Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.881
Filtrar
Más filtros

Intervalo de año de publicación
1.
Clin Microbiol Rev ; 37(2): e0012423, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38775460

RESUMEN

SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.


Asunto(s)
COVID-19 , Máscaras , Infecciones del Sistema Respiratorio , SARS-CoV-2 , Humanos , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/transmisión , COVID-19/prevención & control , COVID-19/transmisión , Dispositivos de Protección Respiratoria/normas
2.
Rev Physiol Biochem Pharmacol ; 184: 121-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35266054

RESUMEN

Chitosan is a natural polysaccharide widespread in nature. It has many unique and attractive properties for the pharmaceutical field: it is biodegradable, safe, hypoallergenic, biocompatible with the body, free of toxicity, with proven anticholesterolemic, antibacterial, and antimycotic action. In this review we highlighted the physical, chemical, mechanical, mucoadhesive, etc. properties of chitosan to be taken into account when obtaining various pharmaceutical forms. The methods by which the pharmaceutical forms based on chitosan are obtained are very extensive, and in this study only the most common ones were presented.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Preparaciones Farmacéuticas
3.
Mass Spectrom Rev ; 43(3): 560-609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37503656

RESUMEN

The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.


Asunto(s)
Productos Biológicos , Descubrimiento de Drogas , Desarrollo de Medicamentos , Productos Biológicos/química , Espectrometría de Masas/métodos , Preparaciones Farmacéuticas
4.
Methods ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368764

RESUMEN

A stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed to assay tonabersat and assess its stability in pharmaceutical formulations. Chromatographic separation was achieved using a Kinetex® C18 column (2.6 µm, 150 x 3 mm, 100 Å) at 50 °C, with a 20 µL injection volume. A linear gradient of acetonitrile in water (5 - 33.5 %) was applied for 1 min, followed by a gradual increase to 100 % over 26 min at a flow rate of 0.5 mL/min. Tonabersat and its degradation products were detected at 275 nm and 210 nm, respectively. The optimized method was used to evaluate stability of tonabersat in lipid-based pharmaceutical formulations at 5 ±â€¯3 °C, 25 ±â€¯2°C/60 ±â€¯5 % RH, and 40 ±â€¯2 °C/75 ±â€¯5 % RH over 3 months. The method was validated as per ICH guidelines and demonstrated linearity in the range of 5 - 200 µg/mL (R2 = 0.99994) with good accuracy (98.25 - 101.58 % recovery) and precision (RSD < 2.5 %). The limit of detection and quantitation were 0.8 µg/mL and 5 µg/mL, respectively. Forced degradation studies showed significant degradation under alkaline (90.33 ±â€¯0.80 %), acidic (70.60 ±â€¯1.57 %), and oxidative stress (33.95 ±â€¯0.69 %) at 70 °C, but no degradation was observed under thermal or photolytic stress. No chemical degradation was observed in either formulation on storage. Thus, the method was sensitive, specific, and suitable for stability testing of tonabersat in pharmaceutical formulations.

5.
Mol Cell Proteomics ; 22(6): 100559, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105363

RESUMEN

The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).


Asunto(s)
Espectrometría de Masas , Sociedades Científicas , Humanos , China , Preparaciones Farmacéuticas , Proteómica , Estados Unidos
6.
BMC Genomics ; 25(1): 130, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302916

RESUMEN

BACKGROUND: Circadian rhythm is crucial to the function of the immune system. Disorders of the circadian rhythm can contribute to inflammatory diseases such as Ulcerative colitis (UC). This Mendelian Randomization (MR) analysis applies genetic tools to represent the aggregated statistical results of exposure to circadian rhythm disorders and UC and its comorbidities, allowing for causal inferences. METHODS: Summary statistics of protein, DNA methylation and gene expression quantitative trait loci in individuals of European ancestry (pQTL, mQTL, and eQTL, respectively) were used. Genetic variants located within or near 152 circadian clock-related genes and closely related to circadian rhythm disorders were selected as instrumental variables. Causal relationships with UC and its comorbidities were then estimated through employed Summary data-based Mendelian Randomization (SMR) and Inverse-Variance-Weighted MR (IVW-MR). RESULTS: Through preliminary SMR analysis, we identified a potential causal relationship between circadian clock-related genes and UC along with its comorbidities, which was further confirmed by IVW-MR analysis. Our study identified strong evidence of positive correlation involving seven overlapping genes (CSNK1E, OPRL1, PIWIL2, RORC, MAX, PPP5C, and AANAT) through MWAS and TWAS in UC, four overlapping genes (OPRL1, CHRNB2, FBXL17, and SIRT1) in UC with PSC, and three overlapping genes (ARNTL, USP7, and KRAS) in UC with arthropathy. CONCLUSIONS: This SMR study demonstrates the causal effect of circadian rhythm disorders in UC and its comorbidities. Furthermore, our investigation pinpointed candidate genes that could potentially serve as drug targets.


Asunto(s)
Trastornos Cronobiológicos , Relojes Circadianos , Colitis Ulcerosa , Humanos , Colitis Ulcerosa/genética , Relojes Circadianos/genética , Análisis de la Aleatorización Mendeliana , Comorbilidad , Estudio de Asociación del Genoma Completo , Peptidasa Específica de Ubiquitina 7 , Proteínas Argonautas
7.
BMC Biotechnol ; 24(1): 73, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367307

RESUMEN

BACKGROUND: Biotransformation of steroid compounds into therapeutic products using microorganisms offers an eco-friendly and economically sustainable approach to the pharmaceutical industry rather than a chemical synthesis way. The biotransformation efficiency of progesterone into the anticancer compound testololactone using Penicillium chrysogenum Ras3009 has been investigated. Besides, maximization of testololactone formation was achieved by studying the kinetic modelling and impact of some fermentation conditions on the biotransformation process. RESULTS: The fungal strain Ras3009 was selected among twelve fungal strains as the most runner for the transformation of 81.18% of progesterone into testololactone. Ras3009 was identified phenotypically and genotypically as Penicillium chrysogenum, its 18 S rRNA nucleotide sequence was deposited in the GenBank database by the accession number OR480104. Studying the impact of fermentation conditions on biotransformation efficiency indicated a positive correlation between substrate concentration and testololactone formation until reaching the maximum velocity vmax. Kinetic studies revealed that vmax was [Formula: see text] gL- 1hr- 1 with high accuracy, giving R2 of 0.977. The progesterone transformation efficiency generally increased with time, reaching a maximum of 100% at 42 h with testololactone yield (Ypt/s) 0.8700 mg/mg. Moreover, the study indicated that the enzymatic conversion by P. chrysogenum Ras3009 showed high affinity to the substrate, intracellularly expressed, and released during cell disruption, leading to higher efficiency when using whole microbial cell extract. CONCLUSIONS: Fungi can be promising biocatalysts for steroid transformation into valuable chemicals and pharmaceutical compounds. The study revealed that the new fungal isolate P. chrysogenum Ras3009 possesses a great catalytic ability to convert progesterone into testololactone. Kinetic modelling analysis and optimization of the fermentation conditions lead to higher transformation efficiency and provide a better understanding of the transformation processes.


Asunto(s)
Antineoplásicos , Biotransformación , Penicillium chrysogenum , Progesterona , Progesterona/metabolismo , Penicillium chrysogenum/metabolismo , Penicillium chrysogenum/genética , Cinética , Antineoplásicos/metabolismo , Fermentación
8.
BMC Plant Biol ; 24(1): 765, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39123105

RESUMEN

The present study focused on the physiological and biochemical aspects of Tricleocarpa fragilis, red seaweed belonging to the phylum Rhodophyta, along the South Andaman coast, with particular attention given to its symbiotic relationships with associated flora and fauna. The physicochemical parameters of the seawater at the sampling station, such as its temperature, pH, and salinity, were meticulously analyzed to determine the optimal harvesting period for T. fragilis. Seaweeds attach to rocks, dead corals, and shells in shallow areas exposed to moderate wave action because of its habitat preferences. Temporal variations in biomass production were estimated, revealing the highest peak in March, which was correlated with optimal seawater conditions, including a temperature of 34 ± 1.1 °C, a pH of 8 ± 0.1, and a salinity of 32 ± 0.8 psu. GC‒MS analysis revealed n-hexadecanoic acid as the dominant compound among the 36 peaks, with major bioactive compounds identified as fatty acids, diterpenes, phenolic compounds, and hydrocarbons. This research not only enhances our understanding of ecological dynamics but also provides valuable insights into the intricate biochemical processes of T. fragilis. The established antimicrobial potential and characterization of bioactive compounds from T. fragilis lay a foundation for possible applications in the pharmaceutical industry and other industries.


Asunto(s)
Rhodophyta , Algas Marinas , Rhodophyta/fisiología , Rhodophyta/metabolismo , Algas Marinas/fisiología , Algas Marinas/metabolismo , Agua de Mar/química , Ecosistema , Biomasa , Ácidos Grasos/metabolismo , Simbiosis/fisiología , Animales
9.
IUBMB Life ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283051

RESUMEN

This current investigation explored the thermal conversion process of castor wood into biochar, which was subsequently harnessed for removing naproxen from pharmaceutical industrial effluent via adsorption. Surface composition analyses conducted through scanning electron microscopy-energy dispersive X-ray, laser-induced breakdown spectroscopy, and Fourier-transform infrared studies unveiled the presence of nano MgO particles within the adsorbent material. Employing optimization techniques such as response surface methodology facilitated a refined approach to batch study. The optimized conditions for batch naproxen sodium (NPX) adsorption on nano-MgO-modified biochar were identified as pH 4, 1.5 g/L adsorbent dosage, and a 120-min contact time maintaining a constant NPX concentration of 10 mg/L. The adsorption capacity was calculated to be 123.34 mg/g for a nano-magnesium oxide-modified castor wood biochar (modified biochar) and 99.874 mg/g for pristine castor wood biochar (pristine biochar). Fenton's reagents comprising 15 mM of FeSO4 (7H2O) and 25 mM of H2O2 have been scrutinized under conditions of pH 3.0, a reaction time of 30 min, a temperature of 30°C, and stirring at 120 rpm, followed by batch adsorption treatment. The COD, NH3-N, NO3 -, PO4 3-, and NPX removal percentages was found to be 90%, 87%, 79%, 80%, and 90%, respectively. Thus nano MgO-modified biochar holds promise of treatment of pharmaceutical effluent.

10.
J Med Virol ; 96(8): e29855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119991

RESUMEN

Non-pharmaceutical interventions (NPIs) implemented to control SARS-CoV-2 have significantly influenced the activity of respiratory pathogens. This study investigated epidemiological changes among hospitalized patients with respiratory syncytial virus (RSV) before (2017-2019) and during (2020-2022) the COVID-19 pandemic in Hangzhou, China. We also examined viral load distribution across demographic and temporal variables. Nasopharyngeal swabs were collected and RSV loads were quantified using reverse transcriptase polymerase chain reaction (RT-qPCR). RSV epidemic characteristics, seasonal dynamics, and viral load distributions were compared between pre- and pandemic years. General linear models were employed to assess associations between viral loads and age. Among 19 742 cases, 1576 and 2092 tested positive during the pre- and pandemic years, respectively. From February to July 2020, the implementation of NPIs led to the cessation of RSV circulation. However, after these measures were relaxed, RSV cases resurged over two consecutive seasons during the pandemic, notably affecting older children compared to those in the pre-pandemic years (1.00 years, IQR: 0.50-2.00 vs. 0.58 years, IQR: 0.27-1.00, p < 0.001). Specifically, in 2021-2022, an off-season resurgence of RSV began earlier (mid-June), lasted longer (40 weeks), and involved more positive cases (1238 cases) than both 2020-2021 and pre-pandemic years. Viral load distribution demonstrated a clear age-related relationship in both pre- and pandemic years, with younger children consistently showing higher viral loads, independently of gender and season (all p-values for trends <0.001). These findings highlight the impact of NPIs on RSV epidemiology and underscore the need to prioritize RSV infection prevention in younger children from the perspective of viral load.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , SARS-CoV-2 , Estaciones del Año , Carga Viral , Humanos , China/epidemiología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/virología , COVID-19/epidemiología , COVID-19/virología , Lactante , Preescolar , Masculino , Femenino , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Niño , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Hospitalización/estadística & datos numéricos , Recién Nacido , Niño Hospitalizado/estadística & datos numéricos , Adolescente , Nasofaringe/virología
11.
Electrophoresis ; 45(1-2): 55-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37495859

RESUMEN

Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.


Asunto(s)
Electroforesis Capilar , Electroforesis Capilar/métodos , Cromatografía Liquida , Estereoisomerismo , Cromatografía Líquida de Alta Presión , Preparaciones Farmacéuticas
12.
Electrophoresis ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373618

RESUMEN

Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.

13.
Insect Mol Biol ; 33(5): 516-533, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38864655

RESUMEN

Many species are threatened by climate change and must rapidly respond to survive in changing environments. Epigenetic modifications, such as DNA methylation, can facilitate plastic responses by regulating gene expression in response to environmental cues. Understanding epigenetic responses is therefore essential for predicting species' ability to rapidly adapt in the context of global environmental change. Here, we investigated the functional significance of different methylation-associated cellular processes on temperature-dependent life history in seed beetles, Callosobruchus maculatus Fabricius 1775 (Coleoptera: Bruchidae). We assessed changes under thermal stress in (1) DNA methyltransferase (Dnmt1 and Dnmt2) expression levels, (2) genome-wide methylation and (3) reproductive performance, with (2) and (3) following treatment with 3-aminobenzamide (3AB) and zebularine (Zeb) over two generations. These drugs are well-documented to alter DNA methylation across the tree of life. We found that Dnmt1 and Dnmt2 were expressed throughout the body in males and females, but were highly expressed in females compared with males and exhibited temperature dependence. However, whole-genome methylation did not significantly vary with temperature, and only marginally or inconclusively with drug treatment. Both 3AB and Zeb led to profound temperature-dependent shifts in female reproductive life history trade-off allocation, often increasing fitness compared with control beetles. Mismatch between magnitude of treatment effects on DNA methylation versus life history effects suggest potential of 3AB and Zeb to alter reproductive trade-offs via changes in DNA repair and recycling processes, rather than or in addition to (subtle) changes in DNA methylation. Together, our results suggest that epigenetic mechanisms relating to Dnmt expression, DNA repair and recycling pathways, and possibly DNA methylation, are strongly implicated in modulating insect life history trade-offs in response to temperature change.


Asunto(s)
Escarabajos , Metilación de ADN , Epigénesis Genética , Reproducción , Animales , Escarabajos/genética , Escarabajos/fisiología , Femenino , Reproducción/genética , Temperatura , Masculino , Citidina/análogos & derivados , Citidina/farmacología , Cambio Climático
14.
Chemistry ; : e202402683, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384536

RESUMEN

Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements. A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation  is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component  structure is presented.

15.
J Nutr ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270850

RESUMEN

Probiotic research has undergone some exciting and unanticipated changes in direction since the 2010 commentary by GSH, which speculated on probiotics being ultimately utilized as "factories" capable of releasing pharmaceutical-grade metabolites with therapeutic potential for a wide range of primarily gastrointestinal disorders. Indeed, the unrelenting search for new alternatives to antibiotics has further stimulated the development of "next-generation" probiotics. Postbiotics, defined as inanimate microorganisms and/or their components that confer a health benefit on the host, remain at the forefront of current probiotic research, with increasing numbers of probiotic species, strains, and substrains now being identified and further exploited as pharmabiotics; probiotics with a proven pharmacologic role in health and disease that have been subjected to clinical trial prior to approval by regulatory bodies. However, perhaps the most unanticipated probiotic development over the past 15 y has been the emergence of psychobiotics with the potential to improve aspects of mental health, such as depression and anxiety, through the release of bioactive metabolites. Moreover, the recent identification of pharmacobiotics, probiotics capable of facilitating the effectiveness of conventional pharmaceutical drugs, is opening new avenues for probiotic applications to combat a range of diseases, including cancers of the digestive system. Although in its infancy, recent reports of oncobiotics with antineoplastic properties are further expanding the potential for certain next-generation probiotics to impact current cancer treatment regimens and possibly even contribute to cancer prevention. Looking to the next 15 y of probiotic development, one could perhaps predict the ultimate development of regulatory-approved xenopostbiotic formulations comprising metabolites with the capacity to improve digestive health, decrease the severity of intestinal disease, and increase the effectiveness of conventional pharmaceuticals, whereas simultaneously improving cognitive functioning and mental welfare. Although speculative, these xenopostbiotic formulations could prove especially effective for the adjunctive treatment of serious chronic diseases such as cancer.

16.
Br J Psychiatry ; 224(6): 198-204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38235531

RESUMEN

BACKGROUND: Phase three trials of the monoclonal antibodies lecanemab and donanemab, which target brain amyloid, have reported statistically significant differences in clinical end-points in early Alzheimer's disease. These drugs are already in use in some countries and are going through the regulatory approval process for use in the UK. Concerns have been raised about the ability of healthcare systems, including those in the UK, to deliver these treatments, considering the resources required for their administration and monitoring. AIMS: To estimate the scale of real-world demand for monoclonal antibodies for Alzheimer's disease in the UK. METHOD: We used anonymised patient record databases from two National Health Service trusts for the year 2019 to collect clinical, demographic, cognitive and neuroimaging data for these cohorts. Eligibility for treatment was assessed using the inclusion criteria from the clinical trials of donanemab and lecanemab, with consideration given to diagnosis, cognitive performance, cerebrovascular disease and willingness to receive treatment. RESULTS: We examined the records of 82 386 people referred to services covering around 2.2 million people. After applying the trial criteria, we estimate that a maximum of 906 people per year would start treatment with monoclonal antibodies in the two services, equating to 30 200 people if extrapolated nationally. CONCLUSIONS: Monoclonal antibody treatments for Alzheimer's disease are likely to present a significant challenge for healthcare services to deliver in terms of the neuroimaging and treatment delivery. The data provided here allows health services to understand the potential demand and plan accordingly.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Reino Unido , Masculino , Anciano , Femenino , Anciano de 80 o más Años , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Necesidades y Demandas de Servicios de Salud/estadística & datos numéricos , Persona de Mediana Edad
17.
Milbank Q ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289915

RESUMEN

Policy Points Health care systems around the world rely on a range of methods to ensure the affordability of prescription drugs, including negotiating prices soon after drug approval and relying on formal clinical assessments that compare newly approved therapies with existing alternatives. The negotiation framework established under the Inflation Reduction Act is far more limited than other frameworks explored in this study. Adding elements from these frameworks could lead to more effective price negotiation in the United States. CONTEXT: In 2022, Congress passed the Inflation Reduction Act, which allowed Medicare, for the first time, to begin negotiating the prices for certain high-cost brand-name prescription drugs. Many other industrialized countries negotiate drug prices, and we sought to compare and contrast key features of the negotiation process across several health systems. We focused, in particular, on the criteria for selecting drugs for price negotiation, procedures for negotiation, factors that influence negotiated prices, and how prices are implemented. METHODS: We included four G7 countries in our analysis (Canada, France, Germany, and the United Kingdom [England]), two Benelux countries (Belgium and the Netherlands), and one Scandinavian country (Norway) with long-established frameworks for drug price negotiation. We also analyzed the Veterans Affairs Health System in the United States. For each system, we gathered relevant legislation, government publications, and guidelines to understand negotiation frameworks, and we reached out to key drug price negotiators in each system to conduct semistructured interviews. All interviews were recorded, transcribed, and coded, and data were analyzed based on an internal assessment tool that we developed. FINDINGS: All eight systems negotiate the prices of brand-name prescription drugs soon after approval and rely on formal clinical assessments that compare newly approved drugs with existing therapies. Systems in our study differed on characteristics such as whether the body performing clinical assessments is separate from the negotiating authority, how added health benefit is assessed, whether explicit willingness-to-pay thresholds are employed, and how specific approaches for priority disease areas are taken. CONCLUSIONS: High-income countries around the world adopt different approaches to conducting price negotiations on brand-name drugs but coalesce around a set of practices that will largely be absent from the current Medicare negotiation framework. US policymakers might consider adding some of these characteristics in the future to improve negotiation outcomes.

18.
Crit Rev Toxicol ; 54(9): 619-633, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39093553

RESUMEN

Embryofetal development (EFD) studies are performed to characterize risk of drugs in pregnant women and on embryofetal development. In line with the ICH S5(R3) guideline, these studies are generally conducted in one rodent and one non-rodent species, commonly rats and rabbits. However, the added value of conducting EFD studies in two species to risk assessment is debatable. In this study, rat and rabbit EFD studies were evaluated to analyze the added value of a second species. Information on rat and rabbit EFD studies conducted for human pharmaceuticals submitted for marketing authorization to the European Medicines Agency between 2004 and 2022 was collected from the database of the Dutch Medicines Evaluation Board, along with EFD studies conducted for known human teratogens. In total, 369 compounds were included in the database. For 55.6% of the compounds similar effects were observed in rat and rabbit EFD studies. Discordance was observed for 44.6% of compounds. Discordance could often be explained based on occurrence of maternal toxicity or the compound's mechanism of action. For other compounds, discordance was considered of limited clinical relevance due to high exposure margins or less concerning EFD toxicity. For 6.2%, discordance could not be explained and was considered clinically relevant. Furthermore, for specific therapeutic classes, concordance between rat and rabbit could vary. In conclusion, in many cases the added value of conducting EFD studies in two species is limited. These data could help identify scenarios in which (additional) EFD studies could be waived or create a weight-of-evidence model to determine the need for (additional) EFD studies.


Asunto(s)
Desarrollo Embrionario , Teratógenos , Animales , Conejos , Ratas , Embarazo , Femenino , Desarrollo Embrionario/efectos de los fármacos , Teratógenos/toxicidad , Medición de Riesgo , Humanos , Pruebas de Toxicidad , Desarrollo Fetal/efectos de los fármacos , Especificidad de la Especie
19.
Mol Pharm ; 21(10): 5285-5296, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39292641

RESUMEN

Praziquantel (PZQ) is the treatment of choice for schistosomiasis, which affects more than 250 million people globally. Commercial tablets contain the crystalline racemic compound (RS-PZQ) which limits drug dissolution and oral bioavailability and can lead to unwanted side effects and poor patient compliance due to the presence of the S-enantiomer. While many approaches have been explored for improving PZQ's dissolution and oral bioavailability, studies focusing on investigating its release from amorphous solid dispersions (ASDs) have been limited. In this work, nucleation induction time experiments were performed to identify suitable polymers for preparing ASDs using RS-PZQ and R-PZQ, the therapeutically active enantiomer. Cellulose-based polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS, MF grade) and hydroxypropyl methylcellulose (HPMC, E5 LV grade), were the best crystallization inhibitors for RS-PZQ in aqueous media and were selected for ASD preparation using solvent evaporation (SE) and hot-melt extrusion (HME). ASDs prepared experimentally were subjected to X-ray powder diffraction to verify their amorphous nature and a selected number of ASDs were monitored and found to remain physically stable following several months of storage under accelerated-stability testing conditions. SE HPMCAS-MF ASDs of RS-PZQ and R-PZQ showed faster release than HPMC E5 LV ASDs and maintained good performance with an increase in drug loading (DL). HME ASDs of RS-PZQ formulated using HPMCAS-MF exhibited slightly enhanced release compared to that of SE ASDs. SE HPMCAS-MF ASDs showed a maximum release increase of the order of 6 times compared to generic and branded (Biltricide) PZQ tablets. More importantly, SE R-PZQ ASDs with HPMCAS-MF released the drug as effectively as RS-PZQ or better, depending on the DL used. These findings have significant implications for the development of commercial PZQ formulations comprised solely of the R-enantiomer, which can result in mitigation of the biopharmaceutical and compliance issues associated with current commercial tablets.


Asunto(s)
Cristalización , Liberación de Fármacos , Derivados de la Hipromelosa , Metilcelulosa , Praziquantel , Solubilidad , Praziquantel/química , Praziquantel/farmacocinética , Praziquantel/farmacología , Metilcelulosa/química , Metilcelulosa/análogos & derivados , Estereoisomerismo , Derivados de la Hipromelosa/química , Difracción de Rayos X/métodos , Composición de Medicamentos/métodos , Comprimidos/química , Disponibilidad Biológica , Tecnología de Extrusión de Fusión en Caliente/métodos , Química Farmacéutica/métodos , Polímeros/química
20.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38685852

RESUMEN

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Asunto(s)
Isótopos de Carbono , Cristalización , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno , Ácido Salicílico , ortoaminobenzoatos , Espectroscopía de Resonancia Magnética/métodos , Ácido Salicílico/química , Cristalización/métodos , Isótopos de Nitrógeno/química , ortoaminobenzoatos/química , Isótopos de Carbono/química , Soluciones/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA