Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Exp Appl Acarol ; 93(1): 155-167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600348

RESUMEN

Some predators prefer to settle on leaf patches with microstructures (e.g., trichomes and domatia), leaving traces on the patches. Herbivorous arthropods, in turn, select leaf patches in response to these traces left by predators. It remains unclear whether traces of predators on leaf patches affect the distribution of herbivorous prey within plants through plant microstructure. Therefore, we examined the distribution of herbivorous mite (Tetranychus urticae) and predatory mite (Phytoseiulus persimilis) by investigating their oviposition pattern. We used a kidney bean plant (Phaseolus vulgaris) with two expanded primary leaves and the first trifoliate leaf, focusing on leaf trichomes as the microstructure. The density of trichomes was higher on the first trifoliate leaf than on the primary leaves and on the abaxial surface of the leaves than on the adaxial surface. Adult female P. persimilis laid more eggs on the first trifoliate leaf to the primary leaves. Although adult female T. urticae preferred to oviposit on the abaxial surface of primary leaves, previous exposure of plants to predators diminished this preference. The altered egg distribution would be a response to the traces of P. persimilis rather than eggs of P. persimilis. Our findings indicate that T. urticae reproduces on leaf patches with traces of predators without altering their oviposition preference. Given that the presence of predator traces is known to reduce the reproduction of T. urticae, it may have a substantial effect on the population of T. urticae in the next generations on kidney bean plants.


Asunto(s)
Herbivoria , Ácaros , Oviposición , Phaseolus , Hojas de la Planta , Conducta Predatoria , Tetranychidae , Tricomas , Animales , Phaseolus/fisiología , Hojas de la Planta/fisiología , Femenino , Ácaros/fisiología , Tricomas/fisiología , Tetranychidae/fisiología , Cadena Alimentaria , Distribución Animal
2.
Biol Lett ; 19(2): 20220411, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789529

RESUMEN

Change in land configuration is an important driver of pollinator decline. Understanding patch selection by bees in fragmented landscapes has therefore become imperative to guide the design of habitats that support pollinators and ensure their conservation. This is especially true for solitary bees that make up most bee species in the world. To elucidate the decision-making process of a solitary bee when selecting patches, we tested four models of patch attractiveness that differed in the role of patch size and isolation distance in the selection process. In these models, bees used both patch size and patch distance, only patch distance, or chose randomly among patches. When patch size was included, bees could estimate patch resources fully or partially. An experiment with a centre patch, surrounded by four peripheral patches of different sizes and distances from the centre, provided observed transition data to test against predictions derived from each of the models. The alfalfa leafcutting bee, Megachile rotundata, does not move randomly among patches. This bee uses both patch size and isolation distance when selecting a patch but can only evaluate patch resources partially. This knowledge can guide the design of habitats in fragmented landscapes to facilitate solitary bee conservation.


Asunto(s)
Ecosistema , Polinización , Abejas , Animales
3.
J Theor Biol ; 484: 110002, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31513801

RESUMEN

The dispersal of individuals within an animal population will depend upon local properties intrinsic to the environment that differentiate superior from inferior regions as well as properties of the population. Competing concerns can either draw conspecifics together in aggregation, such as collective defence against predators, or promote dispersal that minimizes local densities, for instance to reduce competition for food. In this paper we consider a range of models of non-independent movement. We include established models, such as the ideal free distribution, but also develop novel models, such as the wheel. We also develop several ways to combine different models to create a flexible model of addressing a variety of dispersal mechanisms. We further devise novel measures of movement coordination and show how to generate a population movement that achieves appropriate values of the measure specified. We find the value of these measures for each of the core models described, as well as discuss their use, and potential limitations, in discerning the underlying movement mechanisms. The movement framework that we develop is both of interest as a stand-alone process to explore movement, but also able to generate a variety of movement patterns that can be embedded into wider evolutionary models where movement is not the only consideration.


Asunto(s)
Distribución Animal , Modelos Biológicos , Animales , Evolución Biológica , Ecosistema , Movimiento , Dinámica Poblacional
4.
Oecologia ; 180(2): 305-11, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26116266

RESUMEN

Foraging theory predicts which prey patches predators should target. However, in most habitats, what constitutes a 'patch' and how prey density is calculated are subjective concepts and depend on the spatial scale at which the predator (or scientist) is observing. Moreover, the predator's 'foraging scale' affects prey population dynamics: predators should produce directly density-dependent (DDD) prey mortality at the foraging scale, but inversely density-dependent (IDD) mortality (safety-in-numbers) at smaller scales. We performed the first experimental test of these predictions using behavioral assays with guppies (Poecilia reticulata) feeding on bloodworm 'prey' patches. The guppy's foraging scale had already been estimated in a prior study. Our experimental results confirmed theoretical predictions: predation was IDD when prey were aggregated at a scale smaller than the foraging scale, but not when prey were aggregated at larger scales. These results could be used to predict outcomes of predator-prey interactions in continuous, non-discrete habitats in the field.


Asunto(s)
Ecosistema , Mortalidad , Poecilia/fisiología , Conducta Predatoria , Animales , Cadena Alimentaria , Densidad de Población , Dinámica Poblacional
5.
Ecol Lett ; 17(8): 924-31, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24811575

RESUMEN

The restricted area of space used by most mobile animals is thought to result from fitness-rewarding decisions derived from gaining information about the environment. Yet, assessments of how animals deal with uncertainty using memory have been largely theoretical, and an empirically derived mechanism explaining restricted space use in animals is still lacking. Using a patch-to-patch movement analysis, we investigated predictions of how free-ranging bison (Bison bison) living in a meadow-forest matrix use memory to reduce uncertainty in energy intake rate. Results indicate that bison remembered pertinent information about location and quality of meadows, and they used this information to selectively move to meadows of higher profitability. Moreover, bison chose profitable meadows they had previously visited, and this choice was stronger after visiting a relatively poor quality meadow. Our work demonstrates a link between memory, energy gains and restricted space use while establishing a fitness-based integration of movement, cognitive and spatial ecology.


Asunto(s)
Adaptación Fisiológica/fisiología , Bison/fisiología , Ambiente , Conducta Alimentaria/fisiología , Memoria/fisiología , Modelos Biológicos , Animales , Femenino , Estaciones del Año
6.
Ecol Evol ; 8(21): 10569-10577, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30464828

RESUMEN

Many insect species have limited sensory abilities and may not be able to perceive the quality of different resource types while approaching patchily distributed resources. These restrictions may lead to differences in selection rates between separate patches and between different resource types within a patch, which may have consequences for associational effects between resources. In this study, we used an oviposition assay containing different frequencies of apple and banana substrates divided over two patches to compare resource selection rates of wild-type Drosophila melanogaster at the between- and within-patch scales. Next, we compared the wild-type behavior with that of the olfactory-deficient strain Orco 2 and the gustatory-deficient strain Poxn ΔM22-B5 and found comparable responses to patch heterogeneity and similarly strong selection rates for apple at both scales for the wild-type and olfactory-deficient flies. Their oviposition behavior translated into associational susceptibility for apple and associational resistance for banana. The gustatory-deficient flies, on the other hand, no longer had a strong selection rate for apple, strongly differed in between- and within-patch selection rates from the wild-type flies, and caused no associational effects between the resources. Our study suggests that differences in sensory capabilities can affect resource selection at different search behavior scales in different ways and in turn underlie associational effects between resources at different spatial scales.

7.
Ecol Evol ; 6(16): 5843-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27547359

RESUMEN

Recent models suggest that herbivores optimize nutrient intake by selecting patches of low to intermediate vegetation biomass. We assessed the application of this hypothesis to plains bison (Bison bison) in an experimental grassland managed with fire by estimating daily rates of nutrient intake in relation to grass biomass and by measuring patch selection in experimental watersheds in which grass biomass was manipulated by prescribed burning. Digestible crude protein content of grass declined linearly with increasing biomass, and the mean digestible protein content relative to grass biomass was greater in burned watersheds than watersheds not burned that spring (intercept; F 1,251 = 50.57, P < 0.0001). Linking these values to published functional response parameters, ad libitum protein intake, and protein expenditure parameters, Fryxell's (Am. Nat., 1991, 138, 478) model predicted that the daily rate of protein intake should be highest when bison feed in grasslands with 400-600 kg/ha. In burned grassland sites, where bison spend most of their time, availability of grass biomass ranged between 40 and 3650 kg/ha, bison selected foraging areas of roughly 690 kg/ha, close to the value for protein intake maximization predicted by the model. The seasonal net protein intake predicted for large grazers in this study suggest feeding in burned grassland can be more beneficial for nutrient uptake relative to unburned grassland as long as grass regrowth is possible. Foraging site selection for grass patches of low to intermediate biomass help explain patterns of uniform space use reported previously for large grazers in fire-prone systems.

8.
Oecologia ; 104(3): 297-300, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28307585

RESUMEN

Langvatn and Hanley (1993) recently reported that patch use by red deer (Cervus elaphus) was more strongly correlated with short term rates of intake of digestible protein than dry matter. Such short term measures overlook effects of gut filling, which may constrain intake by ruminants over longer time scales (i.e., daily rates of gain). We reanalyzed Langvatn and Hanley's data using an energy intake model incorporating such a processing constraint, to determine whether their conclusions are robust. We found that the use of patches by red deer was just as strongly correlated with an estimate of the daily rate of intake of digestible energy as one of digestible protein during four out of seven trials, but slightly lower in three out of seven trials. In all cases, daily intake of digestible energy was a much better predictor of patch preference by red deer than was the intake of dry matter. Our reanalysis suggests that the daily intake of energy was highly correlated with that of protein in these trials, as may often be the case for herbivores feeding on graminoids. Hence the observed pattern of patch use by red deer could simultaneously enhance rates of both protein and energy intake.

9.
Oecologia ; 120(2): 258-267, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28308087

RESUMEN

Sexual segregation in Soay sheep (Ovis aries) was investigated using an experimental approach in order to test the sexual dimorphism-body size hypothesis. Two corollaries of the sexual dimorphism-body size hypothesis were tested: (1) in dimorphic species males, the larger sex, have relatively smaller bite sizes on short swards because of the scaling of incisor arcade with body weight, and (2) they move off earlier to feed on taller but poorer-quality swards when such swards are patchily distributed on a scale which enables the spatial segregation of individuals. Patch choice between sexes was estimated using a matrix of grass patches which differed in both quality and biomass of grass on offer (HQ: high-quality-low-biomass; LQ: low-quality-high-biomass). Sex differences in patch choice and grazing behaviour were tested in short-term preference trials. Incisor breadth showed no significant difference between sexes. On the other hand, muzzle width was dimorphic, with females having a narrower muzzle than males. Bite size was significantly different between the sexes, being smaller in females than in males, although it was not significantly different between sward types. Females had a higher bite rate than males and the bite rate was higher in the HQ sward type than the LQ sward type. When the effect of body mass was removed, no sex differences in muzzle size, bite size or bite rate were found. The intake rate did not differ between the sexes or between sward types. Whilst both sexes preferred the HQ sward type, females spent a significantly longer time feeding on the LQ sward type than did males. The difference detected between the sexes in patch choice was not consistent directly with the sexual dimorphism-body size hypothesis. Alternative explanations based on sex differences in foraging behaviour in relation to body mass sexual dimorphism are discussed to explain the result.

10.
Oecologia ; 121(3): 355-363, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28308324

RESUMEN

The notion that spatial scale is an important determinant of foraging selectivity and habitat utilization has only recently been recognized. We predicted and tested the effects of scale of patchiness on movements and selectivity of a large grazer in a controlled field experiment. We created random mosaics of short/high-quality and tall/low-quality grass patches in equal proportion at grid sizes of 2×2 m and 5×5 m. Subsequently, we monitored the foraging behaviour of four steers in 16 20×40 m plots over 30-min periods. As predicted on the basis of nutrient intake maximization, the animals selected the short patches, both by walking in a non-random manner and by additional selectivity for feeding stations. The tortuosity of foraging paths was similar at both scales of patchiness but selectivity was more pronounced in large patches than in small ones. In contrast, the number of bites per feeding station was not affected by patch size, suggesting that selection between and within feeding stations are essentially different processes. Mean residence time at individual feeding stations could not be successfully predicted on the basis of the marginal-value theorem: the animals stayed longer than expected, especially in the less profitable patch type. The distribution of the number of bites per feeding station suggests a constant probability to stay to feed or to move on to the next feeding station. This implies that the animals do not treat larger patches as discrete feeding stations but rather as a continuous resource. Our results have important implications for the application of optimal foraging theory in patchy environments. We conclude that selectivity in grazers is facilitated by large-scale heterogeneity, particularly by enhancing discrimination between feeding stations and larger selection units.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA