Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 609
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325365

RESUMEN

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Asunto(s)
Envejecimiento , Genitales Femeninos , Animales , Femenino , Ratones , Embarazo , Genitales Femeninos/citología , Genitales Femeninos/metabolismo , Inflamación/metabolismo , Útero/citología , Vagina/citología , Análisis de la Célula Individual
2.
FASEB J ; 38(9): e23632, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686936

RESUMEN

The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.


Asunto(s)
Conductos Paramesonéfricos , Oviductos , Análisis de la Célula Individual , Transcriptoma , Útero , Animales , Femenino , Ratones , Útero/metabolismo , Útero/citología , Conductos Paramesonéfricos/metabolismo , Oviductos/metabolismo , Oviductos/citología , Perfilación de la Expresión Génica , Animales Recién Nacidos , Diferenciación Celular , Mesodermo/metabolismo , Mesodermo/citología , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica
3.
FASEB J ; 38(17): e70035, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39239798

RESUMEN

Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting. In this study, we isolated oEVs from the oviductal fluid at estrus and different stages of early embryonic development. The 2306-3066 proteins in oEVs identified at the different time points revealed 58-60 common EV markers identified in exosome databases. Oviductal extracellular vesicle proteins from pregnant samples significantly differed from those in non-pregnant samples. In addition, superovulation changes the protein contents in oEVs compared to natural ovulation at estrus. Importantly, we have identified that embryo-protectant proteins such as high-mobility protein group B1 and serine (or cysteine) peptidase inhibitor were only enriched in the presence of embryos. We also visualized the physical interaction of EVs and the zona pellucida of 4- to 8-cell stage embryos using transmission electron microscopy as well as in vivo live imaging of epithelial cell-derived GFP-tagged CD9 mouse model. All protein data in this study are readily available to the scientific community in a searchable format at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/. In conclusion, we identified oEVs proteins that could be tested to determine whether they can improve embryonic developmental outcomes in vivo and in vitro setting.


Asunto(s)
Desarrollo Embrionario , Vesículas Extracelulares , Proteómica , Animales , Femenino , Ratones , Vesículas Extracelulares/metabolismo , Desarrollo Embrionario/fisiología , Proteómica/métodos , Embarazo , Oviductos/metabolismo , Trompas Uterinas/metabolismo , Ratones Endogámicos C57BL
4.
Exp Cell Res ; 442(1): 114196, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39117090

RESUMEN

Reproduction by egg-laying (oviparity) or live-bearing (viviparity) is a genetically determined trait fundamental to the biology of amniotes. Squamates are an emerging model for the genetics of reproductive mode yet lack cell culture models valuable for exploring molecular mechanisms. Here, we report a novel primary culture model for reproductive biology: cell cultures derived from the oviduct tissues (infundibulum, uterus and vagina) of oviparous and viviparous common lizards (Lacertidae: Zootoca vivipara). We maintained and expanded these cultures for over 100 days, including repeated subculturing and successful revival of cryopreserved cells. Immunocytochemical investigation suggested expression of both epithelial and fibroblast-like proteins, and RNA sequencing of cultured cells as compared to in vivo oviduct tissue showed changes in gene expression in response to the cell culture environment. Despite this, we confirmed the maintenance of distinct gene expression patterns in viviparous and oviparous cells after 60+ days of cell culture, finding 354 differentially expressed genes between viviparous and oviparous cells. Furthermore, we confirmed the expression of 15 viviparity-associated candidate genes in cells maintained for 60+ days in culture. Our study demonstrates the feasibility and utility of oviduct cell culture for molecular analysis of reproductive mode and provides a tool for future genetic experiments.


Asunto(s)
Lagartos , Oviductos , Oviparidad , Viviparidad de Animales no Mamíferos , Animales , Femenino , Lagartos/genética , Lagartos/fisiología , Oviductos/citología , Oviductos/metabolismo , Viviparidad de Animales no Mamíferos/genética , Oviparidad/genética , Células Cultivadas , Cultivo Primario de Células/métodos
5.
Differentiation ; 138: 100791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941819

RESUMEN

A Wt1 conditional deletion, nuclear red fluorescent protein (RFP) reporter allele was generated in the mouse by gene targeting in embryonic stem cells. Upon Cre-mediated recombination, a deletion allele is generated that expresses RFP in a Wt1-specific pattern. RFP expression was detected in embryonic and adult tissues known to express Wt1, including the kidney, mesonephros, and testis. In addition, RFP expression and WT1 co-localization was detected in the adult uterine stroma and myometrium, suggesting a role in uterine function. Crosses with Wnt7a-Cre transgenic mice that express Cre in the Müllerian duct epithelium activate Wt1-directed RFP expression in the epithelium of the oviduct but not the stroma and myometrium of the uterus. This new mouse strain should be a useful resource for studies of Wt1 function and marking Wt1-expressing cells.


Asunto(s)
Alelos , Proteínas Luminiscentes , Ratones Transgénicos , Proteína Fluorescente Roja , Proteínas WT1 , Animales , Ratones , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Femenino , Genes Reporteros , Masculino , Eliminación de Gen
6.
BMC Genomics ; 25(1): 589, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867150

RESUMEN

BACKGROUND: Bisphenol S (BPS) is a substitute for bisphenol A in plastic manufacturing and, as a potential endocrine disruptor, may alter the physiology of the oviduct, in which fertilization and early embryo development take place in mammals. The objective of this study was to assess the effect of a daily dietary exposure to BPS combined with a contrasted diet on the oviduct fluid proteome using an ovine model. RESULTS: Eighty adult cyclic ewes were allotted to four groups (20/group): overfed (OF) consuming 50 µg/kg/day of BPS in their diet, underfed (UF) consuming 50 µg/kg/day of BPS, and non-exposed controls in each diet group. After three months, the mean body condition score, plasma levels of glucose and non-esterified fatty acids were significantly higher in OF than in UF females. The proteins in collected OF samples (50 µg) were analyzed by nanoliquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS). Overall, 1563 proteins were identified, among which 848 were quantified. Principal component analysis of the data revealed a clear discrimination of samples according to the diet and a segregation between BPS-exposed and non-exposed females in overfed ewes. Hierarchical clustering of differentially abundant proteins (DAPs) identified two clusters of 101 and 78 DAPs according to the diet. Pairwise comparisons between groups revealed a stronger effect of BPS in OF than in UF females (70 vs. 24 DAPs) and a stronger effect of the diet in BPS-exposed than non-exposed females (56 vs. 36 DAPs). Functional analysis of DAPs showed an enrichment in metabolic processes, immune system, cell response to stress, and reproductive processes. CONCLUSIONS: This work highlights for the first time the important impact of BPS on the oviduct proteome, with larger effects seen in OF than UF females. These results, together with previous ones, raise health concerns for everyone and call for a greater regulation of BPS in the food industry.


Asunto(s)
Oviductos , Fenoles , Proteoma , Sulfonas , Animales , Femenino , Ovinos , Fenoles/toxicidad , Proteoma/metabolismo , Oviductos/metabolismo , Oviductos/efectos de los fármacos , Sulfuros/administración & dosificación , Proteómica , Administración Oral , Dieta
7.
BMC Genomics ; 25(1): 520, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802796

RESUMEN

BACKGROUND: Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS: For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS: In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS: These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.


Asunto(s)
Embrión de Mamíferos , Vesículas Extracelulares , MicroARNs , Oviductos , Animales , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Bovinos , Embrión de Mamíferos/metabolismo , Oviductos/metabolismo , Oviductos/citología , Células Epiteliales/metabolismo , Técnicas de Cocultivo , Trompas Uterinas/metabolismo , Trompas Uterinas/citología
8.
Biol Reprod ; 111(3): 580-599, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-38847468

RESUMEN

We recently developed re-differentiated equine oviduct epithelial cell (REOEC) monolayers demonstrating various in vivo morphological characteristics, but lacking secondary ciliation. In this study, we evaluated the effects of fetal bovine serum, reproductive steroid hormones, Wnt- and Notch ligands and inhibitors, and different EOEC seeding densities, in both conventional wells and on microporous membranes, on EOEC morphology and, in particular, secondary ciliation. REOEC monolayers were assessed by confocal microscopy after combined staining of nuclei, cilia, and the cytoskeleton. Only Wnt ligands, Notch inhibitors and oviduct explant cell concentration affected EOEC morphology. Undesirable epithelial-mesenchymal transition was observed in REOEC monolayers exposed to Wnt3a containing medium and Wnt ligand CHIR 99021. With respect to secondary ciliation, only the combined effect of oviduct explant cell concentration and Notch inhibition steered REOEC monolayers to in vivo-like ciliation patterns. De-differentiated EOECs, formed 10 days after oviduct explant cell seeding, were reseeded on inserts; only at initial oviduct explant cell concentrations of 1 and 5 × 106 cells per well was the formation of REOEC monolayers with a high rate of diffuse ciliation supported. Within 1 month after air-liquid interface introduction, >40% and >20% of the REOECs showed secondary cilia, respectively. At higher oviduct explant cell seeding densities secondary ciliation was not supported after re-differentiation. Additionally, Notch inhibition helped boost secondary ciliation rates to >60% in REOEC monolayers with diffuse ciliation only. These monolayers demonstrated higher clathrin expression under follicular phase conditions. Overall, the ciliated REOEC monolayers better resemble in vivo oviduct epithelial cells than previous models.


Asunto(s)
Diferenciación Celular , Cilios , Células Epiteliales , Trompas Uterinas , Oviductos , Animales , Femenino , Caballos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Cilios/fisiología , Cilios/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Oviductos/citología , Trompas Uterinas/citología , Células Cultivadas , Técnicas de Cultivo de Célula
9.
Biol Reprod ; 110(2): 230-245, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38038990

RESUMEN

The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.


Asunto(s)
Trompas Uterinas , Semen , Humanos , Masculino , Bovinos , Animales , Femenino , Ratones , Trompas Uterinas/fisiología , Oviductos , Hormonas Esteroides Gonadales , Útero , Inmunidad , Modelos Animales , Esteroides
10.
Histochem Cell Biol ; 161(6): 521-537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38530407

RESUMEN

Key reproductive events such as fertilization and early embryonic development occur in the lumen of the oviduct. Since investigating these processes in vivo is both technically challenging and ethically sensitive, cell culture models have been established to reproduce the oviductal microenvironment. Compartmentalized culture systems, particularly air-liquid interface cultures (ALI; cells access the culture medium only from the basolateral cell side), result in highly differentiated oviduct epithelial cell cultures. The oxygen (O2) tension within the oviduct is 4-10% across species, and its reduced O2 content is presumed to be important for early reproductive processes. However, cell culture models of the oviduct are typically cultivated without O2 regulation and therefore at about 18% O2. To investigate the impact of O2 levels on oviduct epithelium functions in vitro, we cultured porcine oviduct epithelial cells (POEC) at the ALI using both physiological (5%) and supraphysiological (18%) O2 levels and two different media regimes. Epithelium architecture, barrier function, secretion of oviduct fluid surrogate (OFS), and marker gene expression were comparatively assessed. Under all culture conditions, ALI-POEC formed polarized, ciliated monolayers with appropriate barrier function. Exposure to 18% O2 accelerated epithelial differentiation and significantly increased the apical OFS volume and total protein content. Expression of oviduct genes and the abundance of OVGP1 (oviduct-specific glycoprotein 1) in the OFS were influenced by both O2 tension and medium choice. In conclusion, oviduct epithelial cells can adapt to a supraphysiological O2 environment. This adaptation, however, may alter their capability to replicate in vivo tissue characteristics.


Asunto(s)
Oviductos , Oxígeno , Animales , Femenino , Oxígeno/metabolismo , Porcinos , Oviductos/metabolismo , Oviductos/citología , Células Cultivadas , Epitelio/metabolismo , Técnicas de Cultivo de Célula , Células Epiteliales/metabolismo , Células Epiteliales/citología
11.
Cell Tissue Res ; 397(3): 275-285, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39105776

RESUMEN

The complex interactome crucial for successful pregnancy is constituted by the intricate network of endocrine and paracrine signaling pathways, involving gametes, embryos, and the female reproductive tract. Specifically, the oviduct exhibits distinct responses to gametes and early embryos during particular phases of the estrus cycle, a process tightly regulated by reproductive hormones. Moreover, these hormones play a pivotal role in orchestrating cyclical changes within oviductal epithelial cells. To unravel the molecular mechanisms underlying these dynamic changes, our study aimed to investigate the involvement of protein kinase A (PKA) in oviductal epithelial cells throughout the estrus cycle and in advanced pregnancy, extending our studies to oviductal epithelial cell in primary culture. By a combination of 2D-gel electrophoresis, Western blotting, and mass spectrometry, we identified 17 proteins exhibiting differential phosphorylation status mediated by PKA. Among these proteins, we successfully validated the phosphorylation status of heat shock 70 kDa protein (HSP70), aconitase 2 (ACO2), and lamin B1 (LMNB1). Our findings unequivocally demonstrate the dynamic regulation of PKA throughout the estrus cycle in oviductal epithelial cells. Also, analysis by bioinformatics tools suggest its pivotal role in mediating cyclical changes possibly through modulation of apoptotic pathways. This research sheds light on the intricate molecular mechanisms underlying reproductive processes, with implications for understanding fertility and reproductive health.


Asunto(s)
Apoptosis , Proteínas Quinasas Dependientes de AMP Cíclico , Células Epiteliales , Ciclo Estral , Transducción de Señal , Animales , Femenino , Células Epiteliales/metabolismo , Bovinos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclo Estral/fisiología , Ciclo Estral/metabolismo , Oviductos/metabolismo , Oviductos/citología , Trompas Uterinas/metabolismo , Trompas Uterinas/citología , Fosforilación
12.
Mol Reprod Dev ; 91(1): e23725, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282319

RESUMEN

Cystic ovary disease (COD) is a common cause of subfertility in dairy cattle. Therefore, the aim of this study was to provide novel concepts for cyst classification and to investigate the effects of COD on tubal microarchitecture, oviductal metabolic function, and the formation of the sperm reservoir. Bovine Fallopian tubes affected by follicular cysts, follicular cysts with luteinization and luteal cysts were investigated by a variety of microscopic and histological techniques and compared to control cows in metestrus and diestrus. We defined three types of cysts involved in COD, each of which had a characteristic wall thickness, inner wall appearance and cellular pattern within the cyst aspirate. Regarding the Fallopian tube, each cyst type was associated with a characteristic morphology, specifically the microarchitecture of the folds in ampulla, epithelial cell ratios, and ciliated/secretory cell size and form. Furthermore, each cyst type showed different patterns of tubal glycoprotein and acidic mucopolysaccharide synthesis, which was highly variable as compared to the controls. Our studies are the first to characterize the effects of COD on the Fallopian tube, which promotes the establishment of novel, cyst-specific therapeutic concepts in cattle and helps gain a holistic view of the causes of subfertility in cows with COD.


Asunto(s)
Infertilidad , Quistes Ováricos , Masculino , Femenino , Humanos , Bovinos , Animales , Trompas Uterinas/metabolismo , Semen/metabolismo , Quistes Ováricos/veterinaria , Quistes Ováricos/metabolismo
13.
FASEB J ; 37(8): e23073, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37402125

RESUMEN

In female mammals, the oviduct and uterus are essential sites for female and male gamete transport, fertilization, implantation, and maintenance of a successful pregnancy. To delineate the reproductive function of Mothers against decapentaplegic homolog 4 (Smad4), we specifically inactivated Smad4 in ovarian granulosa cells and, oviduct and uterine mesenchymal cells using the Amhr2-cre mouse line. Deletion of exon 8 of Smad4 results in the production of an MH2-truncated SMAD4 protein. These mutant mice are infertile due to the development of oviductal diverticula and defects during the implantation process. The ovaries are fully functional as demonstrated in an ovary transfer experiment. The development of oviductal diverticula occurs shortly after puberty and is dependent on estradiol. The diverticula interfere with sperm migration and embryo transit to the uterus, reducing the number of implantation sites. Analysis of the uterus shows that, even if implantation occurs, decidualization and vascularization are defective resulting in embryo resorption as early as the seventh day of pregnancy. Thus, Smad4 plays an important function in female reproduction by controlling the structural and functional integrity of the oviduct and uterus.


Asunto(s)
Estradiol , Proteína Smad4 , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Implantación del Embrión , Estradiol/metabolismo , Mamíferos/metabolismo , Oviductos/metabolismo , Semen/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Útero/metabolismo
14.
Cell Biol Int ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634302

RESUMEN

Apelin and its receptor (APJ) are expressed in the reproductive organs of some mammalian females. The function of oviduct has also been suggested to be compromised in the hyperandrogenism condition. However, expression of apelin and APJ has not been shown in the oviduct of hyperandrogenized mice. Thus, the present study has investigated the localization and expression of apelin and APJ in the letrozole-induced hyperandrogenized mice oviduct. Histomorphometric analysis showed decreased lumen of oviduct in the hyperandrogenized mice. Our results showed elevated expression of APJ and decreased abundance of apelin in the hyperandrogenized mice oviduct. This finding suggests impaired apelin signaling in the oviduct of hyperandrogenized mice. The expression of androgen receptor was upregulated while estrogen receptors were downregulated in the hyperandrogenized mice. The expression of HSP70 was also downregulated along with increased expression of active caspase 3 and BAX and decreased expression of BCL2 in hyperandrogenized mice. Furthermore, the phosphorylation of phospho-Ser473-Akt and phospho-Thr308-Akt also showed differential levels in the oviduct of hyperandrogenized mice. Whether this differential phosphorylation of Akt was solely due to impaired apelin signaling in the oviduct, remains unclear. Moreover, increased androgen signaling and suppressed estrogen signaling coincides with elevated apoptosis. In conclusion, hyperandrogenized conditions could also impair the gamete transport and fertilization process due to apoptosis in the oviduct. However, further study would be required to unravel the exact role of apelin signaling in the oviduct in relation to apoptosis.

15.
J Reprod Dev ; 70(1): 42-48, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38246613

RESUMEN

Embryonic transfer of bovine blastocysts produced using in vitro fertilization (IVF) is widely used, although the challenge of compromised conception rates remains. Using bovine oviduct epithelial cells (BOEC) to improve embryo culture conditions has attracted attention, particularly since the recent discovery of extracellular vesicles from BOEC. The selection of embryos for transfer has also been the subject of various studies, and a set of evaluation criteria to predict pregnancy success has been suggested, in which the embryos are judged by their kinetics and morphology at the early stages. In the present study, we established a spontaneously immortalized BOEC line (SI-BOEC) and examined the effects of conditioned medium on IVF embryos, focusing on the results of the recommended criteria. A modified KSOM (mKSOM) was used to prepare conditioned media. Presumptive zygotes were cultured in mKSOM (control), SI-BOEC-conditioned medium, mKSOM supplemented with sediment (pellet) collected after the ultracentrifugation of the conditioned medium (mKSOM/sediment), and the supernatant. A significantly higher percentage of embryos satisfied the recommended criteria when grown in the conditioned medium than in the mKSOM. A higher proportion of embryos developed into blastocysts after achieving the four criteria. A similar tendency was observed when grown in mKSOM/sediment compared to mKSOM; however, this was not observed in the supernatant. Vesicles with a size similar to that of exosomes were observed in the sediment. In conclusion, the culture medium conditioned by SI-BOEC promoted the production of bovine blastocysts that satisfied the four evaluation criteria recommended for embryo selection.


Asunto(s)
Trompas Uterinas , Oviductos , Embarazo , Femenino , Humanos , Bovinos , Animales , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Oviductos/metabolismo , Embrión de Mamíferos , Células Epiteliales , Blastocisto , Fertilización In Vitro/veterinaria
16.
Reprod Domest Anim ; 59(9): e14714, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39205435

RESUMEN

This study assessed morphometric traits of the ampulla of the oviducts in prepubertal gilts treated with chorionic gonadotropins. With the day of slaughter as D0, gilts were assigned to four treatments (n = 8 each): control (untreated), eCG (200 IU eCG on D3), eCG+hCG (1200 IU eCG on D6 plus 500 IU hCG on D3), and eCG+hCG+AI (the previous treatment plus artificial insemination on D1). Blood and ampullae samples were collected at slaughter. Serum progesterone concentrations were higher for gilts treated with hCG than for those in the eCG and control treatments (p < 0.001), but estradiol concentrations did not differ (p > 0.05). The epithelium, muscle and lumen areas and the inner and larger ampullae diameters did not differ across treatments (p > 0.05). Therefore, treatment with chorionic gonadotropins did not alter the ampullae morphometry of prepubertal gilts.


Asunto(s)
Gonadotropina Coriónica , Estradiol , Inseminación Artificial , Progesterona , Maduración Sexual , Animales , Femenino , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/administración & dosificación , Progesterona/sangre , Progesterona/farmacología , Estradiol/sangre , Estradiol/farmacología , Maduración Sexual/efectos de los fármacos , Inseminación Artificial/veterinaria , Porcinos , Sus scrofa
17.
Physiol Genomics ; 55(11): 557-564, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37720990

RESUMEN

The objectives of the present study were to characterize the expression of genes encoding for cell signaling ligands in the bovine endosalpinx and endometrium and analyze spatial changes in gene expression. RNA sequencing was performed for the endosalpinx from the ampulla of the oviduct and endometrium from the upper and middle uterine horn and uterine body at day 2 after ovulation from ipsilateral and contralateral sides relative to the ovulatory ovary. Of the 17,827 unique mRNA transcripts mapped, 2,072 were affected by cranial-caudal position in the reproductive tract and 818 were affected by side (false discovery rate < 0.05). There were 334 genes encoding for cell signaling ligands, with 128 genes having greater than two transcripts per million on average. A total of 81 cell signaling ligand genes were affected by position and 24 were affected by side. A data set of the transcriptome of two to four cell embryos was used to identify cell signaling ligand genes that were highly expressed in the ampulla for which there was high expression of the receptor in the embryo. The most expressed ligand-receptor pairs were PSAP/SORT1, MIF/CXCR4, GPI/AMFR, and KITLG/KIT. These cell signaling ligands, as well as others whose gene is expressed in the endosalpinx and endometrium, may influence early embryonic development. Spatial changes throughout the reproductive tract highlight the distinctive expression profile of the oviduct versus the endometrium, including a set of the identified genes encoding for cell signaling ligands, and highlight the local influence of the ovary. The results also show the continuity of expression for large numbers of genes in the reproductive tract.NEW & NOTEWORTHY Examination of the transcriptome of the endosalpinx and endometrium revealed the degree to which gene expression in the reproductive tract varies spatially. The expression of genes encoding cell signaling molecules that could potentially regulate embryonic development was also identified.


Asunto(s)
Endometrio , Transcriptoma , Embarazo , Femenino , Bovinos , Animales , Transcriptoma/genética , Ligandos , Endometrio/metabolismo , Perfilación de la Expresión Génica , Útero/metabolismo
18.
J Cell Physiol ; 238(5): 1020-1035, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37013674

RESUMEN

After mammalian ovulation, oocytes enter the oviduct, causing oocyte and oviduct changes. Some studies have shown that follicular fluid exosomes (FEVs) play an important role in this regulatory process, but the specific mechanism is remains unclear. Here, we investigate the effect of FEVs on autophagy and on the synthesis and secretion of oviductal glycoprotein 1 (OVGP1) in yak oviduct epithelial cells (OECs). We added FEVs to yak OECs and collected samples at intervals. The effect of autophagy on OVGP1 synthesis and secretion was detected by manipulating the level of autophagy in OECs. The results showed that autophagy gradually increased as early as 6 h after exosome intake level increased, and the increase was most obvious 24 h after. At that time, the synthesis and secretion of OVGP1 also reached its highest levels. When the autophagy level of OECs is changed through the PI3K/AKT/mTOR pathway, OVGP1 synthesis and secretion levels also change, along with the OVGP1 levels in oviduct exosomes also change. More importantly, the addition of FEVs treatment while using 3-MA to inhibit the autophagy level in yak OECs did not change the synthesis and secretion level of OVGP1. Our results indicate that FEVs can affect the synthesis and secretion of OVGP1 by regulating the level of autophagy in OECs, and that the completion of this process may depend on the PI3K/AKT/mTOR pathway, indicating that exosomes and autophagy play important roles in the reproductive physiology of yak OECs. Our results provide new ideas in to characterizing the role of exosomes in yak reproduction.


Asunto(s)
Exosomas , Líquido Folicular , Glicoproteínas , Animales , Bovinos , Femenino , Células Epiteliales/metabolismo , Glicoproteínas/metabolismo , Oviductos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
BMC Genomics ; 24(1): 646, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891479

RESUMEN

BACKGROUND: The mammalian oviduct is a complex, fibromuscular organ known for its role in orchestrating a series of timely and dynamic changes to suitably support early embryogenesis. Climate change-induced heat stress (HS) is one of the largest single stressors compromising reproductive function in humans and farm animals via systemic changes in the redox status of the maternal environment, adversely affecting fertilization and early embryonic development. Oviductal organoids represent a unique 3-dimensional, biomimetic model to study the physiology of the oviduct and its subsequent impact on embryo development under various environmental conditions. RESULTS: Our study is the first to demonstrate an innovative approach to understanding the cascade of molecular changes sustained by bovine oviductal organoids under HS and the subsequent maternal signals harnessed within their secreted extracellular vesicles (EVs). Transcriptomic analysis of oviductal organoids exposed to HS revealed 2,570 differentially expressed genes (1,222 up- and 1,348 downregulated), while EV-coupled miRNome analysis disclosed 18 miRNAs with significant differential expression (12 up- and 6 downregulated) in EVs from thermally stressed organoids compared to EVs released from organoids cultured under thermoneutral conditions. Genes activated in oviductal organoids in response to thermal stress, include: COX1, ACTB, CST6, TPT1, and HSPB1, while miR-1246, miR-148a, miR21-5p, miR-451, and miR-92a represent the top highly abundant EV-coupled miRNAs released in response to HS. Pathway analysis of genes enriched in organoids exposed to thermal stress showed the enrichment of endocrine resistance, cellular senescence, and notch signaling pathways. Similarly, EV-coupled miRNAs released from thermally stressed organoids showed their potential regulation of genes involved in cellular senescence, p53 signaling, and TGF-beta signaling pathways. CONCLUSIONS: In conclusion, the cellular and extracellular response of bovine oviductal organoids to in vitro HS conditions reveal the prospective impact of environmental HS on the physiology of the oviduct and the probable subsequent impacts on oocyte fertilization and early embryo development. Future studies elucidating the potential impact of HS-associated EVs from oviductal organoids on oocyte fertilization and preimplantation embryo development, would justify the use of an organoid model to optimally understand the oviduct-embryo communication under suboptimal environments.


Asunto(s)
Trompas Uterinas , MicroARNs , Humanos , Embarazo , Femenino , Animales , Bovinos , Trompas Uterinas/metabolismo , Multiómica , Estudios Prospectivos , Oviductos/metabolismo , MicroARNs/metabolismo , Organoides/metabolismo , Respuesta al Choque Térmico/genética , Mamíferos/metabolismo
20.
J Cell Sci ; 134(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33468623

RESUMEN

The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.


Asunto(s)
Cadherinas , Cilios , Células Epiteliales , Proteínas Asociadas a Microtúbulos , Animales , Polaridad Celular , Femenino , Ratones , Oviductos , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA