.44 eV) than the (CH3NH3)PbI3 (1.57 eV) benchmark. Encouragingly, an intramolecular type II band alignment formation between inorganic Pb-I octahedron anions and bpy2+ cations favors photogenerated electron-hole pairs separation. In addition, a shortening distance between inorganic Pb-I octahedral chains in (4,4'-bpy)PbI4 single crystal (SC) can effectively promote carrier transfer. As a result, a self-powered photodetector based on (4,4'-bpy)PbI4 SC exhibits 131 folds higher on/off ratio (3807) than the counterpart of (2,2'-bpy)2Pb3I10 SC (29). The presented result provides an effective strategy for exporting novel organic cation-based low-dimensional perovskite SC for high-performance optoelectronic devices.

2.
Angew Chem Int Ed Engl ; 62(18): e202213386, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36867355

RESUMEN

Tin organic-inorganic halide perovskites (tin OIHPs) possess a desirable band gap and their power conversion efficiency (PCE) has reached 14 %. A commonly held view is that the organic cations in tin OIHPs would have little impact on the optoelectronic properties. Herein, we show that the defective organic cations with randomly dynamic characteristics can have marked effect on optoelectronic properties of the tin OIHPs. Hydrogen vacancies originated from the proton dissociation from FA [HC(NH2 )2 ] in FASnI3 can induce deep transition levels in the band gap but yield relatively small nonradiative recombination coefficients of 10-15  cm3 s-1 , whereas those from MA (CH3 NH3 ) in MASnI3 can yield much larger nonradiative recombination coefficients of 10-11  cm3 s-1 . Additional insight into the "defect tolerance" is gained by disentangling the correlations between dynamic rotation of organic cations and charge-carrier dynamics.

3.
Small ; 18(15): e2106759, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218284

RESUMEN

The soft hybrid organic-inorganic structure of two-dimensional layered perovskites (2DLPs) enables broadband emission at room temperature from a single material, which makes 2DLPs promising sources for solid-state white lighting, yet with low efficiency. The underlying photophysics involves self-trapping of excitons favored by distortions of the inorganic lattice and coupling to phonons, where the mechanism is still under debate. 2DLPs with different organic moieties and emission ranging from self-trapped exciton (STE)-dominated white light to blue band-edge photoluminescence are investigated. Detailed insights into the directional symmetries of phonon modes are gained using angle-resolved polarized Raman spectroscopy and are correlated to the temperature-dependence of the STE emission. It is demonstrated that weak STE bands at low-temperature are linked to in-plane phonons, and efficient room-temperature STE emission to more complex coupling to several phonon modes with out-of-plane components. Thereby, a unique view is provided into the lattice deformations and recombination dynamics that are key to designing more efficient materials.

4.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502566

RESUMEN

The renal secretory clearance for organic cations (neurotransmitters, metabolism products and drugs) is mediated by transporters specifically expressed in the basolateral and apical plasma membrane domains of proximal tubule cells. Here, human organic cation transporter 2 (hOCT2) is the main transporter for organic cations in the basolateral membrane domain. In this study, we stably expressed hOCT2 in Madin-Darby Canine Kidney (MDCK) cells and cultivated these cells in the presence of an extracellular matrix to obtain three-dimensional (3D) structures (cysts). The transport properties of hOCT2 expressed in MDCK cysts were compared with those measured using human embryonic kidney cells (HEK293) stably transfected with hOCT2 (hOCT2-HEK cells). In the MDCK cysts, hOCT2 was expressed in the basolateral membrane domain and showed a significant uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) with an affinity (Km) of 3.6 ± 1.2 µM, similar to what was measured in the hOCT2-HEK cells (Km = 3.1 ± 0.2 µM). ASP+ uptake was inhibited by tetraethylammonium (TEA+), tetrapentylammonium (TPA+), metformin and baricitinib both in the hOCT2-HEK cells and the hOCT2- MDCK cysts, even though the apparent affinities of TEA+ and baricitinib were dependent on the expression system. Then, hOCT2 was subjected to the same rapid regulation by inhibition of p56lck tyrosine kinase or calmodulin in the hOCT2-HEK cells and hOCT2- MDCK cysts. However, inhibition of casein kinase II regulated only activity of hOCT2 expressed in MDCK cysts and not in HEK cells. Taken together, these results suggest that the 3D cell culture model is a suitable tool for the functional analysis of hOCT2 transport properties, depending on cell polarization.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Polaridad Celular/fisiología , Células Epiteliales/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Animales , Transporte Biológico/fisiología , Cationes/metabolismo , Perros , Células Epiteliales/citología , Células Epiteliales/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Metilaminas/metabolismo , Microscopía Fluorescente/métodos , Transportador 2 de Cátion Orgánico/genética , Compuestos de Piridinio/metabolismo
5.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708212

RESUMEN

Vectorial transport of organic cations (OCs) in renal proximal tubules is mediated by sequential action of human OC transporter 2 (hOCT2) and human multidrug and toxic extrusion protein 1 and 2K (hMATE1 and hMATE2K), expressed in the basolateral (hOCT2) and luminal (hMATE1 and hMATE2K) plasma membranes, respectively. It is well known that hOCT2 activity is subjected to rapid regulation by several signaling pathways, suggesting that renal OC secretion may be acutely adapted to physiological requirements. Therefore, in this work, the acute regulation of hMATEs stably expressed in human embryonic kidney cells was characterized using the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) as a marker. A specific regulation of ASP+ transport by hMATE1 and hMATE2K measured in uptake and efflux configurations was observed. In the example of hMATE1 efflux reduction by inhibition of casein kinase II, it was also shown that this regulation is able to modify transcellular transport of ASP+ in Madin-Darby canine kidney II cells expressing hOCT2 and hMATE1 on the basolateral and apical membrane domains, respectively. The activity of hMATEs can be rapidly regulated by some intracellular pathways, which sometimes are common to those found for hOCTs. Interference with these pathways may be important to regulate renal secretion of OCs.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Cationes/metabolismo , Cimetidina/farmacología , Proteínas de Transporte de Catión Orgánico/metabolismo , Animales , Transporte Biológico/genética , Quinasa de la Caseína II/antagonistas & inhibidores , Perros , Fluorescencia , Colorantes Fluorescentes/metabolismo , Guanidinas/farmacología , Células HEK293 , Humanos , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/genética , Compuestos de Piridinio/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Sulfonas/farmacología
6.
Angew Chem Int Ed Engl ; 57(31): 9941-9944, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29877017

RESUMEN

Methylammonium (CH3 NH3+ ) and formamidinium ((NH2 )2 CH+ ) based lead iodide perovskites are currently the two commonly used organic-inorganic lead iodide perovskites. There are still no alternative organic cations that can produce perovskites with band gaps spanning the visible spectrum (that is, <1.7 eV) for solar cell applications. Now, a new perovskite using large propane-1,3-diammonium cation (1,3-Pr(NH3 )22+ ) with a chemical structure of (1,3-Pr(NH3 )2 )0.5 PbI3 is demonstrated. X-ray diffraction (XRD) shows that the new perovskite exhibits a three-dimensional tetragonal phase. The band gap of the new perovskite is about 1.6 eV, which is desirable for photovoltaic applications. A (1,3-Pr(NH3 )2 )0.5 PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1 %. More importantly, this perovskite is composed of a large hydrophobic cation that provides better moisture resistance compared to CH3 NH3 PbI3 perovskite.

7.
Plant Mol Biol ; 94(6): 657-667, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28695314

RESUMEN

KEY MESSAGE: The vacuolar SlCAT2 was cloned, over-produced in E. coli and reconstituted in proteoliposomes. Arg, Ornithine and Lys were identified as substrates. Unexpectedly, also the organic cations Tetraethylammonium and Acetylcholine were transported indicating involvement of SlCAT2 in signaling. In land plants several transporters are involved in ion and metabolite flux across membranes of cells or intracellular organelles. The vacuolar amino acid transporter CAT2 from Solanum lycopersicum was investigated in this work. SlCAT2 was cloned from tomato flower cDNA, over-produced in Escherichia coli and purified by Nichel-chelating chromatography. For functional studies, the transporter was reconstituted in proteoliposomes. Competence of SlCAT2 for Arg transport was demonstrated measuring uptake of [3H]Arg in proteoliposomes which was trans-stimulated by internal Arg or ornithine. Uptake of [3H]Ornithine and [3H]Lys was also detected at lower efficiency with respect to [3H]Arg. Transport was activated by the presence of intraliposomal ATP suggesting regulation by the nucleotide. The prototype for organic cations tetraethylammonium (TEA) was also transported by SlCAT2. However, scarce reciprocal inhibition between TEA and Arg was found, while the biguanide metformin was able to strongly inhibit uptake of both substrates. These findings suggest that amino acids and organic cations may interact with the transporter through different functional groups some of which are common for the two types of substrates. Interestingly, reconstituted SlCAT2 showed competence for acetylcholine transport, which was also inhibited by metformin. Kinetics of Arg and Ach transport were performed from which Km values of 0.29 and 0.79 mM were derived, respectively.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Proteolípidos/metabolismo , Solanum lycopersicum/metabolismo , Acetilcolina/metabolismo , Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Cationes/metabolismo , Clonación Molecular , Escherichia coli/genética , Solanum lycopersicum/genética , Lisina/metabolismo , Ornitina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Tetraetilamonio/metabolismo
8.
J Bioenerg Biomembr ; 49(3): 281-290, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28364383

RESUMEN

Translocation of ions and other molecules across the plasma membrane of yeast requires the electric potential generated by a H+-ATPase. We measured under different conditions fluorescence changes and accumulation of acridine yellow, looking for qualitative and quantitative estimations of the PMP in Saccharomyces cerevisiae in various conditions. Fluorescence changes indicated an accumulation of the dye requiring a substrate, and accumulation and quenching by mitochondria that could be released by an uncoupler. K+ produced a decrease of the fluorescence that was much lower upon the addition of Na+. These changes were confirmed by images of the cells under the microscope. The dye accumulation under different conditions showed changes consistent with the physiological situation of the cells. Since it accumulates due to the PMP, but a large part of it binds to the internal components, we permeabilized the cells with chitosan to subtract this factor and correct the accumulation data. Both raw and corrected values of PMP are different to those obtained before by other authors and our group, showing acridine yellow as a promising indicator to follow changes of the PMP by the fluorescence changes, but also by its accumulation. Under conditions described, the dye is a low cost monitor to define and follow qualitative and quantitative changes of PMP in yeast. Acridine yellow can also be used to follow changes of the mitochondrial membrane potential.


Asunto(s)
Aminoacridinas/análisis , Membrana Celular/fisiología , Potenciales de la Membrana , Potencial de la Membrana Mitocondrial , Métodos , Microscopía Fluorescente/métodos , Saccharomyces cerevisiae/citología
9.
Angew Chem Int Ed Engl ; 53(12): 3151-7, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24554633

RESUMEN

Hybrid organic-inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid-state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite-based photovoltaics is to extend their optical-absorption onset further into the red to enhance solar-light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3 (+), FA) and methylammonium (CH3 NH3 (+), MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short-circuit current and thus superior devices to those based on only CH3 NH3 (+). This concept has not been applied previously in perovskite-based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials.

10.
ACS Nano ; 18(22): 14218-14230, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38787298

RESUMEN

Device-level implementation of soft materials for energy conversion and thermal management demands a comprehensive understanding of their thermal conductivity and elastic modulus to mitigate thermo-mechanical challenges and ensure long-term stability. Thermal conductivity and elastic modulus are usually positively correlated in soft materials, such as amorphous macromolecules, which poses a challenge to discover materials that are either soft and thermally conductive or hard and thermally insulative. Here, we show anomalous correlations of thermal conductivity and elastic modulus in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIP) by engineering the molecular interactions between organic cations. By replacing conventional alkyl-alkyl and aryl-aryl type organic interactions with mixed alkyl-aryl interactions, we observe an enhancement in elastic modulus with a reduction in thermal conductivity. This anomalous dependence provides a route to engineer thermal conductivity and elastic modulus independently and a guideline to search for better thermal management materials. Further, introducing chirality into the organic cation induces a molecular packing that leads to the same thermal conductivity and elastic modulus regardless of the composition across all half-chiral 2D HOIPs. This finding provides substantial leeway for further investigations in chiral 2D HOIPs to tune optoelectronic properties without compromising thermal and mechanical stability.

11.
FEBS Lett ; 598(19): 2328-2347, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38831380

RESUMEN

Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.


Asunto(s)
Proteínas de Transporte de Catión Orgánico , Humanos , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Animales , Riñón/metabolismo , Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional
12.
ACS Appl Mater Interfaces ; 16(15): 19318-19329, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38577894

RESUMEN

Studies indicated that two-dimensional (2D) metal halide perovskites (MHPs) embodied with three-dimensional (3D) MHPs were a facile way to realize efficient and stable perovskite solar cells (PSCs) and perovskite photodetectors (PPDs). Here, high-performance PSCs and PPDs, which are based on 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by binary conjugated organic cations, are reported. Systemically studies reveal that the above novel 2D/3D MHPs bilayer thin films possess an enlarged crystal size, balanced charge transport, reduced charge carrier recombination, smaller charge-transfer resistance, and accelerated charge-extraction process compared to the 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by a single conjugated organic cation. As a result, the PSCs based on the above novel 2D/3D MHPs bilayer thin film exhibit a power conversion efficiency of 22.76%. Moreover, unencapsulated PSCs possess dramatically enhanced stability compared with those based on the 2D/3D MHPs bilayer thin films, where the 2D MHPs are created by a single conjugated organic cation. In addition, the PPDs based on the above novel 2D/3D MHPs bilayer thin film exhibit a projected detectivity of 1016 cm Hz1/2/W and a linear dynamic range of 108 dB at room temperature. Our studies indicate that the development of binary conjugated organic cation-based 2D MHPs incorporated with 3D MHPs is a simple method to realize high-performance PSCs and PPDs.

13.
Drug Metab Pharmacokinet ; 51: 100510, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451173

RESUMEN

Lysosomal trapping, a physicochemical process in which lipophilic cationic compounds are sequestered in lysosomes, can affect drug disposition and cytotoxicity. To better understand lysosomal trapping at the outer blood-retinal barrier (BRB), we investigated the distribution of LysoTracker Red (LTR), a probe compound for lysosomal trapping, in conditionally immortalized rat retinal pigment epithelial (RPE-J) cells. LTR uptake by RPE-J cells was dependent on temperature and attenuated by ammonium chloride and protonophore, which decreased the pH gradient between the lysosome and cytoplasm, suggesting lysosomal trapping of LTR in RPE-J cells. The involvement of lysosomal trapping in response to cationic drugs, including neuroprotectants such as desipramine and memantine, was also suggested by an inhibition study of LTR uptake. Chloroquine, which is known to show ocular toxicity, induced cytoplasmic vacuolization in RPE-J cells with a half-maximal effective concentration of 1.35 µM. This value was 59 times lower than the median lethal concentration (= 79.1 µM) of chloroquine, suggesting that vacuolization was not a direct trigger of cell death. These results are helpful for understanding the lysosomal trapping of cationic drugs, which is associated with drug disposition and cytotoxicity in the outer BRB.


Asunto(s)
Barrera Hematorretinal , Lisosomas , Ratas , Animales , Barrera Hematorretinal/metabolismo , Transporte Biológico , Lisosomas/metabolismo , Cloroquina/farmacología , Cloroquina/metabolismo
14.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36234623

RESUMEN

Metal halide perovskites have become a research highlight in the optoelectronic field due to their excellent properties. The perovskite light-emitting diodes (PeLEDs) have achieved great improvement in performance in recent years, and the construction of quasi-2D perovskites by incorporating large-size organic cations is an effective strategy for fabricating efficient PeLEDs. Here, we incorporate the fluorine meta-substituted phenethylammonium bromide (m-FPEABr) into CsPbBr3 to prepare quasi-2D perovskite films for efficient PeLEDs, and study the effect of fluorine substitution on regulating the crystallization kinetics and phase distribution of the quasi-2D perovskites. It is found that m-FPEABr allows the transformation of low-n phases to high-n phases during the annealing process, leading to the suppression of n = 1 phase and increasing higher-n phases with improved crystallinity. The rational phase distribution results in the formation of multiple quantum wells (MQWs) in the m-FPEABr based films. The carrier dynamics study reveals that the resultant MQWs enable rapid energy funneling from low-n phases to emission centers. As a result, the green PeLEDs achieve a peak external quantum efficiency of 16.66% at the luminance of 1279 cd m-2. Our study demonstrates that the fluorinated organic cations would provide a facile and effective approach to developing high-performance PeLEDs.

15.
ACS Appl Mater Interfaces ; 14(9): 11200-11210, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35192342

RESUMEN

In perovskite solar cells (PSCs), bulky organic cation halide salt additions play a significant role in suppressing nonradiative recombination by passivating intrinsic defects in perovskites. Herein, a passivation treatment is developed by applying mixed bulky cations [guanidinium cation (GA+) and phenylethylammonium cations (PEA+)] as the additive for perovskite thin films. The internal interactions between the two bulky cations could result in lower carrier trap-state densities, a sharper Urbach tail, and better carrier transport in perovskite films in comparison with a control film. As a result, in comparison to the control device, which has a power conversion efficiency (PCE) of 18.92%, the mixed-cation-based device exhibits a dramatic enhancement of PCE of 20.64%. Importantly, after 720 h of storage in an ambient atmosphere with a relative humidity (RH) of 60-80% at room temperature, the mixed-cation-based device retains 62.7% of its original performance, whereas the control devices decay to less than 40% of their original performance.

16.
Adv Mater ; 33(13): e2008004, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33644923

RESUMEN

The unique combination of organic and inorganic layers in 2D layered perovskites offers promise for the design of a variety of materials for mechatronics, flexoelectrics, energy conversion, and lighting. However, the potential tailoring of their properties through the organic building blocks is not yet well understood. Here, different classes of organoammonium molecules are exploited to engineer the optical emission and robustness of a new set of Ruddlesden-Popper metal-halide layered perovskites. It is shown that the type of molecule regulates the number of hydrogen bonds that it forms with the edge-sharing [PbBr6 ]4- octahedra layers, leading to strong differences in the material emission and tunability of the color coordinates, from deep-blue to pure-white. Also, the emission intensity strongly depends on the length of the molecules, thereby providing an additional parameter to optimize their emission efficiency. The combined experimental and computational study provides a detailed understanding of the impact of lattice distortions, compositional defects, and the anisotropic crystal structure on the emission of such layered materials. It is foreseen that this rational design can be extended to other types of organic linkers, providing a yet unexplored path to tailor the optical and mechanical properties of these materials and to unlock new functionalities.

17.
ACS Nano ; 15(4): 6316-6325, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33709710

RESUMEN

Two-dimensional perovskites that could be regarded as natural organic-inorganic hybrid quantum wells (HQWs) are promising for light-emitting diode (LED) applications. High photoluminescence quantum efficiencies (approaching 80%) and extremely narrow emission bandwidth (less than 20 nm) have been demonstrated in their single crystals; however, a reliable electrically driven LED device has not been realized owing to inefficient charge injection and extremely poor stability. Furthermore, the use of toxic lead raises concerns. Here, we report Sn(II)-based organic-perovskite HQWs employing molecularly tailored organic semiconducting barrier layers for efficient and stable LEDs. Utilizing femtosecond transient absorption spectroscopy, we demonstrate the energy transfer from organic barrier to inorganic perovskite emitter occurs faster than the intramolecular charge transfer in the organic layer. Consequently, this process allows efficient conversion of lower-energy emission associated with the organic layer into higher-energy emission from the perovskite layer. This greatly broadened the candidate pool for the organic layer. Incorporating a bulky small bandgap organic barrier in the HQW, charge transport is enhanced and ion migration is greatly suppressed. We demonstrate a HQW-LED device with pure red emission, a maximum luminance of 3466 cd m-2, a peak external quantum efficiency up to 3.33%, and an operational stability of over 150 h, which are significantly better than previously reported lead-free perovskite LEDs.

18.
Adv Mater ; 32(46): e2004080, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33048430

RESUMEN

Layered perovskites have been employed for various optoelectronic devices including solar cells and light-emitting diodes for improved stability, which need exciton transport along both the in-plane and the out-of-plane directions. However, it is not clear yet what determines the exciton transport along the in-plane direction, which is important to understand its impact toward electronic devices. Here, by employing both steady-state and transient photoluminescence mapping, it is found that in-plane exciton diffusivities in layered perovskites are sensitive to both the number of layers and organic cations. Apart from exciton-phonon coupling, the octahedral distortion is revealed to significantly affect the exciton diffusion process, determined by temperature-dependent photoluminescence, light-intensity-dependent time-resolved photoluminescence, and density function theory calculations. A simple fluorine substitution to phenethylammonium for the organic cations to tune the structural rigidity and octahedral distortion yields a record exciton diffusivity of 1.91 cm2 s-1 and a diffusion length of 405 nm along the in-plane direction. This study provides guidance to manipulate exciton diffusion by modifying organic cations in layered perovskites.

19.
Pharmaceutics ; 12(4)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231079

RESUMEN

Organic cation transporters (OCTs) participate in the handling of compounds in kidneys and at the synaptic cleft. Their role at the blood-brain barrier (BBB) in brain drug delivery is still unclear. The presence of OCT1,2,3 (SLC22A1-3) in mouse, rat and human isolated brain microvessels was investigated by either qRT-PCR, quantitative proteomics and/or functional studies. BBB transport of the prototypical substrate [3H]-1-methyl-4-phenylpyridinium ([3H]-MPP+) was measured by in situ brain perfusion in six mouse strains and in Sprague Dawley rats, in primary human brain microvascular endothelial cells seeded on inserts, in the presence or absence of OCTs and a MATE1 (SLC49A1) inhibitor. The results show negligible OCT1 (SLC22A1) and OCT2 (SLC22A2) expression in either mice, rat or human brain microvessels, while OCT3 expression was identified in rat microvessels by qRT-PCR. The in vitro human cellular uptake of [3H]-MPP+ was not modified by OCTs/MATE-inhibitor. Brain transport of [3H]-MPP+ remains unchanged between 2- and 6-month old mice, and no alteration was observed in mice and rats with inhibitors. In conclusion, the evidenced lack of expression and/or functional OCTs and MATE at the BBB allows the maintenance of the brain homeostasis and function as it prevents an easy access of their neurotoxicant substrates to the brain parenchyma.

20.
Water Res ; 184: 116151, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682080

RESUMEN

This study examined effects of aquatic and soil natural organic matter (NOM) exemplified by standard Suwannee River fulvic acid (SRFA) and Pahokee Peat fulvic acid (PPFA), respectively, on the electrochemical (EC) reactivity and mass transfer properties of the cationic organic probe toluidine blue (TB) that forms complexes with NOM. EC measurements that were carried out using the method of rotating ring-disc electrode (RRDE) showed that for disc potentials below -0.4 V vs. the standard Ag/AgCl reference electrode, TB molecules undergo EC reduction accompanied by the formation of EC-active products that undergo oxidation at the ring electrode. EC reactions of TB in the range of potentials -0.2 to -0.4 V were determined to involve free TB+ cations and TB species adsorbed on the electrode surface. The EC reduction of TB species at the disc potentials < -0.4 V was controlled by the mass transfer of the free TB+ cations and TB/NOM complexes to the electrode surface. Formation of TB/NOM complexes caused the mass transfer-controlled TB currents to undergo a consistent decrease. The observed changes were correlated with the extent of TB/NOM complexation and decreases of the diffusion coefficients of TB/NOM complexes that have higher molecular weights (MW) than the free cations. Properties of the intermediates formed upon the reduction of TB+ cations were also affected by NOM. These results demonstrate that RRDE measurements of EC reactions of TB or possibly other EC active probes allow probing the complexation of EC-active organic species with NOM and mass transfer properties of NOM complexes and ultimately NOM itself.


Asunto(s)
Benzopiranos , Cloruro de Tolonio , Cationes , Electrodos , Sustancias Húmicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA