Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 795-820, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32208765

RESUMEN

The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOx complex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.


Asunto(s)
Coenzimas/química , Manganeso/química , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Agua/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Expresión Génica , Rayos Láser , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Teoría Cuántica , Termodinámica , Thermosynechococcus/química , Thermosynechococcus/enzimología , Agua/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(11): e2319374121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437550

RESUMEN

Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.

3.
Small ; 20(22): e2308419, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102103

RESUMEN

The unsatisfactory oxygen evolution reaction (OER) activity of IrO2 has intensively raised the cost and energy consumption of hydrogen generation from proton exchange membrane water electrolyzers. Here, the acidic OER activity of the rutile IrO2 is significantly enhanced by the incorporation of trivalent metals (e.g., Gd, Nd, and Pr) to increase the Ir-O covalency, while the high-valence (pentavalent or higher) metal incorporation decreases the Ir-O covalency resulting in worse OER activity. Experimental and theoretical analyses indicate that enhanced Ir-O covalency activates lattice oxygen and triggers lattice oxygen-mediated mechanism to enhance OER kinetics, which is verified by the finding of a linear relationship between the natural logarithm of intrinsic activity and Ir-O covalency described by charge transfer energy. By regulating the Ir-O covalency, the obtained Gd-IrO2-δ merely needs 260 mV of overpotential to reach 10 mA cm-2 and shows impressive stability during a 200-h test in 0.5 м H2SO4. This work provides an effective strategy for significantly enhancing the OER activity of the widely used IrO2 electrocatalysts through the rational regulation of Ir-O covalency.

4.
Arch Biochem Biophys ; 752: 109874, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38145834

RESUMEN

The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.


Asunto(s)
Lipooxigenasa , Lipooxigenasas , Animales , Conejos , Lipooxigenasas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/química , Ácido Araquidónico/química , Ácido Araquidónico/metabolismo , Araquidonato 12-Lipooxigenasa
5.
Anal Biochem ; 688: 115478, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309680

RESUMEN

In this study, a simple electrochemical sensor based on l-arginine membrane (P-L-arg/GCE) was developed for rapid and sensitive detection of MDMA and MDA. A polyarginine membrane was obtained through one-step direct electropolymerization, which provides more reaction sites for the analyte and improves the sensitivity of the sensor. Following the optimized selection parameters, the MDMA detection range was established at 1.0 × 10-7∼3.5 × 10-5 mol L-1, with a detection limit of 3.3 × 10-8 mol L-1. Similarly, the detection range for MDA was established at 1.0 × 10-7∼5.3 × 10-5 mol L-1 with a detection limit of 3.3 × 10-8 mol L-1. Additionally, the potential oxidation mechanism of MDMA and MDA during the REDOX process was analyzed by cyclic voltammetry. Furthermore, the proposed sensor exhibited superior selectivity, excellent reproducibility, and satisfactory stability. The proposed sensors can be used for reliable monitoring of MDMA or MDA in human urine and hair samples, respectively, and it has acceptable analytical reliability and enormous potential for practical applications.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Humanos , Reproducibilidad de los Resultados , Péptidos , Oxidación-Reducción , Técnicas Electroquímicas , Límite de Detección , Electrodos
6.
Environ Sci Technol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959431

RESUMEN

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.

7.
Environ Res ; 258: 119477, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38909943

RESUMEN

In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.

8.
Mikrochim Acta ; 191(5): 236, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570402

RESUMEN

Three different types of Zr-based MOFs derived from benzene dicarboxylic acid (BDC) and naphthalene dicarboxylic acid as organic linkers (ZrBDC, 2,6-ZrNDC, and 1,4-ZrNDC) were synthesized. They were characterized using X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform IR spectroscopy (FT-IR), and Transmission electron microscopy (TEM). Their hydrophilic/hydrophobic nature was investigated via contact angle measurements; ZrBDC MOF was hydrophilic and the other two (ZrNDC) MOFs were hydrophobic. The three MOFs were combined with MWCNTs as electrode modifiers for the determination of a hydrophobic analyte, flibanserin (FLB), as a proof-of-concept analyte. Under the optimized experimental conditions, a significant enhancement in the oxidation peak current of FLB was observed when utilizing 2,6-ZrNDC and 1,4-ZrNDC, being the highest when using 1,4-ZrNDC. Furthermore, a thorough investigation of the complex oxidation pathway of FLB was performed by carrying out simultaneous spectroelectrochemical measurements. Based on the obtained results, it was verified that the piperazine moiety of FLB is the primary site for electrochemical oxidation. The fabricated sensor based on 1,4-ZrNDC/MW/CPE showed an oxidation peak of FLB at 0.8 V vs Ag/AgCl. Moreover, it showed excellent linearity for the determination of FLB in the range 0.05 to 0.80 µmol L-1 with a correlation coefficient (r) = 0.9973 and limit of detection of 3.0 nmol L-1. The applicability of the developed approach was demonstrated by determination of FLB in pharmaceutical tablets and human urine samples with acceptable repeatability (% RSD values were below 1.9% and 2.1%, respectively) and reasonable recovery values (ranged between 97 and 103% for pharmaceutical tablets and between 96 and 102% for human urine samples). The outcomes of the suggested methodology can be utilized for the determination of other hydrophobic compounds of pharmaceutical or biological interest with the aim of achieving low detection limits of these compounds in various matrices.

9.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792116

RESUMEN

Noble metals have become a research hotspot for the oxidation of light alkanes due to their low ignition temperature and easy activation of C-H; however, sintering and a high price limit their industrial applications. The preparation of effective and low-noble-metal catalysts still presents profound challenges. Herein, we describe how a Ru@CoMn2O4 spinel catalyst was synthesized via Ru in situ doping to promote the activity of propane oxidation. Ru@CoMn2O4 exhibited much higher catalytic activity than CoMn2O4, achieving 90% propane conversion at 217 °C. H2-TPR, O2-TPD, and XPS were used to evaluate the catalyst adsorption/lattice oxygen activity and the adsorption and catalytic oxidation capacity of propane. It could be concluded that Ru promoted synergistic interactions between cobalt and manganese, leading to electron transfer from the highly electronegative Ru to Co2+ and Mn3+. Compared with CoMn2O4, 0.1% Ru@CoMn2O4, with a higher quantity of lattice oxygen and oxygen mobility, possessed a stronger capability of reducibility, which was the main reason for the significant increase in the activity of Ru@CoMn2O4. In addition, intermediates of the reaction between adsorbed propane and lattice oxygen on the catalyst were monitored by in situ DRIFTS. This work highlights a new strategy for the design of a low-noble-metal catalyst for the efficient oxidation of propane.

10.
Nanotechnology ; 34(40)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37462320

RESUMEN

The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%-60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications.

11.
Environ Res ; 216(Pt 3): 114694, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328224

RESUMEN

1,2-Dichloroethane (1,2-DCA) is a common compound found in groundwater contaminated with organics. This compound is difficult to remove from groundwater and has the potential to inflict significant harm on human health and the environment. This study used sodium persulfate (Na2S2O8) activated by sodium hydroxide (NaOH) to remove 1,2-DCA from aqueous solutions. Density functional theory was employed to calculate the potential energy surface of the reactants, intermediates, transient states, and products to thoroughly analyze the degradation pathways. The computations were performed in combination with in situ remediation of a 1,2-DCA plume from a point source to verify the industrial applicability of the technology. The results showed the 1,2-DCA removal efficiency was impacted considerably by the Na2S2O8 dosage and the dosing sequence of Na2S2O8 and NaOH, with the mean removal ratio reaching 96.24%. A free radical reaction was the main pathway of 1,2-DCA degradation; superoxide radical (O2•-) existed stably and played a key role in the reaction, and the main transformation proceeded via a vinyl chloride intermediate. The maximum removal of 1,2-DCA reached 91.79% in the in situ remediation. The developed technology exhibits important advantages in enabling flexible control over chemical dosages, long durations of effective activity, and rapid full-cycle remediation.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Hidróxido de Sodio , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Sulfatos/química , Cinética , Oxidación-Reducción
12.
Environ Res ; 226: 115680, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36925036

RESUMEN

Catalytic oxidation is considered a highly effective method for the elimination of volatile organic compounds. Oxygen vacancy defect engineering in a catalyst is considered an effective approach for high-performance catalysts. Herein, a series of doped MnxCe1-xO2 catalysts (x = 0.05-0.2) with oxygen vacancy defects were synthesized by doping low-valent Mn in a CeO2 lattice. Different characterization techniques were utilized to inspect the effect of doping on oxygen vacancy defect generation. The characterization results revealed that the Mn0.15Ce0.85O2 catalyst has the maximum oxygen vacancy concentration, leading to increased active oxygen species and enhanced oxygen mobility. Thus, Mn0.15Ce0.85O2 catalyst showed an excellent toluene oxidation activity with 90% toluene conversion temperature (T90) of 197 °C at a weight hourly space velocity of 40,000 mL g-1 h-1 as compared to undoped CeO2 (T90 = 225 °C) and Ce based oxides in previous reports. In addition, the Mn0.15Ce0.85O2 catalyst displayed strong recyclability, water resistant ability and long-time stability. The in situ DRIFT results showed that the Mn0.15Ce0.85O2 catalyst has a robust oxidation capability as toluene is quickly adsorbed and actuated as compared to CeO2. Thus, the present work lays the foundation for designing a highly active catalyst for toluene elimination from the environment.


Asunto(s)
Óxidos , Oxígeno , Temperatura , Oxidación-Reducción , Catálisis , Tolueno
13.
Mikrochim Acta ; 190(10): 414, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749328

RESUMEN

A novel electrochemical method has been developed, based on a covalent organic framework (COF) and reduced graphene oxide (rGO), to detect fentanyl and alfentanil. COF nanomaterials with chrysanthemum morphology obtained by solvothermal reaction contain rich active sites for electrochemical catalytic reaction, thus improving the detection performance of the designed sensor. Reduced graphene oxide improves the sensor's sensitivity due to enhanced electron transfer. Under optimized experimental conditions, the fabricated electrode presents a linear range of 0.02 to 7.26 µM for alfentanil and 0.1 to 6.54 µM for fentanyl, with detection limits of 6.7 nM and 33 nM, respectively. In addition, the sensor possesses excellent selectivity, outstanding reproducibility, and acceptable stability. The proposed sensor is feasible for the reliable monitoring of fentanyl and alfentanil in human serum samples, with acceptable reliability and high potential in real-world applications. Finally, the electrochemical characteristic fingerprint of fentanyl is investigated by studying the electrochemical behavior of alfentanil and fentanyl on the electrode surface.


Asunto(s)
Técnicas Biosensibles , Fentanilo , Humanos , Alfentanilo , Reproducibilidad de los Resultados , Límite de Detección , Técnicas Biosensibles/métodos
14.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834027

RESUMEN

This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry. The BHT-TMZ compound derived from molecular hybridization, known as LQFM289, has shown promising results in early trials, and this study aims to elucidate its electrochemical properties to further support its potential as a therapeutic agent. The electrochemical behavior of LQFM289 was investigated using voltammetry and a mechanism for the redox process was proposed based on the compound's behavior. LQFM289 exhibits two distinct oxidation peaks: the first peak, Ep1a ≈ 0.49, corresponds to the oxidation of the phenolic fraction (BHT), and the second peak, Ep2a ≈ 1.2 V (vs. Ag/AgCl/KClsat), denotes the oxidation of the amino group from morpholine. Electroanalysis was used to identify the redox potentials of the compound, providing insight into its reactivity and stability in different environments. A redox mechanism was proposed based on the resulting peak potentials. The DFT calculation elucidates the electronic structure of LQFM289, resembling the precursors of molecular hybridization (BHT and TMZ), which may also dictate the pharmacophoric performance.


Asunto(s)
Antioxidantes , Morfolinas , Antioxidantes/química , Oxidación-Reducción , Ansiedad
15.
J Sci Food Agric ; 103(15): 7747-7756, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37439124

RESUMEN

BACKGROUND: Improper stunning methods before slaughter could cause fish to deteriorate more quickly during cold storage. However, it is unclear how stunning methods affect the mitochondrial structure and the role of mitochondria in oxidation in muscle-based food. RESULTS: This study explored the potential mechanism of oxidation induced by different stunning methods (hit on the head, T1 ; gill cut, T2 ; immersion in ice/water slurry, T3 ; CO2 asphyxiated, T4 ; 40% CO2 + 30% N2 + 30% O2 , T5 ) in large yellow croaker during cold storage. The results showed that T4 samples had the minimum stress response and the mitochondrial membrane potential and permeability were less damaged. Besides, the mitochondrial functional structure and peroxisome of T4 samples were less damaged compared with other samples, which was reflected in higher total superoxide dismutase, catalase and glutathione peroxidase activities. In terms of oxidation indices, the T4 samples showed higher pH values and iron myoglobin contents and lower total volatile basic nitrogen and thiobarbituric acid reactive substances after 168 h cold storage, indicating that the T4 samples significantly maintained oxidative stability of large yellow croaker. CONCLUSION: The CO2 asphyxiation had the least oxidative damage to large yellow croaker during cold storage, possibly because it had the least effect on mitochondrial structure, reactive oxygen species and antioxidant enzyme activity. © 2023 Society of Chemical Industry.


Asunto(s)
Dióxido de Carbono , Perciformes , Animales , Oxidación-Reducción , Antioxidantes/metabolismo , Mitocondrias/metabolismo
16.
Angew Chem Int Ed Engl ; 62(24): e202301408, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36942469

RESUMEN

The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2 O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst.

17.
Arch Biochem Biophys ; 722: 109169, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35276213

RESUMEN

Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of four additional MnLOX have provided information on the metal centre, substrate binding, oxygenation, tentative O2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labelled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat.


Asunto(s)
Hierro , Oryza , Ciclopentanos , Peróxido de Hidrógeno , Hierro/química , Lipooxigenasa/metabolismo , Oryza/metabolismo , Oxilipinas
18.
Environ Sci Technol ; 56(23): 17278-17287, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36335508

RESUMEN

Pt-based catalysts have attracted widespread attention in environmental protection applications, especially in the catalytic destruction of light alkane pollutants. However, developing a satisfying platinum catalyst with high activity, excellent water-resistance, and practical suitability for hydrocarbon combustion at low temperature is challenging. In this study, the Pt catalyst supported on the selected Nb2O5 oxide exhibited an efficient catalytic activity in propane oxidation and exceeded that of most catalysts reported in the literature. More importantly, the Pt/Nb2O5 catalyst maintained excellent activity and durability even after high-temperature aging at 700 °C and under harsh working conditions, such as a certain degree of moisture, high space velocity, and composite pollutants. The excellent performance of the Pt/Nb2O5 catalyst was attributed to the abundant metallic Pt species stabilized on the surface of Nb2O5, which prompted the C-H bond dissociation ability as the rate-determining step. Furthermore, propane was initially activated via oxidehydrogenation and followed the acrylate species path as a more efficient propane oxidation path on the Pt/Nb2O5 surface. Overall, Pt/Nb2O5 can be considered a promising catalyst for the catalytic oxidation of alkanes from industrial sources and could provide inspiration for designing superb catalysts for the oxidation of light alkanes.

19.
Environ Sci Technol ; 56(12): 8722-8732, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35579250

RESUMEN

Photothermal synergistic catalytic oxidation of toluene over single-atom Pt catalysts was investigated. Compared with the conventional thermocatalytic oxidation in the dark, toluene conversion and CO2 yield over 0.39Pt1/CuO-CeO2 under simulated solar irradiation (λ = 320-2500 nm, optical power density = 200 mW cm-2) at 180 °C could be increased about 48%. An amount of CuO was added to CeO2 to disperse single-atom Pt with a maximal Pt loading of 0.83 wt %. The synergistic effect between photo- and thermocatalysis is very important for the development of new pollutant treatment technology with high efficiency and low energy consumption. Both light and heat played an important role in the present photothermal synergistic catalytic oxidation. 0.39Pt1/CuO-CeO2 showed good redox performance and excellent optical properties and utilized the full-spectrum solar energy. Light illumination induced the generation of reactive oxygen species (•OH and •O2-), which accelerated the transformation of intermediates, promoted the release of active sites on the catalyst surface, and improved the oxidation reaction.

20.
Environ Sci Technol ; 55(24): 16617-16626, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34870981

RESUMEN

O2 and H2O influence the photocatalytic oxidation mechanism of gaseous monoaromatics, but still in an unclear manner, due to the lack of direct evidence. Tracing an oxygen atom from 16O2 and H218O to intermediates can clarify their roles. The low H218O content suppressed the formation of benzenedicarboxaldehydes during the oxidation of xylenes and 16O2 greatly affected the yield of total intermediates, while neither of them altered the percentage order of the products. Methylbenzaldehydes, methylbenzyl alcohols, and benzenedicarboxaldehydes possessed greater 16O percentage (≥69.49%), while higher 18O distribution was observed in methylbenzoic acids and phthalide (≥59.51%). Together with the interconversion results of the products revealed, 16O2 determined the transformation of xylenes initially to methylbenzaldehydes and then to methylbenzyl alcohols or benzenedicarboxaldehydes, while H218O mainly contributed to conversion of methylbenzaldehydes to methylbenzoic acids or phthalide. Further interaction sites of xylene and its products with H2O and O2 were confirmed by molecular dynamics calculations. The same roles of 16O2 and H218O in the degradation of toluene, ethylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene were also verified. This is the first report that provides direct evidence for the roles of O2 and H2O in the photocatalytic oxidation mechanism of gaseous monoaromatics. These findings are helpful to achieve controllable product formation from the oxidation of monoaromatics and predict their migration process in the atmospheric environment.


Asunto(s)
Gases , Oxígeno , Oxidación-Reducción , Isótopos de Oxígeno , Xilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA