Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.914
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32763155

RESUMEN

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Asunto(s)
Dopamina/metabolismo , Hipotálamo/fisiología , Neuronas/fisiología , Conducta Paterna/fisiología , Animales , Encéfalo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Optogenética , Técnicas de Placa-Clamp , Prolactina/sangre , Ratas , Ratas Sprague-Dawley , Receptores de Prolactina/deficiencia , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo
2.
Cell ; 179(7): 1590-1608.e23, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835034

RESUMEN

Optical interrogation of voltage in deep brain locations with cellular resolution would be immensely useful for understanding how neuronal circuits process information. Here, we report ASAP3, a genetically encoded voltage indicator with 51% fluorescence modulation by physiological voltages, submillisecond activation kinetics, and full responsivity under two-photon excitation. We also introduce an ultrafast local volume excitation (ULoVE) method for kilohertz-rate two-photon sampling in vivo with increased stability and sensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we show single-trial tracking of spikes and subthreshold events for minutes in deep locations, with subcellular resolution and with repeated sampling over days. In the visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependent subthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speed optical recording of electrical activity in genetically defined neurons at deep locations during awake behavior.


Asunto(s)
Encéfalo/fisiología , Proteínas Activadoras de GTPasa/genética , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Optogenética/métodos , Ritmo Teta , Vigilia , Potenciales de Acción , Animales , Encéfalo/metabolismo , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas , Ratas Sprague-Dawley , Carrera
3.
Cell ; 179(2): 514-526.e13, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585085

RESUMEN

Sleep has been implicated in both memory consolidation and forgetting of experiences. However, it is unclear what governs the balance between consolidation and forgetting. Here, we tested how activity-dependent processing during sleep might differentially regulate these two processes. We specifically examined how neural reactivations during non-rapid eye movement (NREM) sleep were causally linked to consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) and delta (δ) waves have dissociable and competing roles in consolidation versus forgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loop optogenetic methods, we could, respectively, weaken or strengthen consolidation and thereby bidirectionally modulate sleep-dependent performance gains. We further found that changes in the temporal coupling of spindles to SOs relative to δ waves could account for such effects. Thus, our results indicate that neural activity driven by SOs and δ waves have competing roles in sleep-dependent memory consolidation.


Asunto(s)
Encéfalo/fisiología , Ritmo Delta , Consolidación de la Memoria/fisiología , Sueño/fisiología , Animales , Masculino , Ratas , Ratas Long-Evans
4.
Cell ; 175(4): 1119-1130.e15, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318145

RESUMEN

Hippocampal theta oscillations were proposed to be important for multiple functions, including memory and temporal coding of position. However, previous findings from bats have questioned these proposals by reporting absence of theta rhythmicity in bat hippocampal formation. Does this mean that temporal coding is unique to rodent hippocampus and does not generalize to other species? Here, we report that, surprisingly, bat hippocampal neurons do exhibit temporal coding similar to rodents, albeit without any continuous oscillations at the 1-20 Hz range. Bat neurons exhibited very strong locking to the non-rhythmic fluctuations of the field potential, such that neurons were synchronized together despite the absence of oscillations. Further, some neurons exhibited "phase precession" and phase coding of the bat's position-with spike phases shifting earlier as the animal moved through the place field. This demonstrates an unexpected type of neural coding in the mammalian brain-nonoscillatory phase coding-and highlights the importance of synchrony and temporal coding for hippocampal function across species.


Asunto(s)
Sincronización Cortical , Hipocampo/fisiología , Animales , Evolución Biológica , Quirópteros , Hipocampo/citología , Interneuronas/fisiología , Masculino , Ratas , Ritmo Teta
5.
Annu Rev Cell Dev Biol ; 33: 169-202, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28992442

RESUMEN

Dorsal closure is a key process during Drosophila morphogenesis that models cell sheet movements in chordates, including neural tube closure, palate formation, and wound healing. Closure occurs midway through embryogenesis and entails circumferential elongation of lateral epidermal cell sheets that close a dorsal hole filled with amnioserosa cells. Signaling pathways regulate the function of cellular structures and processes, including Actomyosin and microtubule cytoskeletons, cell-cell/cell-matrix adhesion complexes, and endocytosis/vesicle trafficking. These orchestrate complex shape changes and movements that entail interactions between five distinct cell types. Genetic and laser perturbation studies establish that closure is robust, resilient, and the consequence of redundancy that contributes to four distinct biophysical processes: contraction of the amnioserosa, contraction of supracellular Actomyosin cables, elongation (stretching?) of the lateral epidermis, and zipping together of two converging cell sheets. What triggers closure and what the emergent properties are that give rise to its extraordinary resilience and fidelity remain key, extant questions.


Asunto(s)
Drosophila melanogaster/citología , Modelos Biológicos , Morfogénesis , Animales , Fenómenos Biomecánicos , Drosophila melanogaster/embriología , Drosophila melanogaster/fisiología , Transducción de Señal
6.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727565

RESUMEN

Proper embryonic development depends on the timely progression of a genetic program. One of the key mechanisms for achieving precise control of developmental timing is to use gene expression oscillations. In this Review, we examine how gene expression oscillations encode temporal information during vertebrate embryonic development by discussing the gene expression oscillations occurring during somitogenesis, neurogenesis, myogenesis and pancreas development. These oscillations play important but varied physiological functions in different contexts. Oscillations control the period of somite formation during somitogenesis, whereas they regulate the proliferation-to-differentiation switch of stem cells and progenitor cells during neurogenesis, myogenesis and pancreas development. We describe the similarities and differences of the expression pattern in space (i.e. whether oscillations are synchronous or asynchronous across neighboring cells) and in time (i.e. different time scales) of mammalian Hes/zebrafish Her genes and their targets in different tissues. We further summarize experimental evidence for the functional role of their oscillations. Finally, we discuss the outstanding questions for future research.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Somitos , Animales , Desarrollo Embrionario/genética , Humanos , Somitos/metabolismo , Somitos/embriología , Desarrollo de Músculos/genética , Neurogénesis/genética , Neurogénesis/fisiología , Páncreas/embriología , Páncreas/metabolismo , Diferenciación Celular/genética
7.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625942

RESUMEN

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

8.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30862660

RESUMEN

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteína MioD/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factor de Transcripción HES-1/metabolismo , Animales , Células Cultivadas , Ratones , Proteína MioD/genética , Receptores Notch/metabolismo , Transducción de Señal , Factor de Transcripción HES-1/genética
9.
EMBO J ; 41(23): e110928, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245268

RESUMEN

Each vertebrate species appears to have a unique timing mechanism for forming somites along the vertebral column, and the process in human remains poorly understood at the molecular level due to technical and ethical limitations. Here, we report the reconstitution of human segmentation clock by direct reprogramming. We first reprogrammed human urine epithelial cells to a presomitic mesoderm (PSM) state capable of long-term self-renewal and formation of somitoids with an anterior-to-posterior axis. By inserting the RNA reporter Pepper into HES7 and MESP2 loci of these iPSM cells, we show that both transcripts oscillate in the resulting somitoids at ~5 h/cycle. GFP-tagged endogenous HES7 protein moves along the anterior-to-posterior axis during somitoid formation. The geo-sequencing analysis further confirmed anterior-to-posterior polarity and revealed the localized expression of WNT, BMP, FGF, and RA signaling molecules and HOXA-D family members. Our study demonstrates the direct reconstitution of human segmentation clock from somatic cells, which may allow future dissection of the mechanism and components of such a clock and aid regenerative medicine.


Asunto(s)
Mesodermo , Somitos , Humanos , Somitos/metabolismo , Mesodermo/metabolismo , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Tipificación del Cuerpo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
10.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921687

RESUMEN

Development can proceed in 'fits and starts', with rapid transitions between cell states involving concerted transcriptome-wide changes in gene expression. However, it is not clear how these transitions are regulated in complex cell populations, in which cells receive multiple inputs. We address this issue using Dictyostelium cells undergoing development in their physiological niche. A continuous single cell transcriptomics time series identifies a sharp 'jump' in global gene expression marking functionally different cell states. By simultaneously imaging the physiological dynamics of transcription and signalling, we show the jump coincides with the onset of collective oscillations of cAMP. Optogenetic control of cAMP pulses shows that different jump genes respond to distinct dynamic features of signalling. Late jump gene expression changes are almost completely dependent on cAMP, whereas transcript changes at the onset of the jump require additional input. The coupling of collective signalling with gene expression is a potentially powerful strategy to drive robust cell state transitions in heterogeneous signalling environments. Based on the context of the jump, we also conclude that sharp gene expression transitions may not be sufficient for commitment.


Asunto(s)
Dictyostelium , Dictyostelium/genética , Transducción de Señal/genética , Transcriptoma , Perfilación de la Expresión Génica
11.
Proc Natl Acad Sci U S A ; 120(2): e2123182120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598942

RESUMEN

Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, Lynx1-deletion, or diazepam-rescued GAD65-deficiency). Rapid TC input loss onto parvalbumin-expressing (PV) inhibitory interneurons (but not onto nearby pyramidal cells) was observed within hours of MD in a TC slice preserving the visual pathway - again once critical periods opened. Computational TC modeling of the emergent γ-rhythm in response to MD delineated a cortical interneuronal gamma (ING) rhythm in networks of PV-cells bearing gap junctions at the start of the critical period. The ING rhythm effectively dissociated thalamic input from cortical spiking, leading to rapid loss of previously strong TC-to-PV connections through standard spike-timing-dependent plasticity rules. As a consequence, previously silent TC-to-PV connections could strengthen on a slower timescale, capturing the gradually increasing γ-frequency and eventual fade-out over time. Thus, ING enables cortical dynamics to transition from being dominated by the strongest TC input to one that senses the statistics of population TC input after MD. Taken together, our findings reveal the initial synaptic events underlying critical period plasticity and suggest that the fleeting ING accompanying a brief sensory perturbation may serve as a robust readout of TC network state with which to probe developmental trajectories.


Asunto(s)
Ritmo Gamma , Interneuronas , Ratones , Animales , Ritmo Gamma/fisiología , Interneuronas/fisiología , Células Piramidales/fisiología , Uniones Comunicantes , Parvalbúminas , Plasticidad Neuronal/fisiología
12.
Proc Natl Acad Sci U S A ; 120(38): e2311412120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695893

RESUMEN

I propose that there exists in natural and artificial environments a class of resonant oscillations that can be excited directly by a steady, zero-frequency force such as that of wind, water, electric field. A member of this class comprises two normally independent oscillating modes of a system, for example, a building or bridge, which, separately, cannot be driven by a zero-frequency force. Agreeing on terms of collaboration, the two modes engage in a joint oscillation powered by the steady zero-frequency force in which they drive each other, one directly and the other parametrically. I observed a bimodal vibration belonging to this class in a home shower where the two modes are the pendulum excursion and the torsional twisting of a freely suspended showerhead which break into a joint oscillation above a threshold value of the water flow rate. I advance a theoretical model which predicts and explains the main features of the observations. The model constitutes an extension to two modes of a proposal and demonstration in 1883 by Lord Rayleigh and Michael Faraday for the excitation of a single resonant mode by modulating a system parameter at twice the resonance frequency. The proposal is credited with the launching of parametric physics. The Experiments section of this report consists of three linked video clips photographed in the home shower which support the basic theoretical assumptions. The ubiquity of zero-frequency forces, such as that of wind, and their direct conversion to alternating on-resonance system vibrations endows the class with an amplified destructive potential with implications for structural stability.

13.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38438258

RESUMEN

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Asunto(s)
Acetilcolina , Colecistoquinina , Ratones Endogámicos C57BL , Ritmo Teta , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Animales , Masculino , Ratones , Femenino , Acetilcolina/farmacología , Acetilcolina/metabolismo , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Interneuronas/fisiología , Interneuronas/efectos de los fármacos , Somatostatina/metabolismo , Somatostatina/farmacología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de los fármacos , Red Nerviosa/fisiología , Red Nerviosa/efectos de los fármacos , Receptor Muscarínico M3/fisiología , Receptor Muscarínico M3/metabolismo , Parvalbúminas/metabolismo
14.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37968117

RESUMEN

Neuromodulation lends flexibility to neural circuit operation but the general notion that different neuromodulators sculpt neural circuit activity into distinct and characteristic patterns is complicated by interindividual variability. In addition, some neuromodulators converge onto the same signaling pathways, with similar effects on neurons and synapses. We compared the effects of three neuropeptides on the rhythmic pyloric circuit in the stomatogastric ganglion of male crabs, Cancer borealis Proctolin (PROC), crustacean cardioactive peptide (CCAP), and red pigment concentrating hormone (RPCH) activate the same modulatory inward current, I MI, and have convergent actions on synapses. However, while PROC targets all four neuron types in the core pyloric circuit, CCAP and RPCH target the same subset of only two neurons. After removal of spontaneous neuromodulator release, none of the neuropeptides restored the control cycle frequency, but all restored the relative timing between neuron types. Consequently, differences between neuropeptide effects were mainly found in the spiking activity of different neuron types. We performed statistical comparisons using the Euclidean distance in the multidimensional space of normalized output attributes to obtain a single measure of difference between modulatory states. Across preparations, the circuit output in PROC was distinguishable from CCAP and RPCH, but CCAP and RPCH were not distinguishable from each other. However, we argue that even between PROC and the other two neuropeptides, population data overlapped enough to prevent reliable identification of individual output patterns as characteristic for a specific neuropeptide. We confirmed this notion by showing that blind classifications by machine learning algorithms were only moderately successful.Significance Statement It is commonly assumed that distinct behaviors or circuit activities can be elicited by different neuromodulators. Yet it is unknown to what extent these characteristic actions remain distinct across individuals. We use a well-studied circuit model of neuromodulation to examine the effects of three neuropeptides, each known to produce a distinct activity pattern in controlled studies. We find that, when compared across individuals, the three peptides elicit activity patterns that are either statistically indistinguishable or show too much overlap to be labeled characteristic. We ascribe this to interindividual variability and overlapping subcellular actions of the modulators. Because both factors are common in all neural circuits, these findings have broad significance for understanding chemical neuromodulatory actions while considering interindividual variability.


Asunto(s)
Braquiuros , Neuropéptidos , Masculino , Humanos , Animales , Neuropéptidos/metabolismo , Péptidos/farmacología , Neuronas/fisiología , Neurotransmisores/farmacología , Transducción de Señal , Braquiuros/fisiología , Ganglios de Invertebrados/fisiología
15.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37945348

RESUMEN

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Asunto(s)
Corteza Auditiva , Vigilia , Femenino , Masculino , Ratones , Animales , Ratones Endogámicos C57BL , Núcleos Talámicos/fisiología , Cuerpos Geniculados/fisiología , Corteza Auditiva/fisiología , Estimulación Acústica/métodos , Neuronas GABAérgicas/fisiología
16.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050110

RESUMEN

Working memory (WM) maintenance relies on multiple brain regions and inter-regional communications. The hippocampus and entorhinal cortex (EC) are thought to support this operation. Besides, EC is the main gateway for information between the hippocampus and neocortex. However, the circuit-level mechanism of this interaction during WM maintenance remains unclear in humans. To address these questions, we recorded the intracranial electroencephalography from the hippocampus and EC while patients (N = 13, six females) performed WM tasks. We found that WM maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase synchronization between the hippocampus to the EC. The Granger causality and phase slope index analyses consistently showed that WM maintenance was associated with theta/alpha band-coordinated unidirectional influence from the hippocampus to the EC. Besides, this unidirectional inter-regional communication increased with WM load and predicted WM load during memory maintenance. These findings demonstrate that WM maintenance in humans engages the hippocampal-entorhinal circuit, with the hippocampus influencing the EC in a load-dependent manner.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Femenino , Humanos , Encéfalo , Electrocorticografía , Corteza Entorrinal , Electroencefalografía , Ritmo Teta
17.
J Neurosci ; 44(5)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37973377

RESUMEN

Individuals' phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The resting brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as magnetoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude "events" that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult siblings' spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemisphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power, peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters, whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.


Asunto(s)
Encéfalo , Magnetoencefalografía , Adulto , Humanos , Masculino , Femenino , Magnetoencefalografía/métodos , Encéfalo/fisiología , Mapeo Encefálico , Ritmo beta/fisiología , Biomarcadores
18.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38123981

RESUMEN

Excessive oscillatory activity across basal ganglia (BG) nuclei in the ß frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated ß oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of ß-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal ß oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal ß oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-ß (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-ß range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD ß oscillations and may thereby guide the future development of therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson , Núcleo Subtalámico , Ratas , Animales , Ganglios Basales/fisiología , Globo Pálido/fisiología , Neuronas/fisiología , Ritmo beta/fisiología
19.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38331584

RESUMEN

Cholinergic regulation of hippocampal theta oscillations has long been proposed to be a potential mechanism underlying hippocampus-dependent memory encoding processes. However, cholinergic transmission has been traditionally associated with type II theta under urethane anesthesia. The mechanisms and behavioral significance of cholinergic regulation of type I theta in freely exploring animals is much less clear. In this study, we examined the potential behavioral significance of cholinergic regulation of theta oscillations in the object location task in male mice that involves training and testing trials and provides an ideal behavioral task to study the underlying memory encoding and retrieval processes, respectively. Cholinergic regulation of hippocampal theta oscillations and the behavioral outcomes was examined by either intrahippocampal infusion of cholinergic receptor antagonists or knocking out cholinergic receptors in excitatory neurons or interneurons. We found that both muscarinic acetylcholine receptors (mAChRs) and α7 nicotinic AChRs (α7 nAChRs) regulated memory encoding by engaging excitatory neurons and interneurons, respectively. There is a transient upregulated theta oscillation at the beginning of individual object exploration events that only occurred in the training trials, but not in the testing trials. This transient upregulated theta is also the only theta component that significantly differed between training and testing trials and was sensitive to mAChR and α7 nAChR antagonists. Thus, our study has revealed a transient cholinergic-sensitive theta component that is specifically associated with memory encoding, but not memory retrieval, in the object location task, providing direct experimental evidence supporting a role for cholinergic-regulated theta oscillations in hippocampus-dependent memory encoding processes.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Animales , Masculino , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Hipocampo/fisiología , Receptores Nicotínicos/metabolismo , Neuronas/fisiología , Agonistas Nicotínicos/farmacología , Ritmo Teta/fisiología
20.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232206

RESUMEN

Mitochondrial dynamics regulate the quality and morphology of mitochondria. Calcium (Ca2+) plays an important role in regulating mitochondrial function. Here, we investigated the effects of optogenetically engineered Ca2+ signaling on mitochondrial dynamics. More specifically, customized illumination conditions could trigger unique Ca2+ oscillation waves to trigger specific signaling pathways. In this study, we found that modulating Ca2+ oscillations by increasing the light frequency, intensity and exposure time could drive mitochondria toward the fission state, mitochondrial dysfunction, autophagy and cell death. Moreover, illumination triggered phosphorylation at the Ser616 residue but not the Ser637 residue of the mitochondrial fission protein, dynamin-related protein 1 (DRP1, encoded by DNM1L), via the activation of Ca2+-dependent kinases CaMKII, ERK and CDK1. However, optogenetically engineered Ca2+ signaling did not activate calcineurin phosphatase to dephosphorylate DRP1 at Ser637. In addition, light illumination had no effect on the expression levels of the mitochondrial fusion proteins mitofusin 1 (MFN1) and 2 (MFN2). Overall, this study provides an effective and innovative approach to altering Ca2+ signaling for controlling mitochondrial fission with a more precise resolution than pharmacological approaches in the temporal dimension.


Asunto(s)
Calcio , Dinámicas Mitocondriales , Dinámicas Mitocondriales/fisiología , Calcio/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Mitocondrias/metabolismo , Fosforilación , Muerte Celular , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA