Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.283
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(2): 324-334.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007265

RESUMEN

Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.


Asunto(s)
Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Microbioma Gastrointestinal/fisiología , Adulto , Cesárea/efectos adversos , Parto Obstétrico , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Microbiota/fisiología , Madres , Embarazo , Prueba de Estudio Conceptual , Vagina/microbiología
2.
Cell ; 170(5): 939-955.e24, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28803726

RESUMEN

To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.


Asunto(s)
Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Aparato de Golgi/metabolismo , Animales , Línea Celular , Drosophila , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuritas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab3/metabolismo
3.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38838666

RESUMEN

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Adenosina , Núcleo Celular , Neurogénesis , Neuronas , Proteína I de Unión a Poli(A) , ARN Circular , ARN , ARN Circular/metabolismo , ARN Circular/genética , Neuronas/metabolismo , Adenosina/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/genética , Animales , ARN/metabolismo , ARN/genética , Línea Celular , Diferenciación Celular , Citoplasma/metabolismo , Prosencéfalo/metabolismo
4.
Traffic ; 25(5): e12936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725127

RESUMEN

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Asunto(s)
Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP , Endosomas , Factores de Intercambio de Guanina Nucleótido , Factor de Crecimiento Nervioso , Proyección Neuronal , Receptor trkA , Animales , Ratones , Ratas , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Endosomas/metabolismo , Ganglios Espinales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones Noqueados , Factor de Crecimiento Nervioso/metabolismo , Células PC12 , Transporte de Proteínas , Receptor trkA/metabolismo
5.
Semin Cell Dev Biol ; 155(Pt C): 23-29, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37202277

RESUMEN

The interests in blood endothelial cells arise from their therapeutic potential in vascular repair and regeneration. Our understanding of blood endothelial cells that exist in the circulation has been evolving significantly from the original concept of endothelial progenitor cells. Many studies have uncovered heterogeneities of blood endothelial subtypes where some cells express both endothelial and hematopoietic antigens, and others possess either mature or immature endothelial markers. Due to the lack of definitive cell marker identities, there have been momentums in the field to adopt a technical-oriented labeling system based on the cells' involvement in postnatal neovascularization and cell culture derivatives. Our review streamlines nomenclatures for blood endothelial subtypes and standardizes understanding of their functional differences. Broadly, we will discuss about myeloid angiogenic cells (MACs), endothelial colony-forming cells (ECFCs), blood outgrowth endothelial cells (BOECs) and circulating endothelial cells (CECs). The strategic location of blood endothelial cells confers them essential roles in supporting physiological processes. MACs exert angiogenic effects through paracrine mechanisms, while ECFCs are recruited to sites of vascular injury to participate directly in new vessel formation. BOECs are an in vitro derivative of ECFCs. CECs are shed into the bloodstream from damaged vessels, hence reflective of endothelial dysfunction. With clarity on the functional attributes of blood endothelial subtypes, we present recent advances in their applications in disease modelling, along with serving as biomarkers of vascular tissue homeostasis.


Asunto(s)
Células Progenitoras Endoteliales , Células Progenitoras Endoteliales/fisiología , Técnicas de Cultivo de Célula , Biomarcadores , Neovascularización Fisiológica , Células Cultivadas
6.
J Cell Sci ; 137(14)2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38910449

RESUMEN

RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.


Asunto(s)
Axones , Conos de Crecimiento , Microtúbulos , Transducción de Señal , Proteína de Unión al GTP rhoA , Microtúbulos/metabolismo , Animales , Proteína de Unión al GTP rhoA/metabolismo , Axones/metabolismo , Conos de Crecimiento/metabolismo , Quinasas Asociadas a rho/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Ratas , Forminas/metabolismo , Células Cultivadas , Neuronas/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(16): e2301879120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036969

RESUMEN

Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Brotes de la Planta , Factores de Transcripción/metabolismo , Citocininas/metabolismo , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Semin Cell Dev Biol ; 140: 3-12, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35817654

RESUMEN

The axon is a sophisticated macromolecular machine composed of interrelated parts that transmit signals like spur gears transfer motion between parallel shafts. The growth cone is a fine sensor that integrates mechanical and chemical cues and transduces these signals through the generation of a traction force that pushes the tip and pulls the axon shaft forward. The axon shaft, in turn, senses this pulling force and transduces this signal in an orchestrated response, coordinating cytoskeleton remodeling and intercalated mass addition to sustain and support the advancing of the tip. Extensive research suggests that the direct application of active force is per se a powerful inducer of axon growth, potentially bypassing the contribution of the growth cone. This review provides a critical perspective on current knowledge of how the force is a messenger of axon growth and its mode of action for controlling navigation, including aspects that remain unclear. It also focuses on novel approaches and tools designed to mechanically manipulate axons, and discusses their implications in terms of potential novel therapies for re-wiring the nervous system.


Asunto(s)
Axones , Conos de Crecimiento , Axones/fisiología , Conos de Crecimiento/fisiología , Actinas , Proyección Neuronal
9.
J Biol Chem ; 300(8): 107537, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971314

RESUMEN

Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.


Asunto(s)
Proyección Neuronal , Proteína Neuronal del Síndrome de Wiskott-Aldrich , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Humanos , Animales , Conos de Crecimiento/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Actinas/metabolismo , Neuritas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Células HEK293 , Ratones , Unión Proteica , Ratas
10.
J Cell Sci ; 136(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37565427

RESUMEN

Human serum albumin (HSA) has a long circulatory half-life owing, in part, to interaction with the neonatal Fc receptor (FcRn or FCGRT) in acidic endosomes and recycling of internalised albumin. Vascular endothelial and innate immune cells are considered the most relevant cells for FcRn-mediated albumin homeostasis in vivo. However, little is known about endocytic trafficking of FcRn-albumin complexes in primary human endothelial cells. To investigate FcRn-albumin trafficking in physiologically relevant endothelial cells, we generated primary human vascular endothelial cell lines from blood endothelial precursors, known as blood outgrowth endothelial cells (BOECs). We mapped the endosomal system in BOECs and showed that BOECs efficiently internalise fluorescently labelled HSA predominantly by fluid-phase macropinocytosis. Pulse-chase studies revealed that intracellular HSA molecules co-localised with FcRn in acidic endosomal structures and that the wildtype HSA, but not the non-FcRn-binding HSAH464Q mutant, was excluded from late endosomes and/or lysosomes. Live imaging revealed that HSA is partitioned into FcRn-positive tubules derived from maturing macropinosomes, which are then transported towards the plasma membrane. These findings identify the FcRn-albumin trafficking pathway in primary vascular endothelial cells, relevant to albumin homeostasis.


Asunto(s)
Albúminas , Células Endoteliales , Humanos , Albúminas/metabolismo , Línea Celular , Endosomas/metabolismo , Células Endoteliales/metabolismo , Semivida , Antígenos de Histocompatibilidad Clase I/metabolismo
11.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744839

RESUMEN

Rho GTPases, among them Rac1 and Rac3, are major transducers of extracellular signals and are involved in multiple cellular processes. In cortical interneurons, the neurons that control the balance between excitation and inhibition of cortical circuits, Rac1 and Rac3 are essential for their development. Ablation of both leads to a severe reduction in the numbers of mature interneurons found in the murine cortex, which is partially due to abnormal cell cycle progression of interneuron precursors and defective formation of growth cones in young neurons. Here, we present new evidence that upon Rac1 and Rac3 ablation, centrosome, Golgi complex and lysosome positioning is significantly perturbed, thus affecting both interneuron migration and axon growth. Moreover, for the first time, we provide evidence of altered expression and localization of the two-pore channel 2 (TPC2) voltage-gated ion channel that mediates Ca2+ release. Pharmacological inhibition of TPC2 negatively affected axonal growth and migration of interneurons. Our data, taken together, suggest that TPC2 contributes to the severe phenotype in axon growth initiation, extension and interneuron migration in the absence of Rac1 and Rac3.


Asunto(s)
Canales de Calcio , Interneuronas , Proteínas de Unión al GTP rac , Proteína de Unión al GTP rac1 , Animales , Ratones , Conos de Crecimiento/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo
12.
Development ; 149(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36398726

RESUMEN

Chloride intracellular channels (CLICs) are conserved proteins for which the cellular and molecular functions remain mysterious. An important insight into CLIC function came from the discovery that Caenorhabditis elegans EXC-4/CLIC regulates morphogenesis of the excretory canal (ExCa) cell, a single-cell tube. Subsequent work showed that mammalian CLICs regulate vascular development and angiogenesis, and human CLIC1 can rescue exc-4 mutants, suggesting conserved function in biological tube formation (tubulogenesis) and maintenance. However, the cell behaviors and signaling pathways regulated by EXC-4/CLICs during tubulogenesis in vivo remain largely unknown. We report a new exc-4 mutation, affecting a C-terminal residue conserved in virtually all metazoan CLICs, that reveals a specific role for EXC-4 in ExCa outgrowth. Cell culture studies suggest a function for CLICs in heterotrimeric G protein (Gα/ß/γ)-Rho/Rac signaling, and Rho-family GTPases are common regulators of cell outgrowth. Using our new exc-4 mutant, we describe a previously unknown function for Gα-encoding genes (gpa-12/Gα12/13, gpa-7/Gαi, egl-30/Gαq and gsa-1/Gαs), ced-10/Rac and mig-2/RhoG in EXC-4-mediated ExCa outgrowth. Our results demonstrate that EXC-4/CLICs are primordial players in Gα-Rho/Rac-signaling, a pathway that is crucial for tubulogenesis in C. elegans and in vascular development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Canales de Cloruro , Proteínas de Unión al GTP Heterotriméricas , Animales , Humanos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal
13.
FASEB J ; 38(3): e23461, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317639

RESUMEN

Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by progressive skeletal muscle denervation and loss of motor neurons that results in muscle atrophy and eventual death due to respiratory failure. Previously, we identified a novel SOD1L84F variation in a familial ALS case. In this study, we examined the functional consequences of SOD1L84F overexpression in the mouse motor neuron cell line (NSC-34). The cells expressing SOD1L84F showed increased oxidative stress and increased cell death. Interestingly, SOD1L84F destabilized the native dimer and formed high molecular weight SDS-resistant protein aggregates. Furthermore, SOD1L84F also decreased the percentage of differentiated cells and significantly reduced neurite length. A plethora of evidence suggested active involvement of skeletal muscle in disease initiation and progression. We observed differential processing of the mutant SOD1 and perturbations of cellular machinery in NSC-34 and muscle cell line C2C12. Unlike neuronal cells, mutant protein failed to accumulate in muscle cells probably due to the activated autophagy, as evidenced by increased LC3-II and reduced p62. Further, SOD1L84F altered mitochondrial dynamics only in NSC-34. In addition, microarray analysis also revealed huge variations in differentially expressed genes between NSC-34 and C2C12. Interestingly, SOD1L84F hampered the endogenous FUS autoregulatory mechanism in NSC-34 by downregulating retention of introns 6 and 7 resulting in a two-fold upregulation of FUS. No such changes were observed in C2C12. Our findings strongly suggest the differential processing and response towards the mutant SOD1 in neuronal and muscle cell lines.


Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa-1 , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Células Musculares/metabolismo , Mutación , Superóxido Dismutasa-1/genética
14.
J Biol Chem ; 299(1): 102775, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493904

RESUMEN

Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.


Asunto(s)
Neuritas , Fosfatos de Fosfatidilinositol , Humanos , Endosomas/metabolismo , Neuritas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfatos de Fosfatidilinositol/metabolismo
15.
J Biol Chem ; 299(10): 105232, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690690

RESUMEN

After adult mammalian central nervous system injury, axon regeneration is extremely limited or absent, resulting in persistent neurological deficits. Axon regeneration failure is due in part to the presence of inhibitory proteins, including NogoA (Rtn4A), from which two inhibitory domains have been defined. When these inhibitory domains are deleted, but an amino-terminal domain is still expressed in a gene trap line, mice show axon regeneration and enhanced recovery from injury. In contrast, when there is no amino-terminal Nogo-A fragment in the setting of inhibitory domain deletion, then axon regeneration and recovery are indistinguishable from WT. These data indicated that an amino-terminal Nogo-A fragment derived from the gene trap might promote axon regeneration, but this had not been tested directly and production of this fragment without gene targeting was unclear. Here, we describe posttranslation production of an amino-terminal fragment of Nogo-A from the intact gene product. This fragment is created by proteolysis near amino acid G214-N215 and levels are enhanced by axotomy. Furthermore, this fragment promotes axon regeneration in vitro and acts cell autonomously in neurons, in contrast to the inhibitory extracellular action of other Nogo-A domains.Proteins interacting with the amino-terminal Nogo-A fragment by immunoprecipitation include HSPA8 (HSC70, HSP7C). Suppression of HSPA8 expression by shRNA decreases axon regeneration from cerebral cortical neurons and overexpression increases axon regeneration. Moreover, the amino-terminal Nogo-A fragment increases HSPA8 chaperone activity. These data provide an explanation for varied results in different gene-targeted Nogo-A mice, as well as revealing an axon regeneration promoting domain of Nogo-A.


Asunto(s)
Axones , Proteínas de la Mielina , Animales , Ratones , Axones/metabolismo , Inhibidores de Crecimiento/metabolismo , Mamíferos/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Regeneración Nerviosa/fisiología , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteolisis , Femenino , Ratones Endogámicos C57BL
16.
Am J Hum Genet ; 108(11): 2171-2185, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34699745

RESUMEN

Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.


Asunto(s)
Edad de Inicio , Células Madre Pluripotentes Inducidas/citología , Neuritas , Neuronas/citología , Síndrome de Wolfram/patología , Sistemas CRISPR-Cas , Estudios de Casos y Controles , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Humanos , Neuritas/efectos de los fármacos , Ácido Valproico/farmacología , Síndrome de Wolfram/genética
17.
Bioorg Med Chem Lett ; 102: 129670, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387692

RESUMEN

Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-ß-carboline (THßC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.


Asunto(s)
Carbolinas , Inhibidores de Histona Desacetilasas , Peróxido de Hidrógeno , Ratas , Animales , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Peróxido de Hidrógeno/farmacología , Ácidos Hidroxámicos/farmacología , Proyección Neuronal , Histona Desacetilasa 1/metabolismo , Relación Estructura-Actividad
18.
Exp Cell Res ; 428(1): 113613, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37100369

RESUMEN

Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and lies third in terms of morbidity due to the limited number of effective druggable targets. Since cancer stem cells (CSCs) are considered to be one of the roots of tumorigenesis, outgrowth and metastasis, targeting CSCs may be a promising strategy to reverse the malignant phenotypes of CRC. Cyclin-dependent kinase 12 (CDK12) has been reported to be involved in the self-renewal of CSCs in various cancers, rendering it an attractive potential target against CSCs to consequently limit the malignant phenotypes in CRC. In the present study, we aimed to investigate whether CDK12 can be a potential therapeutic target for patients with CRC and clarify its underlying mechanism. We found that CDK12, but not CDK13 is required for CRC survival. CDK12 was found to drive tumor initiation according to the colitis-associated colorectal cancer mouse model. In addition, CDK12 promoted CRC outgrowth and hepatic metastasis in the subcutaneous allograft and liver metastasis mouse models, respectively. In particular, CDK12 was able to induce the self-renewal of CRC CSCs. Mechanistically, the activation of Wnt/ß-catenin signaling mediated by CDK12 was implicated in stemness regulation and malignant phenotype maintenance. These findings indicate that CDK12 is a candidate druggable target in CRC. Therefore, the CDK12 inhibitor SR-4835 warrants clinical trial testing in patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Vía de Señalización Wnt , Animales , Ratones , beta Catenina/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Quinasas Ciclina-Dependientes/metabolismo , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Fenotipo , Vía de Señalización Wnt/genética
19.
Endocr Regul ; 58(1): 105-114, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656256

RESUMEN

Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.


Asunto(s)
Trastorno Autístico , Encéfalo , Dopamina , Oxitocina , Ácido gamma-Aminobutírico , Oxitocina/metabolismo , Oxitocina/fisiología , Humanos , Dopamina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Animales , Transmisión Sináptica/fisiología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/etiología
20.
Mol Cell Neurosci ; 127: 103905, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37972804

RESUMEN

Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.


Asunto(s)
Microtúbulos , Neuronas , Neuronas/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Movimiento Celular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA