Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(10): 2155-2159, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39255237

RESUMEN

Phylogenetic analyses showed that the virus responsible for a May 2024 Oropouche fever outbreak in Cuba was closely related to viruses from Brazil in 2023. Pools of Ceratopogonidae spp. biting midges and Culex quinquefasciatus mosquitoes were positive for Oropouche viral RNA. No cases were severe. Virus extension to new areas may increase case numbers and severity.


Asunto(s)
Brotes de Enfermedades , Filogenia , Cuba/epidemiología , Humanos , Animales , Culex/virología , Masculino , Adulto , Femenino , Persona de Mediana Edad , Orthobunyavirus/genética , Orthobunyavirus/clasificación , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Adolescente , Niño , Adulto Joven , Anciano , Ceratopogonidae/virología , ARN Viral , Preescolar
2.
Emerg Infect Dis ; 30(10): 2211-2214, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39320235

RESUMEN

Fort Sherman virus (FSV) was isolated in Panama in 1985 from a US soldier. We report a case of human FSV infection in a febrile patient from northern coastal Peru in 2020. FSV infections spanning ≈35 years and a distance of 2,000 km warrant diagnostics, genomic surveillance, and investigation of transmission cycles.


Asunto(s)
Filogenia , Humanos , Perú/epidemiología , Masculino , Adulto , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/diagnóstico , Infecciones por Picornaviridae/virología , Historia del Siglo XXI
3.
J Gen Virol ; 105(9)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39351896

RESUMEN

On 2 February 2024, the Pan American Health Organization/World Health Organization issued an epidemiological alert on rising Oropouche virus (OROV) infections in South America. By 3 August 2024, this alert level had escalated from medium to high. OROV has been a public health concern in Central and South America since its emergence in Brazil in the 1960s. However, the 2024 outbreak marks a turning point, with the sustained transmission in non-endemic regions of Brazil, local transmission in Cuba, two fatalities and several cases of vertical transmission. As of the end of August 2024, 9852 OROV cases have been confirmed. The 2024 OROV outbreak underscores critical gaps in our understanding of OROV pathogenesis and highlights the urgent need for antivirals and vaccines. This review aims to provide a concise overview of OROV, a neglected orthobunyavirus.


Asunto(s)
Infecciones por Bunyaviridae , Orthobunyavirus , Orthobunyavirus/genética , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Infecciones por Bunyaviridae/transmisión , Humanos , Animales , Brotes de Enfermedades , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , América del Sur/epidemiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39276271

RESUMEN

Oropouche virus is the aetiological agent of Oropouche fever. At present, this is currently considered one of the most important vector-borne diseases in Latin America. On 27 May 2024, the Ministry of Public Health of Cuba reported the first ever outbreak of Oropouche fever. In this report, we describe three human cases of Oropouche virus infection with symptoms and signs of neurological disease and clinical diagnosis of Guillain-Barré Syndrome. This study offers insights regarding that Oropouche virus is a causal agent of neurological disorders and it could be involved in the etiology of the Guillain-Barré Syndrome.

5.
Virus Genes ; 60(3): 325-331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492201

RESUMEN

Whole-genome sequencing of a virus isolated from Culicoides biting midges in southern Japan in 2020 revealed that it is a strain of Balagodu virus (BLGV; genus Orthobunyavirus; family Peribunyaviridae; order Bunyavirales). A solitary instance of BLGV isolation occurred in India in 1963. All assembled segments comprise complete protein-coding sequences that are similar to those of other orthobunyaviruses. The consensus 3'- and 5'-terminal sequences of orthobunyaviruses' genomic RNAs are also conserved in the Japanese BLGV strain. Here, we update the geographic distribution of BLGV and provide its complete sequence, contributing to the clarification of orthobunyavirus phylogeny.


Asunto(s)
Genoma Viral , Orthobunyavirus , Filogenia , Secuenciación Completa del Genoma , Japón , Genoma Viral/genética , Orthobunyavirus/genética , Orthobunyavirus/aislamiento & purificación , Orthobunyavirus/clasificación , Animales , ARN Viral/genética , Ceratopogonidae/virología , Infecciones por Bunyaviridae/virología
6.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018120

RESUMEN

Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus Leishmania that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family Phenuiviridae with the genus Phlebovirus, as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (Rhabdoviridae, Flaviviridae, Reoviridae and Peribunyaviridae) and one unclassified group (Negevirus) are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.


Asunto(s)
Arbovirus , Phlebovirus , Psychodidae , Rhabdoviridae , Animales , Humanos , Animales Domésticos
7.
J Virol ; 96(5): e0214621, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019710

RESUMEN

With more than 80 members worldwide, the Orthobunyavirus genus in the Peribunyaviridae family is a large genus of enveloped RNA viruses, many of which are emerging pathogens in humans and livestock. How orthobunyaviruses (OBVs) penetrate and infect mammalian host cells remains poorly characterized. Here, we investigated the entry mechanisms of the OBV Germiston (GERV). Viral particles were visualized by cryo-electron microscopy and appeared roughly spherical with an average diameter of 98 nm. Labeling of the virus with fluorescent dyes did not adversely affect its infectivity and allowed the monitoring of single particles in fixed and live cells. Using this approach, we found that endocytic internalization of bound viruses was asynchronous and occurred within 30 to 40 min. The virus entered Rab5a-positive (Rab5a+) early endosomes and, subsequently, late endosomal vacuoles containing Rab7a but not LAMP-1. Infectious entry did not require proteolytic cleavage, and endosomal acidification was sufficient and necessary for viral fusion. Acid-activated penetration began 15 to 25 min after initiation of virus internalization and relied on maturation of early endosomes to late endosomes. The optimal pH for viral membrane fusion was slightly below 6.0, and penetration was hampered when the potassium influx was abolished. Overall, our study provides real-time visualization of GERV entry into host cells and demonstrates the importance of late endosomal maturation in facilitating OBV penetration. IMPORTANCE Orthobunyaviruses (OBVs), which include La Crosse, Oropouche, and Schmallenberg viruses, represent a growing threat to humans and domestic animals worldwide. Ideally, preventing OBV spread requires approaches that target early stages of infection, i.e., virus entry. However, little is known about the molecular and cellular mechanisms by which OBVs enter and infect host cells. Here, we developed accurate, sensitive tools and assays to investigate the penetration process of GERV. Our data emphasize the central role of late endosomal maturation in GERV entry, providing a comprehensive overview of the early stages of an OBV infection. Our study also brings a complete toolbox of innovative methods to study each step of the OBV entry program in fixed and living cells, from virus binding and endocytosis to fusion and penetration. The information gained herein lays the foundation for the development of antiviral strategies aiming to block OBV entry.


Asunto(s)
Endosomas , Orthobunyavirus , Internalización del Virus , Animales , Microscopía por Crioelectrón , Endosomas/virología , Mamíferos , Orthobunyavirus/fisiología
8.
Virus Genes ; 59(3): 473-478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36763228

RESUMEN

The genus Orthobunyavirus is a diverse group of viruses in the family Peribunyaviridae, recently classified into 20 serogroups, and 103 virus species. Although most viruses within these serogroups are phylogenetically distinct, the absence of complete genome sequences has left several viruses incompletely characterized. Here we report the complete genome sequences for 11 orthobunyaviruses isolated from Trinidad, French Guiana, Guatemala, and Panama that were serologically classified into six serogroups and 10 species. Phylogenetic analyses of these 11 newly derived sequences indicate that viruses belonging to the Patois, Capim, Guama, and Group C serocomplexes all have a close genetic origin. We show that three of the 11 orthobunyaviruses characterized (belonging to the Group C and Bunyamwera serogroups) have evidence of histories of natural reassortment through the M genome segment. Our data also suggests that two distinct lineages of Group C viruses concurrently circulate in Trinidad and are transmitted by the same mosquito vectors. This study also highlights the importance of complementing serological identification with nucleotide sequencing when characterizing orthobunyaviruses.


Asunto(s)
Orthobunyavirus , Animales , Filogenia , Serogrupo , Trinidad y Tobago , Análisis de Secuencia de ADN , Genoma Viral
9.
Emerg Infect Dis ; 28(11): 2330-2333, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36286231

RESUMEN

Jamestown Canyon virus (JCV) is a mosquito-borne arbovirus that circulates in North America. We detected JCV in 4 pools of mosquitoes collected from midcoastal Maine, USA, during 2017-2019. Phylogenetic analysis of a JCV sequence obtained from Aedes cantator mosquitoes clustered within clade A, which also circulates in Connecticut, USA.


Asunto(s)
Aedes , Arbovirus , Culicidae , Virus de la Encefalitis de California , Animales , Virus de la Encefalitis de California/genética , Filogenia , Maine/epidemiología
10.
Clin Infect Dis ; 72(10): 1701-1708, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32516409

RESUMEN

BACKGROUND: Human encephalitis represents a medical challenge from a diagnostic and therapeutic point of view. We investigated the cause of 2 fatal cases of encephalitis of unknown origin in immunocompromised patients. METHODS: Untargeted metatranscriptomics was applied on the brain tissue of 2 patients to search for pathogens (viruses, bacteria, fungi, or protozoans) without a prior hypothesis. RESULTS: Umbre arbovirus, an orthobunyavirus never previously identified in humans, was found in 2 patients. In situ hybridization and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) showed that Umbre virus infected neurons and replicated at high titers. The virus was not detected in cerebrospinal fluid by RT-qPCR. Viral sequences related to Koongol virus, another orthobunyavirus close to Umbre virus, were found in Culex pipiens mosquitoes captured in the south of France where the patients had spent some time before the onset of symptoms, demonstrating the presence of the same clade of arboviruses in Europe and their potential public health impact. A serological survey conducted in the same area did not identify individuals positive for Umbre virus. The absence of seropositivity in the population may not reflect the actual risk of disease transmission in immunocompromised individuals. CONCLUSIONS: Umbre arbovirus can cause encephalitis in immunocompromised humans and is present in Europe.


Asunto(s)
Agammaglobulinemia , Encefalitis , Orthobunyavirus , Virus , Animales , Europa (Continente) , Francia/epidemiología , Humanos , Orthobunyavirus/genética
11.
Clin Infect Dis ; 73(9): 1700-1702, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630998

RESUMEN

An adult male from Missouri sought care for fever, fatigue, and gastrointestinal symptoms. He had leukopenia and thrombocytopenia and was treated for a presumed tickborne illness. His condition deteriorated with respiratory and renal failure, lactic acidosis, and hypotension. Next-generation sequencing and phylogenetic analysis identified a reassortant Cache Valley virus.


Asunto(s)
Virus Bunyamwera , Infecciones por Bunyaviridae , Adulto , Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/epidemiología , Fiebre , Humanos , Masculino , Missouri/epidemiología , Filogenia
12.
Emerg Infect Dis ; 27(12): 3142-3146, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34808093

RESUMEN

Shuni virus is associated with neurologic and febrile illness in animals and humans. To determine potential vectors, we collected mosquitoes in South Africa and detected the virus in species of the genera Mansonia, Culex, Aedes, and Anopheles. These mosquitoes may be associated with Shuni virus outbreaks in Africa and emergence in other regions.


Asunto(s)
Aedes , Culex , Orthobunyavirus , Animales , Humanos , Mosquitos Vectores , Sudáfrica/epidemiología
13.
Emerg Infect Dis ; 27(6): 1756-1758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34014154

RESUMEN

We describe an Oropouche orthobunyavirus infection in a women 28 years of age in Colombia. We confirmed the diagnosis by viral isolation, quantitative reverse transcription PCR, and phylogenetic analysis of the small, medium, and large genomic segments. The virus is related to a strain isolated in Ecuador in 2016.


Asunto(s)
Infecciones por Bunyaviridae , Orthobunyavirus , Colombia , Ecuador , Femenino , Humanos , Orthobunyavirus/genética , Filogenia , ARN Viral
14.
Emerg Infect Dis ; 27(2): 565-569, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496223

RESUMEN

We describe Shuni virus (SHUV) detection in human neurologic disease cases in South Africa. SHUV RNA was identified in 5% of cerebrospinal fluid specimens collected during the arbovirus season from public sector hospitals. This finding suggests that SHUV may be a previously unrecognized cause of human neurologic infections in Africa.


Asunto(s)
Infecciones por Bunyaviridae , Orthobunyavirus , Infecciones por Bunyaviridae/epidemiología , Humanos , Orthobunyavirus/genética , ARN Viral/genética , Sudáfrica/epidemiología
15.
Emerg Infect Dis ; 27(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261720

RESUMEN

A 56-year-old man receiving rituximab who had months of neurologic symptoms was found to have Jamestown Canyon virus in cerebrospinal fluid by clinical metagenomic sequencing. The patient died, and postmortem examination revealed extensive neuropathologic abnormalities. Deep sequencing enabled detailed characterization of viral genomes from the cerebrospinal fluid, cerebellum, and cerebral cortex.


Asunto(s)
Virus de la Encefalitis de California , Encefalitis de California , Anticuerpos Antivirales , Humanos , Masculino , Metagenoma , Metagenómica , Persona de Mediana Edad , Rituximab
16.
J Gen Virol ; 102(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258753

RESUMEN

Bunyamwera (BUNV), Batai (BATV) and Ngari (NRIV) are mosquito-borne viruses that are members of the genus Orthobunyavirus in the order Bunyavirales. These three viruses are enveloped with single-stranded, negative-sense RNA genomes consiting of three segments, denoted as Small (S), Medium (M) and Large (L). Ngari is thought to be the natural reassortant progeny of Bunyamwera and Batai viruses. The relationship between these 'parental' viruses and the 'progeny' poses an interesting question, especially given that there is overlap in their respective transmission ecologies, but differences in their infection host ranges and pathogenesis. We compared the in vivo kinetics of these three viruses in a common laboratory system and found no significant difference in growth kinetics. There was, however, a tendency of BATV to have smaller plaques than either BUNV or NRIV. Furthermore, we determined that all three viruses are stable in extracellular conditions and retain infectivity for a week in non-cellular media, which has public health and biosafety implications. The study of this understudied group of viruses addresses a need for basic characterization of viruses that have not yet reached epidemic transmission intensity, but that have the potential due to their infectivity to both human and animal hosts. These results lay the groundwork for future studies of these neglected viruses of potential public and One Health importance.


Asunto(s)
Infecciones por Bunyaviridae/virología , Culicidae/virología , Orthobunyavirus/crecimiento & desarrollo , Orthobunyavirus/genética , Animales , Virus Bunyamwera/clasificación , Virus Bunyamwera/genética , Genoma Viral , Orthobunyavirus/clasificación , Filogenia , ARN Viral/genética
17.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32522852

RESUMEN

Schmallenberg virus (SBV) is an insect-transmitted orthobunyavirus that can cause abortions and congenital malformations in the offspring of ruminants. Even though the two viral surface glycoproteins Gn and Gc are involved in host cell entry, the specific cellular receptors of SBV are currently unknown. Using genome-wide CRISPR-Cas9 forward screening, we identified 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 (PAPST1) as an essential factor for SBV infection. PAPST1 is a sulfotransferase involved in heparan sulfate proteoglycan synthesis encoded by the solute carrier family 35 member B2 gene (SLC35B2). SBV cell surface attachment and entry were largely reduced upon the knockout of SLC35B2, whereas the reconstitution of SLC35B2 in these cells fully restored their susceptibility to SBV infection. Furthermore, treatment of cells with heparinase diminished infection with SBV, confirming that heparan sulfate plays an important role in cell attachment and entry, although to various degrees, heparan sulfate was also found to be important to initiate infection by two other bunyaviruses, La Crosse virus and Rift Valley fever virus. Thus, PAPST1-triggered synthesis of cell surface heparan sulfate is required for the efficient replication of SBV and other bunyaviruses.IMPORTANCE SBV is a newly emerging orthobunyavirus (family Peribunyaviridae) that has spread rapidly across Europe since 2011, resulting in substantial economic losses in livestock farming. In this study, we performed unbiased genome-wide CRISPR-Cas9 screening and identified PAPST1, a sulfotransferase encoded by SLC35B2, as a host entry factor for SBV. Consistent with its role in the synthesis of heparan sulfate, we show that this activity is required for efficient infection by SBV. A comparable dependency on heparan sulfate was also observed for La Crosse virus and Rift Valley fever virus, highlighting the importance of heparan sulfate for host cell infection by bunyaviruses. Thus, the present work provides crucial insights into virus-host interactions of important animal and human pathogens.


Asunto(s)
Infecciones por Bunyaviridae/genética , Infecciones por Bunyaviridae/virología , Sistemas CRISPR-Cas , Orthobunyavirus/genética , Orthobunyavirus/fisiología , Animales , Bunyaviridae , Chlorocebus aethiops , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Europa (Continente) , Técnicas de Inactivación de Genes , Células HEK293 , Heparitina Sulfato/metabolismo , Humanos , Ganado , Glicoproteínas de Membrana/genética , Orthobunyavirus/patogenicidad , Virus de la Fiebre del Valle del Rift , Transportadores de Sulfato/metabolismo , Sulfotransferasas/metabolismo , Células Vero , Acoplamiento Viral
18.
Emerg Infect Dis ; 26(6): 1287-1290, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32441621

RESUMEN

We report the discovery of a new orthobunyavirus, Cristoli virus, by means of shotgun metagenomics. The virus was identified in an immunodepressed patient with fatal encephalitis. Full-length genome sequencing revealed high-level expression of a virulence factor, possibly explaining the severity of the infection. The patient's recent history suggests circulation in France.


Asunto(s)
Encefalitis , Orthobunyavirus , Virus , Francia/epidemiología , Humanos , Metagenómica , Orthobunyavirus/genética
19.
Emerg Infect Dis ; 26(4): 731-737, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32186493

RESUMEN

During April-June 2014 in a malaria-endemic rural community close to the city of Iquitos in Peru, we detected evidence of Guaroa virus (GROV) infection in 14 febrile persons, of whom 6 also had evidence of Plasmodium vivax malaria. Cases were discovered through a long-term febrile illness surveillance network at local participating health facilities. GROV cases were identified by using a combination of seroconversion and virus isolation, and malaria was diagnosed by thick smear and PCR. GROV mono-infections manifested as nonspecific febrile illness and were clinically indistinguishable from GROV and P. vivax co-infections. This cluster of cases highlights the potential for GROV transmission in the rural Peruvian Amazon, particularly in areas where malaria is endemic. Further study of similar areas of the Amazon may provide insights into the extent of GROV transmission in the Amazon basin.


Asunto(s)
Coinfección , Malaria Vivax , Coinfección/epidemiología , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/epidemiología , Orthobunyavirus , Perú/epidemiología , Plasmodium vivax
20.
Emerg Infect Dis ; 26(7): 1521-1525, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568048

RESUMEN

We screened nonequine animals with unexplained neurologic signs or death in South Africa during 2010-2018 for Shuni virus (SHUV). SHUV was detected in 3.3% of wildlife, 1.1% of domestic, and 2.0% of avian species. Seropositivity was also demonstrated in wildlife. These results suggest a range of possible SHUV hosts in Africa.


Asunto(s)
Animales Salvajes , Infecciones por Bunyaviridae , Animales , Animales Domésticos , Orthobunyavirus , Sudáfrica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA