Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Adv Sci (Weinh) ; 11(7): e2305349, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064157

RESUMEN

In this study, it is demonstrated that CsPbBr3 perovskite nanocrystals (NCs) can enhance the overall performances of photomultiplication-type organic photodiodes (PM-OPDs). The proposed approach enables the ionic-polarizable CsPbBr3 NCs to be evenly distributed throughout the depletion region of Schottky junction interface, allowing the entire trapped electrons within the depletion region to be stabilized, in contrast to previously reported interface-limited strategies. The optimized CsPbBr3 -NC-embedded poly(3-hexylthiophene-diyl)-based PM-OPDs exhibit exceptionally high external quantum efficiency, specific detectivity, and gain-bandwidth product of 2,840,000%, 3.97 × 1015 Jones, and 2.14 × 107  Hz, respectively. 2D grazing-incidence X-ray diffraction analyses and drift-diffusion simulations combined with temperature-dependent J-V characteristic analyses are conducted to investigate the physics behind the success of CsPbBr3 -NC-embedded PM-OPDs. The results show that the electrostatic interactions generated by the ionic polarization of NCs effectively stabilize the trapped electrons throughout the entire volume of the photoactive layer, thereby successfully increasing the effective energy depth of the trap states and allowing efficient PM mechanisms. This study demonstrates how a hybrid-photoactive-layer approach can further enhance PM-OPD when the functionality of inorganic inclusions meets the requirements of the target device.

2.
Adv Mater ; 36(8): e2310250, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016048

RESUMEN

A novel approach for developing shortwave IR (SWIR) organic photodiodes (OPDs) using doped polymers is presented. SWIR OPDs are challenging to produce because of the limitations in extending the absorption of conjugated molecules and the high dark currents of SWIR-absorbing materials. Herein, it is shown that the conversion of bound polarons to free polarons by light energy can be utilized as an SWIR photodetection mechanism. To maximize the bound-polaron density and bound-to-free polaron ratio of the doped polymer film, the doping process is engineered and dopant molecules are diffused into the crystalline domain of the polymer matrix and a direct correlation between the bound-to-free polaron ratio and device performance is confirmed. The optimized double-doped SWIR OPD exhibits a high external quantum efficiency of 77 100% and specific detectivity of 1.11 × 1011 Jones against SWIR. These findings demonstrate the application potential of polarons as alternatives for Frenkel excitons in SWIR OPDs.

3.
Adv Mater ; 36(38): e2407271, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39081083

RESUMEN

Near-infrared (NIR) organic photodetectors (OPDs), particularly all-polymer-based ones, hold substantial commercial promise in the healthcare and imaging sectors. However, the process of optimizing their active layer composition to achieve highly competitive figures of merit lacks a clear direction and methodology. In this work, celebrity polymer acceptor PY-IT into a more NIR absorbing host system PBDB-T:PZF-V, to significantly enhance the photodetection competence, is introduced. The refined all-polymer ternary broadband photodetector demonstrates superior performance metrics, including experimentally measured noise current as low as 6 fA Hz-1/2, specific detectivity reaching 8 × 1012 Jones, linear dynamic range (LDR) of 145 dB, and swift response speed surpassing 200 kHz, striking a fair balance between sensitivity and response speed. Comprehensive morphological and photophysical characterizations elucidate the mechanisms behind the observed performance enhancements in this study, which include reduced trap density, enhanced charge transport, diminished charge recombination, and balanced electron/hole mobilities. Moreover, the practical deployment potential of the proof-of-concept device in self-powered mode is demonstrated through their application in a machine learning-based cuffless blood pressure (BP) estimation system and in high-resolution computational imaging across complex environments, where they are found to quantitatively rival commercial silicon diodes.

4.
Adv Mater ; 35(8): e2209598, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36482790

RESUMEN

Organic bulk heterojunction photodiodes (OPDs) attract attention for sensing and imaging. Their detectivity is typically limited by a substantial reverse bias dark current density (Jd ). Recently, using thermal admittance or spectral photocurrent measurements, Jd has been attributed to thermal charge generation mediated by mid-gap states. Here, the temperature dependence of Jd in state-of-the-art OPDs is reported with Jd down to 10-9  mA cm-2 at -0.5 V bias. For a variety of donor-acceptor bulk-heterojunction blends it is found that the thermal activation energy of Jd is lower than the effective bandgap of the blends, by ca. 0.3 to 0.5 eV, but higher than expected for mid-gap states. Ultra-sensitive sub-bandgap photocurrent spectroscopy reveals that the minimum photon energy for optical charge generation in OPDs correlates with the dark current thermal activation energy. The dark current in OPDs is attributed to thermal charge generation at the donor-acceptor interface mediated by intra-gap states near the band edges.

5.
Adv Sci (Weinh) ; 10(28): e2302976, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37541299

RESUMEN

The recent emergence of non-fullerene acceptors (NFAs) has energized the field of organic photodiodes (OPDs) and made major breakthroughs in their critical photoelectric characteristics. Yet, stabilizing inverted NF-OPDs remains challenging because of the intrinsic degradation induced by improper interfaces. Herein, a tin ion-chelated polyethyleneimine ethoxylated (denoted as PEIE-Sn) is proposed as a generic cathode interfacial layer (CIL) of NF-OPDs. The chelation between tin ions and nitrogen/oxygen atoms in PEIE-Sn contributes to the interface compatibility with efficient NFAs. The PEIE-Sn can effectively endow the devices with optimized cascade alignment and reduced interface defects. Consequently, the PEIE-Sn-OPD exhibits properties of anti-environmental interference, suppressed dark current, and accelerated interfacial electron extraction and transmission. As a result, the unencapsulated PEIE-Sn-OPD delivers high specific detection and fast response speed and shows only slight attenuation in photoelectric performance after exposure to air, light, and heat. Its superior performance outperforms the incumbent typical counterparts (ZnO, SnO2 , and PEIE as the CILs) from metrics of both stability and photoelectric characteristics. This finding suggests a promising strategy for stabilizing NF-OPDs by designing appropriate interface layers.

6.
ACS Appl Mater Interfaces ; 15(5): 7175-7183, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36718854

RESUMEN

Reducing the dark current (Jd) under reverse bias while maintaining a high external quantum efficiency (EQE) is essential for the practical application of organic photodiodes (OPDs). However, the high Jd of OPDs is generally difficult to reduce because its origin in organic photodiodes is still not well understood and is strongly temperature dependent. To address the issues related to high Jd in typical OPDs, we investigate fullerene-based OPDs with various donor concentrations. It is surprising that OPDs with a low donor concentration in the active layer can achieve a very low Jd of 1.68 × 10-7 mA cm-2 at a reverse bias of -2 V, which is almost temperature-independent owing to the low polymer content. More importantly, the fullerene-based OPDs with a low donor concentration of 5 wt % can still achieve an external quantum efficiency (EQE) as high as 40%, resulting in a promisingly high detectivity of above 1013 Jones at 300-800 nm compared to the OPDs with a standard donor/acceptor ratio. The presented optimized OPD device can also be used for real-time heart rate detection, indicating its potential for practical photon-sensing applications.

7.
ACS Appl Mater Interfaces ; 14(33): 38004-38012, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35960185

RESUMEN

Image-sensor technology is the foundation of many emerging applications, where the photodetector is designed to interact with incoming photons that have specific colors or wavelengths. A color filter is therefore crucial to enable the selective spectral response of the photodetector and to eliminate the crosstalk interference resulting from ambient lights. Unfortunately, a reduced detection sensitivity of the photodetector is inevitable due to an imperfect light filtering, which greatly limits the practical applications of selective-response photodetectors. Herein, we demonstrate a bulk-heterojunction (BHJ) organic composite featuring a self-filtering light responsive characteristic. Through a careful optimization of the BHJ film, the organic photodetector (OPD) demonstrates a high-selective spectral response to the infrared (IR) radiation without the need of applying a color filter. As a result, the self-filtering top-illuminated OPD exhibits a narrowband external quantum efficiency (EQE) of 53% with a narrow full width at half-maximum (fwhm) of 56 nm centering at 1080 nm. A high responsivity of 0.46 A W-1 is also achieved at 1080 nm wavelength due to the self-filtering characteristic.

8.
Adv Mater ; 34(17): e2200526, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35233855

RESUMEN

When the intensity of the incident light increases, the photocurrents of organic photodiodes (OPDs) exhibit relatively early saturation, due to which OPDs cannot easily detect objects against strong backlights, such as sunlight. In this study, this problem is addressed by introducing a light-intensity-dependent transition of the operation mode, such that the operation mode of the OPD autonomously changes to overcome early photocurrent saturation as the incident light intensity passes the threshold intensity. The photoactive layer is doped with a strategically designed and synthesized molecular switch, 1,2-bis-(2-methyl-5-(4-cyanobiphenyl)-3-thienyl)tetrafluorobenzene (DAB). The proposed OPD exhibits a typical OPD performance with an external quantum efficiency (EQE) of <100% and a photomultiplication behavior with an EQE of >100% under low-intensity and high-intensity light illuminations, respectively, thereby resulting in an extension of the photoresponse linearity to a light intensity of 434 mW cm-2 . This unique and reversible transition of the operation mode can be explained by the unbalanced quantum yield of photocyclization/photocycloreversion of the molecular switch. The details of the operation mechanism are discussed in conjunction with various photophysical analyses. Furthermore, they establish a prototype image sensor with an array of molecular-switch-embedded OPD pixels to demonstrate their extremely high sensitivity against strong light illumination.

9.
ACS Appl Mater Interfaces ; 14(12): 14410-14421, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312277

RESUMEN

Organic optoelectronic devices that can be fabricated at low cost have attracted considerable attention because they can absorb light over a wide frequency range and have high conversion efficiency, as well as being lightweight and flexible. Moreover, their performance can be significantly affected by the choice of the charge-selective interlayer material. Nonstoichiometric nickel oxide (NiOx) is an excellent material for the hole-transporting layer (HTL) of organic optoelectronic devices because of the good alignment of its valence band position with the highest occupied molecular orbital level of many p-type polymers. Herein, we report a simple low-temperature process for the synthesis of NiOx nanoparticles (NPs) that can be well dispersed in solution for long-term storage and easily used to form thin NiOx NP layers. NiOx NP-based organic photodiode (OPD) devices demonstrated high specific detectivity (D*) values of 1012-1013 jones under various light intensities and negative biases. The D* value of the NiOx NP-based OPD device was 4 times higher than that of a conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based device, an enhancement that originated mainly from the 16 times decreased leakage current. The NiOx NP-based OPD device demonstrated better reliability over a wide range of light intensities and operational biases in comparison to a device with a conventional sol-gel-processed NiOx film. More importantly, the NiOx NP-based OPD showed long-term device stability superior to those of the PEDOT:PSS and sol-gel-processed NiOx-based devices. We highlight that our low-temperature solution-processable NiOx NP-based HTL could become a crucial component in the fabrication of stable high-performance OPDs.

10.
Front Optoelectron ; 15(1): 49, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36637681

RESUMEN

Organic photodiodes (OPDs) have shown great promise for potential applications in optical imaging, sensing, and communication due to their wide-range tunable photoelectrical properties, low-temperature facile processes, and excellent mechanical flexibility. Extensive research work has been carried out on exploring materials, device structures, physical mechanisms, and processing approaches to improve the performance of OPDs to the level of their inorganic counterparts. In addition, various system prototypes have been built based on the exhibited and attractive features of OPDs. It is vital to link the device optimal design and engineering to the system requirements and examine the existing deficiencies of OPDs towards practical applications, so this review starts from discussions on the required key performance metrics for different envisioned applications. Then the fundamentals of the OPD device structures and operation mechanisms are briefly introduced, and the latest development of OPDs for improving the key performance merits is reviewed. Finally, the trials of OPDs for various applications including wearable medical diagnostics, optical imagers, spectrometers, and light communications are reviewed, and both the promises and challenges are revealed.

11.
Adv Mater ; 34(22): e2104678, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34668248

RESUMEN

Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.

12.
Adv Mater ; 34(29): e2201827, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35561337

RESUMEN

Infrared organic photodiodes have gained increasing attention due to their great application potentials in night vision, optical communication, and all-weather imaging. However, the commonly occurring high dark current and low detectivity impede infrared photodetectors from portable applications at room temperature. Herein, an efficient and generic doping compensation strategy is developed to improve the detectivity of infrared organic photodiodes. A series of n-type organic semiconductors is investigated, and it is found that doping compensation strategy not only reduces the trap density of states and dark currents, but also restrains the nonradiative recombination with improved charge transport and collection. As a result, an ultralow noise spectral density of 8 × 10-15 A Hz-1/2 as well as a high specific detectivity over 1013 Jones in 780-1070 nm is achieved at room temperature. More importantly, the high-performance infrared organic photodiodes can be successfully applied in high-pixel-density image arrays without patterning sensing layers. These findings provide important compensation design insights that will be crucial to further improve the performance of infrared organic photodiodes in the future.

13.
Adv Sci (Weinh) ; 9(32): e2203715, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36192160

RESUMEN

The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.

14.
ACS Appl Mater Interfaces ; 13(23): 27217-27226, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34080428

RESUMEN

Organic semiconductor devices, including organic photodetectors (OPDs) and organic photovoltaics (OPVs), have undergone vast improvements, thanks to the development of non-fullerene acceptors. The absorption range of such NFA-based systems is typically shifted toward the near-infrared (near-IR) region compared to early-generation fullerene-based systems, rendering organic semiconductor devices suitable for near-IR sensing applications. While most efforts are concentrated on the photoactive materials, less attention is paid to the impact of the back electrodes on the device performance. Therefore, this work focuses on the optical expediency of gold (Au), silver (Ag), aluminum (Al), and graphite as back electrode materials in organic optoelectronics. This work shows that the "one size fits all" methodology is not a valid approach for choosing the back electrode material. Instead, considering the active layer absorption, the active layer thickness, and the intended application is necessary. A traditional polymer/fullerene-based system, poly(3-hexylthiophene) with [6,6]-phenyl C61 butyric acid methyl ester (P3HT:PC60BM), and a state-of-the-art narrow-band gap non-fullerene-based system, poly[4,8bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b; 4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethy-lhexyl)3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-(2-6-diyl)] and 2,2'-((2Z,2'Z)-((5,5'-(4,4-bis(2-ethylhexyl)4H-cyclopenta[1,2-b:5,4-b']dithiophene-2,6-diyl)bis(4-((2ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene)) bis(5,6-difluoro3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (PCE10:COTIC-4F), are investigated by combining optical transfer matrix modeling simulations with experimentally determined recombination and extraction losses. We find that the narrow-band gap system shows performance gains when employing Au as the back electrode. Furthermore, we show that these performance gains are dependent on active layer thickness, yielding the most significance for thin active layers (<100 nm). Such thin, ultra-narrow-band gap devices are the focus of near-IR sensing applications, highlighting the importance of methodically choosing the back electrode. Lastly, the impact of the back electrode on the OPV device performance is outlined.

15.
Adv Mater ; 33(52): e2104689, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34677887

RESUMEN

A photomultiplication-type organic photodiode (PM-OPD), where an electric double layer (EDL) is strategically embedded, is demonstrated, with an exceptionally high external quantum efficiency (EQE) of 2 210 000%, responsivity of 11 200 A W-1 , specific detectivity of 2.11 × 1014 Jones, and gain-bandwidth product of 1.92 × 107  Hz, as well as high reproducibility. A polymer electrolyte, poly(9,9-bis(3'-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))dibromide is employed as a work-function-modifying layer of indium tin oxide (ITO) to construct an EDL-embedded Schottky junction with p-type polymer semiconductor, poly(3-hexylthiophene-diyl), resulting in not only advantageous tuning of the work function of ITO but also an enhancement of the electron-trapping efficiency due to electrostatic interaction between exposed cations and trapped electrons within isolated acceptor domains. The effects of the EDL on the energetics of the trapped electron states and thus on the gain generation mechanism are confirmed by numerical simulations based on the drift-diffusion approximation of charge carriers. The feasibility of the fabricated high-EQE PM-OPD especially for weak light detection is demonstrated via a pixelated prototype image sensor. It is believed that this new OPD platform opens up the possibility for the ultrahigh-sensitivity organic image sensors, while maintaining the advantageous properties of organics.

16.
Adv Mater ; 33(26): e2100582, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34060157

RESUMEN

A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC61 BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm-1 ) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications.

17.
Adv Mater ; 32(1): e1906027, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31714629

RESUMEN

Sensitive detection of near-infrared (NIR) light enables many important applications in both research and industry. Current organic photodetectors suffer from low NIR sensitivity typically due to early absorption cutoff, low responsivity, and/or large dark/noise current under bias. Herein, organic photodetectors based on a novel ultranarrow-bandgap nonfullerene acceptor, CO1-4Cl, are presented, showcasing a remarkable responsivity over 0.5 A W-1 in the NIR spectral region (920-960 nm), which is the highest among organic photodiodes. By effectively delaying the onset of the space charge limited current and suppressing the shunt leakage current, the optimized devices show a large specific detectivity around 1012 Jones for NIR spectral region up to 1010 nm, close to that of a commercial Si photodiode. The presented photodetectors can also be integrated in photoplethysmography for real-time heart-rate monitoring, suggesting its potential for practical applications.

18.
Adv Mater ; 32(12): e1908258, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32068919

RESUMEN

Future lightweight, flexible, and wearable electronics will employ visible-light-communication schemes to interact within indoor environments. Organic photodiodes are particularly well suited for such technologies as they enable chemically tailored optoelectronic performance and fabrication by printing techniques on thin and flexible substrates. However, previous methods have failed to address versatile functionality regarding wavelength selectivity without increasing fabrication complexity. This work introduces a general solution for printing wavelength-selective bulk-heterojunction photodetectors through engineering of the ink formulation. Nonfullerene acceptors are incorporated in a transparent polymer donor matrix to narrow and tune the response in the visible range without optical filters or light-management techniques. This approach effectively decouples the optical response from the viscoelastic ink properties, simplifying process development. A thorough morphological and spectroscopic investigation finds excellent charge-carrier dynamics enabling state-of-the-art responsivities >102 mA W-1 and cutoff frequencies >1.5 MHz. Finally, the color selectivity and high performance are demonstrated in a filterless visible-light-communication system capable of demultiplexing intermixed optical signals.

19.
ACS Appl Mater Interfaces ; 12(11): 13061-13067, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32088954

RESUMEN

Red and near-infrared light detection is vital for numerous applications, including full-color imaging, optical communication, and machine vision. However, this development is hindered by a limited choice of small band gap and narrow-bandwidth materials. Here, we report a device principle with a simple organic planar heterojunction architecture that enables a selective activation of excitons for tuning the photoresponse spectra to fabricate thin-film, filterless, red-light organic photodiodes. A sequential solution-processed active layer is formed by depositing the top layer of PC71BM onto the predeposited bottom layer of doped P3HT. By adjusting the ratio of PTB7 in P3HT, an improved responsivity and a red-shift of the photoresponse peak from 645 to 745 nm are demonstrated simultaneously. Furthermore, the responsivity of 745 nm is enhanced over 5 times with a narrow full width at half-maximum of ∼50 nm at optimized doping ratio compared to the pristine PTB7 device. As a result, a high specific detectivity in excess of 1012 Jones and broad linear dynamic range of 103 dB are achieved. This design concept shows the possibility of realizing tunable red-light selectivity even at relatively thin-film thickness, which is intriguing for the implementation of high-resolution image sensors in the near future.

20.
ACS Appl Mater Interfaces ; 11(31): 28106-28114, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31311263

RESUMEN

Herein, we explore the strategy of realizing a red-selective thin-film organic photodiode (OPD) by synthesizing a new copolymer with a highly selective red-absorption feature. PCZ-Th-DPP, with phenanthrocarbazole (PCZ) and diketopyrrolopyrrole (DPP) as donor and acceptor units, respectively, was strategically designed/synthesized based on a time-dependent density functional theory calculation, which predicted the significant suppression of the band II absorption of PCZ-Th-DPP due to the extremely efficient intramolecular charge transfer. We demonstrate that the synthesized PCZ-Th-DPP exhibits not only a high absorption coefficient within the red-selective band I region, as theoretically predicted, but also a preferential face-on intermolecular structure in the thin-film state, which is beneficial for vertical charge extraction as an outcome of a glancing incidence X-ray diffraction study. By employing PCZ-Th-DPP as a photoactive layer of Schottky OPD, to fully match its absorption characteristic to the spectral response of the red-selective OPD, we demonstrate a genuine red-selective specific detectivity in the order of 1012 Jones while maintaining a thin active layer thickness of ∼300 nm. This work demonstrates the possibility of realizing a full color image sensor with a synthetic approach to the constituting active layers without optical manipulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA