Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155399

RESUMEN

PURPOSE: Myocardial T1ρ mapping techniques commonly acquire multiple images in one breathhold to calculate a single-slice T1ρ map. Recently, non-selective adiabatic pulses have been used for robust spin-lock preparation (T1ρ,adiab). The objective of this study was to develop a fast multi-slice myocardial T1ρ,adiab mapping approach. METHODS: The proposed-sequence reduces the number of breathholds required for whole-heart 2D T1ρ,adiab mapping by acquiring multiple interleaved slices in each breathhold using slice-selective T1ρ,adiab preparation pulses. The proposed-sequence was implemented with two interleaved slices per breathhold scan and was quantitatively evaluated in phantom experiments and 10 healthy-volunteers against a single-slice T1ρ,adiab mapping sequence. The sequence was demonstrated in two patients with myocardial scar. RESULTS: The phantom experiments showed the proposed-sequence had slice-to-slice variation of 1.62% ± 1.05% and precision of 4.51 ± 0.68 ms. The healthy volunteer cohort subject-wise mean relaxation time was lower for the proposed-sequence than the single-slice sequence (137.7 ± 5.3 ms vs. 148.4 ± 8.3 ms, p < 0.001), and spatial-standard-deviation was better (18.7 ± 1.8 ms vs. 21.8 ± 3.4 ms, p < 0.018). The mean within-subject, coefficient of variation was 5.93% ± 1.57% for the proposed-sequence and 6.31% ± 1.92% for the single-slice sequence (p = 0.35) and the effect of slice variation (0.81 ± 4.87 ms) was not significantly different to zero (p = 0.61). In both patient examples increased T1ρ,adiab (maximum American Heart Association-segment mean = 174 and 197 ms) was measured within the myocardial scar. CONCLUSION: The proposed sequence provides a twofold acceleration for myocardial T1ρ,adiab mapping using a multi-slice approach. It has no significant difference in within-subject variability, and significantly better precision, compared to a 2D T1ρ,adiab mapping sequence based on non-selective adiabatic spin-lock preparations.

2.
Magn Reson Med ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014982

RESUMEN

PURPOSE: To develop a self-supervised learning method to retrospectively estimate T1 and T2 values from clinical weighted MRI. METHODS: A self-supervised learning approach was constructed to estimate T1, T2, and proton density maps from conventional T1- and T2-weighted images. MR physics models were employed to regenerate the weighted images from the network outputs, and the network was optimized based on loss calculated between the synthesized and input weighted images, alongside additional constraints based on prior information. The method was evaluated on healthy volunteer data, with conventional mapping as references. The reproducibility was examined on two 3.0T scanners. Performance in tumor characterization was inspected by applying the method to a public glioblastoma dataset. RESULTS: For T1 and T2 estimation from three weighted images (T1 MPRAGE, T1 gradient echo sequences, and T2 turbo spin echo), the deep learning method achieved global voxel-wise error ≤9% in brain parenchyma and regional error ≤12.2% in six types of brain tissues. The regional measurements obtained from two scanners showed mean differences ≤2.4% and correlation coefficients >0.98, demonstrating excellent reproducibility. In the 50 glioblastoma patients, the retrospective quantification results were in line with literature reports from prospective methods, and the T2 values were found to be higher in tumor regions, with sensitivity of 0.90 and specificity of 0.92 in a voxel-wise classification task between normal and abnormal regions. CONCLUSION: The self-supervised learning method is promising for retrospective T1 and T2 quantification from clinical MR images, with the potential to improve the availability of quantitative MRI and facilitate brain tumor characterization.

3.
NMR Biomed ; 37(4): e5075, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38043545

RESUMEN

Renal pathologies often manifest as alterations in kidney size, providing a valuable avenue for employing dynamic parametric MRI as a means to derive kidney size measurements for the diagnosis, treatment, and monitoring of renal disease. Furthermore, this approach holds significant potential in supporting MRI data-driven preclinical investigations into the intricate mechanisms underlying renal pathophysiology. The integration of deep learning algorithms is crucial in achieving rapid and precise segmentation of the kidney from temporally resolved parametric MRI, facilitating the use of kidney size as a meaningful (pre)clinical biomarker for renal disease. To explore this potential, we employed dynamic parametric T2 mapping of the kidney in rats in conjunction with a custom-tailored deep dilated U-Net (DDU-Net) architecture. The architecture was trained, validated, and tested on manually segmented ground truth kidney data, with benchmarking against an analytical segmentation model and a self-configuring no new U-Net. Subsequently, we applied our approach to in vivo longitudinal MRI data, incorporating interventions that emulate clinically relevant scenarios in rats. Our approach achieved high performance metrics, including a Dice coefficient of 0.98, coefficient of determination of 0.92, and a mean absolute percentage error of 1.1% compared with ground truth. The DDU-Net enabled automated and accurate quantification of acute changes in kidney size, such as aortic occlusion (-8% ± 1%), venous occlusion (5% ± 1%), furosemide administration (2% ± 1%), hypoxemia (-2% ± 1%), and contrast agent-induced acute kidney injury (11% ± 1%). This approach can potentially be instrumental for the development of dynamic parametric MRI-based tools for kidney disorders, offering unparalleled insights into renal pathophysiology.


Asunto(s)
Aprendizaje Profundo , Compuestos Organofosforados , Triazoles , Animales , Ratas , Riñón/diagnóstico por imagen , Algoritmos , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador
4.
J Cardiovasc Magn Reson ; 26(2): 101065, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059610

RESUMEN

BACKGROUND: Quantitative myocardial tissue characterization with T1 and T2 parametric mapping can provide an accurate and complete assessment of tissue abnormalities across a broad range of cardiomyopathies. However, current clinical T1 and T2 mapping tools rely predominantly on two-dimensional (2D) breath-hold sequences. Clinical adoption of three-dimensional (3D) techniques is limited by long scan duration. The aim of this study is to develop and validate a time-efficient 3D free-breathing simultaneous T1 and T2 mapping sequence using multi-parametric SAturation-recovery and Variable-flip-Angle (mSAVA). METHODS: mSAVA acquires four volumes for simultaneous whole-heart T1 and T2 mapping. We validated mSAVA using simulations, phantoms, and in-vivo experiments at 3T in 11 healthy subjects and 11 patients with diverse cardiomyopathies. T1 and T2 values by mSAVA were compared with modified Look-Locker inversion recovery (MOLLI) and gradient and spin echo (GraSE), respectively. The clinical performance of mSAVA was evaluated against late gadolinium enhancement (LGE) imaging in patients. RESULTS: Phantom T1 and T2 by mSAVA showed a strong correlation to reference sequences (R2 = 0.98 and 0.99). In-vivo imaging with an imaging resolution of 1.5 × 1.5 × 8 mm3 could be achieved. Myocardial T1 and T2 of healthy subjects by mSAVA were 1310 ± 46 and 44.6 ± 2.0 ms, respectively, with T1 standard deviation higher than MOLLI (105 ± 12 vs 60 ± 16 ms) and T2 standard deviation lower than GraSE (4.5 ± 0.8 vs 5.5 ± 1.0 ms). mSAVA T1 and T2 maps presented consistent findings in patients undergoing LGE. Myocardial T1 and T2 of all patients by mSAVA were 1421 ± 79 and 47.2 ± 3.3 ms, respectively. CONCLUSION: mSAVA is a fast 3D technique promising for clinical whole-heart T1 and T2 mapping.

5.
Scand J Med Sci Sports ; 34(7): e14691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970442

RESUMEN

Quantifying movement coordination in cross-country (XC) skiing, specifically the technique with its elemental forms, is challenging. Particularly, this applies when trying to establish a bidirectional transfer between scientific theory and practical experts' knowledge as expressed, for example, in ski instruction curricula. The objective of this study was to translate 14 curricula-informed distinct elements of the V2 ski-skating technique (horizontal and vertical posture, lateral tilt, head position, upper body rotation, arm swing, shoulder abduction, elbow flexion, hand and leg distance, plantar flexion, ski set-down, leg push-off, and gliding phase) into plausible, valid and applicable measures to make the technique training process more quantifiable and scientifically grounded. Inertial measurement unit (IMU) data of 10 highly experienced XC skiers who demonstrated the technique elements by two extreme forms each (e.g., anterior versus posterior positioning for the horizontal posture) were recorded. Element-specific principal component analyses (PCAs)-driven by the variance produced by the technique extremes-resulted in movement components that express quantifiable measures of the underlying technique elements. Ten measures were found to be sensitive in distinguishing between the inputted extreme variations using statistical parametric mapping (SPM), whereas for four elements the SPM did not detect differences (lateral tilt, plantar flexion, ski set-down, and leg push-off). Applicability of the established technique measures was determined based on quantifying individual techniques through them. The study introduces a novel approach to quantitatively assess V2 ski-skating technique, which might help to enhance technique feedback and bridge the communication gap that often exists between practitioners and scientists.


Asunto(s)
Postura , Análisis de Componente Principal , Esquí , Esquí/fisiología , Humanos , Masculino , Postura/fisiología , Fenómenos Biomecánicos , Adulto , Movimiento/fisiología , Femenino , Adulto Joven , Brazo/fisiología , Hombro/fisiología , Rotación
6.
J Neuroeng Rehabil ; 21(1): 118, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003450

RESUMEN

BACKGROUND: How the joints exactly move and interact and how this reflects PD-related gait abnormalities and the response to dopaminergic treatment is poorly understood. A detailed understanding of these kinematics can inform clinical management and treatment decisions. The aim of the study was to investigate the influence of different gait speeds and medication on/off conditions on inter-joint coordination, as well as kinematic differences throughout the whole gait cycle in well characterized pwPD. METHODS: 29 controls and 29 PD patients during medication on, 8 of them also during medication off walked a straight walking path in slow, preferred and fast walking speeds. Gait data was collected using optical motion capture system. Kinematics of the hip and knee and coordinated hip-knee kinematics were evaluated using Statistical Parametric Mapping (SPM) and cyclograms (angle-angle plots). Values derived from cyclograms were compared using repeated-measures ANOVA for within group, and ttest for between group comparisons. RESULTS: PD gait differed from controls mainly by lower knee range of motion (ROM). Adaptation to gait speed in PD was mainly achieved by increasing hip ROM. Regularity of gait was worse in PD but only during preferred speed. The ratios of different speed cyclograms were smaller in the PD groups. SPM analyses revealed that PD participants had smaller hip and knee angles during the swing phase, and PD participants reached peak hip flexion later than controls. Withdrawal of medication showed an exacerbation of only a few parameters. CONCLUSIONS: Our findings demonstrate the potential of granular kinematic analyses, including > 1 joint, for disease and treatment monitoring in PD. Our approach can be extended to further mobility-limiting conditions and other joint combinations. TRIAL REGISTRATION: The study is registered in the German Clinical Trials Register (DRKS00022998, registered on 04 Sep 2020).


Asunto(s)
Dopaminérgicos , Enfermedad de Parkinson , Rango del Movimiento Articular , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Estudios de Casos y Controles , Fenómenos Biomecánicos , Persona de Mediana Edad , Anciano , Dopaminérgicos/uso terapéutico , Rango del Movimiento Articular/fisiología , Articulación de la Rodilla/fisiopatología , Marcha/fisiología , Marcha/efectos de los fármacos , Articulación de la Cadera/fisiopatología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Articulaciones/fisiopatología
7.
J Sports Sci ; 42(14): 1341-1354, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39136418

RESUMEN

The purpose was to determine the impact of both cognitive constraint and neuromuscular fatigue on landing biomechanics in healthy and chronic ankle instability (CAI) participants. Twenty-three male volunteers (13 Control and 10 CAI) performed a single-leg landing task before and immediately after a fatiguing exercise with and without cognitive constraints. Ground Reaction Force (GRF) and Time to Stabilization (TTS) were determined at landing in vertical, anteroposterior (ap) and mediolateral (ml) axes using a force plate. Three-dimensional movements of the hip, knee and ankle were recorded during landing using a motion capture system. Exercise-induced fatigue decreased ankle plantar flexion and inversion and increased knee flexion. Neuromuscular fatigue decreased vertical GRF and increased ml GRF and ap TTS. Cognitive constraint decreased ankle internal rotation and increased knee and hip flexion during the flight phase of landing. Cognitive constraint increased ml GRF and TTS in all three axes. No interaction between factors (group, fatigue, cognitive) were observed. Fatigue and cognitive constraint induced greater knee and hip flexion, revealing higher proximal control during landing. Ankle kinematic suggests a protective strategy in response to fatigue and cognitive constraints. Finally, these two constraints impair dynamic stability that could increase the risk of ankle sprain.


Asunto(s)
Articulación del Tobillo , Cognición , Inestabilidad de la Articulación , Extremidad Inferior , Fatiga Muscular , Humanos , Masculino , Inestabilidad de la Articulación/fisiopatología , Fenómenos Biomecánicos , Adulto Joven , Articulación del Tobillo/fisiopatología , Articulación del Tobillo/fisiología , Fatiga Muscular/fisiología , Extremidad Inferior/fisiología , Extremidad Inferior/fisiopatología , Cognición/fisiología , Rodilla/fisiología , Rodilla/fisiopatología , Adulto , Ejercicio Pliométrico , Tobillo/fisiología , Tobillo/fisiopatología , Estudios de Tiempo y Movimiento , Movimiento/fisiología , Traumatismos del Tobillo/fisiopatología , Articulación de la Rodilla/fisiología , Articulación de la Rodilla/fisiopatología , Articulación de la Cadera/fisiología , Articulación de la Cadera/fisiopatología
8.
J Sports Sci ; 42(6): 490-497, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38594887

RESUMEN

This study compared performance strategies and sub-technique selection in cross-country skate skiing sprint races, specifically individual time-trial (ITT) and head-to-head (H2H) formats. Fourteen male cross-country skiers from the Chinese national team participated in the FIS-sanctioned sprint race day. GNSS and heart rate sensors recorded positioning, skiing speeds, heart rate, sub-technique usage, and skiing kinematics. Statistical parametric mapping (SPM) was used to determine the course positions (clusters) where instantaneous skiing speed was significantly associated with section time. One-way analyses of variance were used to examine differences between the ITT and H2H. H2H race speeds were 2.4 ± 0.2% faster than the ITT race (p < 0.05).Variations in sub-technique and skiing kinematics were observed between race formats, indicating different strategies and tactics employed by athletes. SPM identified specific clusters (primarily uphill) where the fastest athlete gained significant time over the slowest. The greatest time gains were associated with higher G3 sub-technique usage and longer G3 cycle length on steep uphill terrain (9-13% gradients). Integrating SPM analyses and sub-technique assessments can help optimise performance and tactics in sprint races. This study enhances our understanding of cross-country skiing dynamics and performance variations among elite competitors.


Asunto(s)
Rendimiento Atlético , Conducta Competitiva , Frecuencia Cardíaca , Esquí , Humanos , Esquí/fisiología , Masculino , Rendimiento Atlético/fisiología , Fenómenos Biomecánicos , Frecuencia Cardíaca/fisiología , Conducta Competitiva/fisiología , Adulto , Adulto Joven , Sistemas de Información Geográfica , China
9.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001120

RESUMEN

Brugada Syndrome (BrS) is a primary electrical epicardial disease characterized by ST-segment elevation followed by a negative T-wave in the right precordial leads on the surface electrocardiogram (ECG), also known as the 'type 1' ECG pattern. The risk stratification of asymptomatic individuals with spontaneous type 1 ECG pattern remains challenging. Clinical and electrocardiographic prognostic markers are known. As none of these predictors alone is highly reliable in terms of arrhythmic prognosis, several multi-factor risk scores have been proposed for this purpose. This article presents a new workflow for processing endocardial signals acquired with high-density RV electro-anatomical mapping (HDEAM) from BrS patients. The workflow, which relies solely on Matlab software, calculates various electrical parameters and creates multi-parametric maps of the right ventricle. The workflow, but it has already been employed in several research studies involving patients carried out by our group, showing its potential positive impact in clinical studies. Here, we will provide a technical description of its functionalities, along with the results obtained on a BrS patient who underwent an endocardial HDEAM.


Asunto(s)
Síndrome de Brugada , Electrocardiografía , Flujo de Trabajo , Humanos , Síndrome de Brugada/fisiopatología , Electrocardiografía/métodos , Programas Informáticos , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Procesamiento de Señales Asistido por Computador
10.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257535

RESUMEN

BACKGROUND: In this observational study, we compared continuous physiological signals during an active standing test in adults aged 50 years and over, characterised as frail by three different criteria, using data from The Irish Longitudinal Study on Ageing (TILDA). METHODS: This study utilised data from TILDA, an ongoing landmark prospective cohort study of community-dwelling adults aged 50 years or older in Ireland. The initial sampling strategy in TILDA was based on random geodirectory sampling. Four independent groups were identified: those characterised as frail only by one of the frailty tools used (the physical Frailty Phenotype (FP), the 32-item Frailty Index (FI), or the Clinical Frailty Scale (CFS) classification tree), and a fourth group where participants were not characterised as frail by any of these tools. Continuous non-invasive physiological signals were collected during an active standing test, including systolic (sBP) and diastolic (dBP) blood pressure, as well as heart rate (HR), using digital artery photoplethysmography. Additionally, the frontal lobe cerebral oxygenation (Oxy), deoxygenation (Deoxy), and tissue saturation index (TSI) were also non-invasively measured using near-infrared spectroscopy (NIRS). The signals were visualised across frailty groups and statistically compared using one-dimensional statistical parametric mapping (SPM). RESULTS: A total of 1124 participants (mean age of 63.5 years; 50.2% women) were included: 23 were characterised as frail only by the FP, 97 by the FI, 38 by the CFS, and 966 by none of these criteria. The SPM analyses revealed that only the group characterised as frail by the FI had significantly different signals (p < 0.001) compared to the non-frail group. Specifically, they exhibited an attenuated gain in HR between 10 and 15 s post-stand and larger deficits in sBP and dBP between 15 and 20 s post-stand. CONCLUSIONS: The FI proved to be more adept at capturing distinct physiological responses to standing, likely due to its direct inclusion of cardiovascular morbidities in its definition. Significant differences were observed in the dynamics of cardiovascular signals among the frail populations identified by different frailty criteria, suggesting that caution should be taken when employing frailty identification tools on physiological signals, particularly the neurocardiovascular signals in an active standing test.


Asunto(s)
Fragilidad , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Estudios Longitudinales , Fragilidad/diagnóstico , Estudios Prospectivos , Envejecimiento , Proyectos de Investigación
11.
Hum Brain Mapp ; 44(2): 472-483, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36069128

RESUMEN

The aim of this study was to explore the influences of age-matched control and/or age-specific template on voxel-wise analysis of brain 18 F-fluorodeoxyglucose positron emission tomography (18 F-FDG PET) data in pediatric epilepsy patients. We, retrospectively, included 538 pediatric (196 females; age range of 12 months to 18 years) and 35 adult subjects (18 females; age range of 20-50 years) without any cerebral pathology as pediatric and adult control group, respectively, as well as 109 pediatric patients with drug-resistant epilepsy (38 females; age range of 13 months to 18 years) as epilepsy group. Statistical parametric mapping (SPM) analysis for 18 F-FDG PET data of each epilepsy patients was performed in four types of procedures, by using age-matched controls with age-specific template, age-matched controls with adult template, adult controls with age-specific template or adult controls with adult template. The numbers of brain regions affected by artifacts among these four types of SPM analysis procedures were further compared. Any template being adopted, the artifacts were significantly less in SPM analysis procedures using age-matched controls than those using adult controls in each age range (p < .001 in each comparison), except in the age range of 15-18 (p > .05 in each comparison). No significant difference was found in artifacts, when compared procedures using the identical control group with different templates (p = 1.000 in each comparison). In conclusion, the age stratification for age-matched control should be divided as many layers as possible for the SPM analysis of brain 18 F-FDG PET images, especially in pediatric patients ≤14-year-old, while age-specific template is not mandatory.


Asunto(s)
Epilepsia , Fluorodesoxiglucosa F18 , Adulto , Femenino , Humanos , Niño , Lactante , Adulto Joven , Persona de Mediana Edad , Adolescente , Fluorodesoxiglucosa F18/metabolismo , Estudios Retrospectivos , Epilepsia/diagnóstico por imagen , Epilepsia/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Mapeo Encefálico , Factores de Edad , Radiofármacos
12.
Magn Reson Med ; 89(4): 1557-1566, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36382769

RESUMEN

PURPOSE: To investigate model-fitted fractional myocardial blood volume (fMBV) derived from ferumoxytol-enhanced MRI as a measure of myocardial tissue hypoperfusion at rest. METHODS: We artificially induced moderate to severe focal coronary stenosis in the left anterior descending artery of 19 swine by percutaneous delivery of a 3D-printed coronary implant. Using the MOLLI pulse sequence, we acquired T1 maps at 3 T after multiple incremental ferumoxytol doses (0.0-4.0 mg/kg). We computed pixel-wise fMBV using a multi-compartmental modeling approach in 19 ischemic swine and 4 healthy swine. RESULTS: Ischemic myocardial segments showed a mean MRI-fMBV of 11.72 ± 3.00%, compared with 8.23 ± 2.12% in remote segments and 8.38 ± 2.23% in normal segments. Ischemic segments showed a restricted transvascular water-exchange rate (ki  = 15.32 ± 8.69 s-1 ) relative to remote segments (ki  = 17.78 [11.60, 26.36] s-1 ). A mixed-effects model found significant difference in fMBV (p = 0.002) and water-exchange rate (p < 0.001) between ischemic and remote myocardial regions after adjusting for biological sex and slice location. Analysis of fMBV as a predictor of impaired myocardial contractility using receiver operating characteristics showed an area under the curve of 0.89 (95% confidence interval [CI] 0.80, 0.95). An MRI-fMBV threshold of 9.60% has a specificity of 90.0% (95% CI 76.3, 97.2) and a sensitivity of 72.5% (95% CI 56.1, 83.4) for prediction of impaired myocardial contractility. CONCLUSIONS: Model-fitted fMBV derived from ferumoxytol-enhanced MRI can distinguish regions of ischemia from remote myocardium in a swine model of myocardial hypoperfusion.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Animales , Porcinos , Óxido Ferrosoférrico , Miocardio , Isquemia Miocárdica/diagnóstico por imagen , Imagen por Resonancia Magnética , Volumen Sanguíneo , Isquemia , Agua
13.
Magn Reson Med ; 90(3): 922-938, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37103471

RESUMEN

PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Corazón/diagnóstico por imagen , Electrocardiografía , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Imagenología Tridimensional/métodos
14.
J Magn Reson Imaging ; 58(2): 486-495, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36354274

RESUMEN

BACKGROUND: In Duchenne muscular dystrophy (DMD), the right ventricle (RV) tends to be relatively well preserved, but characterization remains difficult due to its complex architecture. Tissue phase mapping (TPM) is a phase contrast cine MRI technique that allows for multidirectional assessment of myocardial velocities. PURPOSE: To use TPM to elucidate relationships between myocardial structure, function, and clinical variables in DMD. STUDY TYPE: Retrospective. SUBJECTS: A total of 20 patients with muscular dystrophy (median age: 16 years); 18 age-matched normal controls (median age: 15 years). FIELD STRENGTH/SEQUENCE: Three-directional velocity encoded cine gradient echo sequence (TPM) at 1.5 T, balanced steady-state free procession (bSSFP), T1 mapping with extracellular volume (ECV), and late gadolinium enhancement (LGE). ASSESSMENT: TPM in basal, mid, and apical short-axis planes was performed as part of a standard MRI study with collection of clinical data. Radial, circumferential, and longitudinal velocities (Vr, Vφ, and Vz, respectively) and corresponding time to peak (TTP) velocities were quantified from TPM and used to calculate RV twist as well as intraventricular and interventricular dyssynchrony. The correlations between TPM velocities, myocardial structure/function, and clinical variables were assessed. STATISTICAL TEST: Unpaired t-test, Wilcoxon rank-sum test, Bland-Altman analyses were used for comparisons between DMD patients and controls and between DMD subgroups. Pearson's test was used for correlations (r). Significance level: P < 0.05. RESULTS: Compared to controls, DMD patients had preserved RV ejection fraction (RVEF 53% ± 8%) but significantly increased interventricular dyssynchrony (Vφ: 0.49 ± 0.21 vs. 0.72 ± 0.17). Within the DMD cohort, RV dyssynchrony significantly increased with lower LV ejection fraction (intraventricular Vr and Vz: r = -0.49; interventricular Vz: r = 0.48). In addition, RV intraventricular dyssynchrony significantly increased with older age (Vz: r = 0.67). DATA CONCLUSION: RV remodeling in DMD occurs in the context of preserved RVEF. Within DMD, this abnormal RV deformation is associated with older age and decreased LVEF. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Cardiopatías , Distrofia Muscular de Duchenne , Humanos , Adolescente , Distrofia Muscular de Duchenne/diagnóstico por imagen , Estudios Retrospectivos , Medios de Contraste , Remodelación Ventricular , Gadolinio , Imagen por Resonancia Magnética/métodos , Volumen Sistólico , Función Ventricular Izquierda , Imagen por Resonancia Cinemagnética/métodos
15.
J Cardiovasc Magn Reson ; 25(1): 47, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37574535

RESUMEN

BACKGROUND: Parametric mapping sequences in cardiovascular magnetic resonance (CMR) allow for non-invasive myocardial tissue characterization. However quantitative myocardial mapping is still limited by the need for local reference values. Confounders, such as field strength, vendors and sequences, make intersite comparisons challenging. This exploratory study aims to assess whether multi-site studies that control confounding factors provide first insights whether parametric mapping values are within pre-defined tolerance ranges across scanners and sites. METHODS: A cohort of 20 healthy travelling volunteers was prospectively scanned at three sites with a 3 T scanner from the same vendor using the same scanning protocol and acquisition scheme. A Modified Look-Locker inversion recovery sequence (MOLLI) for T1 and a fast low-angle shot sequence (FLASH) for T2 were used. At one site a scan-rescan was performed to assess the intra-scanner reproducibility. All acquired T1- and T2-mappings were analyzed in a core laboratory using the same post-processing approach and software. RESULTS: After exclusion of one volunteer due to an accidentally diagnosed cardiac disease, T1- and T2-maps of 19 volunteers showed no significant differences between the 3 T sites (mean ± SD [95% confidence interval] for global T1 in ms: site I: 1207 ± 32 [1192-1222]; site II: 1207 ± 40 [1184-1225]; site III: 1219 ± 26 [1207-1232]; p = 0.067; for global T2 in ms: site I: 40 ± 2 [39-41]; site II: 40 ± 1 [39-41]; site III 39 ± 2 [39-41]; p = 0.543). CONCLUSION: Parametric mapping results displayed initial hints at a sufficient similarity between sites when confounders, such as field strength, vendor diversity, acquisition schemes and post-processing analysis are harmonized. This finding needs to be confirmed in a powered clinical trial. Trial registration ISRCTN14627679 (retrospectively registered).


Asunto(s)
Imagen por Resonancia Magnética , Voluntarios , Humanos , Berlin , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas , Voluntarios Sanos , Espectroscopía de Resonancia Magnética
16.
J Cardiovasc Magn Reson ; 25(1): 44, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37517994

RESUMEN

BACKGROUND: Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD). Cardiac magnetic resonance (CMR) parametric mapping sequences offer insights into disease pathophysiology. We propose a novel approach by leveraging T2 mapping in conjunction with T1 and extracellular volume (ECV) mapping to perform a virtual myocardial biopsy. While previous work has attempted to describe myocardial changes in DMD, our inclusion of T2 mapping enables comprehensive categorization of myocardial tissue characteristics of fibrosis, edema, and fat to better understand the pathological composition of the myocardium with disease progression. METHODS: DMD patients (n = 49; median: 12 years-old) underwent CMR, including T1, T2, and ECV. Categories were defined as normal, isolated high T1 (normal ECV, high T1, normal T2), fibrosis (high ECV, normal or high T1, normal T2), edema (normal or high ECV, normal or high T1, high T2), fat (normal ECV, low T1, high T2) or fibrofatty (high ECV, low T1, high T2). RESULTS: Median left ventricular ejection fraction (LVEF) was 59% with 27% having LVEF < 55%. Those with normal LVEF and no late gadolinium enhancement (37%) were younger in age (10.5 ± 2.6 vs. 15.0 ± 4.3 years-old, p < 0.001). Native T1 was elevated in at least one slice in 82% of patients. Those with high T2 at any slice (27%) were older (p = 0.005) and had lower LVEF (p = 0.005) compared with subjects with normal T2 (73%). The most common myocardial characterization was fibrosis (43%) followed by isolated high T1 (24%). Of the 13 with high T2, ten were categorized as edema, two as fibrofatty, and one as fat. CONCLUSION: CMR parametric mapping sequences offer insights into Duchenne cardiomyopathy pathophysiology, which should drive development of therapeutic interventions aimed at these targets. Myocardial fibrosis is common in DMD. Patients with elevated T2 were older and had lower LVEF. Though fat infiltration was present, the majority of subjects with elevated T2 met criteria for myocardial edema.


Asunto(s)
Cardiomiopatías , Medios de Contraste , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Volumen Sistólico , Función Ventricular Izquierda , Imagen por Resonancia Cinemagnética/efectos adversos , Valor Predictivo de las Pruebas , Gadolinio , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/etiología , Cardiomiopatías/patología , Miocardio/patología , Fibrosis , Espectroscopía de Resonancia Magnética
17.
J Cardiovasc Magn Reson ; 25(1): 63, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946191

RESUMEN

BACKGROUND: T1, T2 and T1ρ are well-recognized parameters for quantitative cardiac MRI. Simultaneous estimation of these parameters allows for comprehensive myocardial tissue characterization, such as myocardial fibrosis and edema. However, conventional techniques either quantify the parameters individually with separate breath-hold acquisitions, which may result in unregistered parameter maps, or estimate multiple parameters in a prolonged breath-hold acquisition, which may be intolerable to patients. We propose a free-breathing multi-parametric mapping (FB-MultiMap) technique that provides co-registered myocardial T1, T2 and T1ρ maps in a single efficient acquisition. METHODS: The proposed FB-MultiMap performs electrocardiogram-triggered single-shot Cartesian acquisition over 16 consecutive cardiac cycles, where inversion, T2 and T1ρ preparations are introduced for varying contrasts. A diaphragmatic navigator was used for prospective through-plane motion correction and the in-plane motion was corrected retrospectively with a group-wise image registration method. Quantitative mapping was conducted through dictionary matching of the motion corrected images, where the subject-specific dictionary was created using Bloch simulations for a range of T1, T2 and T1ρ values, as well as B1 factors to account for B1 inhomogeneities. The FB-MultiMap was optimized and validated in numerical simulations, phantom experiments, and in vivo imaging of 15 healthy subjects and six patients with suspected cardiac diseases. RESULTS: The phantom T1, T2 and T1ρ values estimated with FB-MultiMap agreed well with reference measurements with no dependency on heart rate. In healthy subjects, FB-MultiMap T1 was higher than MOLLI T1 mapping (1218 ± 50 ms vs. 1166 ± 38 ms, p < 0.001). The myocardial T2 and T1ρ estimated with FB-MultiMap were lower compared to the mapping with T2- or T1ρ-prepared 2D balanced steady-state free precession (T2: 41.2 ± 2.8 ms vs. 42.5 ± 3.1 ms, p = 0.06; T1ρ: 45.3 ± 4.4 ms vs. 50.2 ± 4.0, p < 0.001). The pathological changes in myocardial parameters measured with FB-MultiMap were consistent with conventional techniques in all patients. CONCLUSION: The proposed free-breathing multi-parametric mapping technique provides co-registered myocardial T1, T2 and T1ρ maps in 16 heartbeats, achieving similar mapping quality to conventional breath-hold mapping methods.


Asunto(s)
Corazón , Miocardio , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Valor Predictivo de las Pruebas , Miocardio/patología , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados
18.
MAGMA ; 36(3): 513-523, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36574163

RESUMEN

OBJECTIVE: The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T. MATERIALS AND METHODS: Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects. RESULTS: In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s. CONCLUSION: It is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Humanos , Imagen por Resonancia Magnética/métodos , Abdomen , Hígado/diagnóstico por imagen , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
19.
Scand J Med Sci Sports ; 33(7): 1104-1115, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36811255

RESUMEN

Predictors and mitigators of strain injuries have been studied in sprint-related sports. While the rate of axial strain, and thus running speed, may determine the site of muscle failure, muscle excitation seemingly offers protection against failure. It seems therefore plausible to ask whether running at different speeds changes the distribution of excitation within muscles. Technical limitations undermine, however, the possibility of addressing this issue in high-speed, ecological conditions. Here, we circumvent these limitations with a miniaturized, wireless, multi-channel amplifier, suited for collecting spatio-temporal data and high-density surface electromyograms (EMGs) during overground running. We segmented running cycles while 8 experienced sprinters ran at speeds close to (70% and 85%) and at (100%) their maximum, over an 80 m running track. Then, we assessed the effect of running speed on the distribution of excitation within biceps femoris (BF) and gastrocnemius medialis (GM). Statistical parametric mapping (SPM) revealed a significant effect of running speed on the amplitude of EMGs for both muscles, during late swing and early stance. Paired SPM revealed greater EMG amplitude when comparing 100% with 70% running speed for BF and GM. Regional differences in excitation were observed only for BF, however. As running speed increased from 70% to 100% of the maximum, a greater degree of excitation was observed at more proximal BF regions (from 2% to 10% of the thigh length) during late swing. We discuss how these results, in the context of the literature, support the protective role of pre-excitation against muscle failure, suggesting the site of BF muscle failure may depend on running speed.


Asunto(s)
Músculos Isquiosurales , Carrera , Humanos , Músculos Isquiosurales/fisiología , Músculo Esquelético/fisiología , Electromiografía , Carrera/fisiología
20.
Scand J Med Sci Sports ; 33(6): 943-953, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36756770

RESUMEN

The altitude differential of the specific mechanical energy, diff e mech , is used to evaluate skiing performance. It is defined as the negative differential between the skier's total specific mechanical energy ( e mech ) and the altitude of the skier's center of mass (COM). Till now, e mech was obtained upon a mass-point (MP) model of the skier's COM, which neither considered the segmental energies of their relative movements to the COM, nor their rotational kinetic energies. The aims of the study were therefore: (a) to examine the deviations in diff e mech between the MP and a more complex linked segment (LS) skier model consisting of 15 rigid bodies, which encountered the aforementioned defectiveness, (b) to compare the energy fluctuations of the two skier models, and (c) to investigate the influence of the gate setup on (a) and (b) in giant slalom. Three-dimensional whole-body kinematics of nine skiers was measured using a global navigation satellite system and an inertial motion capture system while skiing on a predefined course divided into a turny and open gate setup. Mechanical energies including their altitude differentials were calculated for the LS and MP models. There were no significant differences in e mech and diff e mech ski turn averages, as in individual data points, between both skier models for both analyzed gate setups. The energies additionally considered by the LS model presented a negligible part regardless of the gate setup. In conclusion, the MP skier model is sufficiently accurate for the evaluation of the skiing performance with diff e mech .


Asunto(s)
Esquí , Humanos , Fenómenos Biomecánicos , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA