Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36366123

RESUMEN

This paper demonstrates that a graded-index (GRIN) phononic lens, combined with a channel waveguide, can focus anti-symmetric Lamb waves for extraction by a detector with strong directional sensitivity. Guided ultrasonic wave inspection is commonly applied for structural health monitoring applications; however, obtaining sufficient signal amplitude is a challenge. In addition, fiber Bragg grating (FBG) sensors have strong directional sensitivity. We fabricate the GRIN structure, followed by a channel waveguide starting at the focal point, using a commercial 3D printer and mount it on a thin aluminum plate. We characterize the focusing of the A0 mode Lamb wave in the plate, traveling across the GRIN lens using 3D laser Doppler vibrometry. We also measure the extraction of focused energy using an FBG sensor, examining the optimal sensor bond location and bond length in the channel of the waveguide for maximum signal extraction. The measured amplification of the ultrasound signal is compared to theoretical predictions. The results demonstrate that significant amplification of the waveform is achieved and that selecting the location of the FBG sensor in the channel is critical to optimizing the amplification.

2.
Proc Natl Acad Sci U S A ; 114(18): 4603-4606, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28416663

RESUMEN

The realization of acoustic devices analogous to electronic systems, like diodes, transistors, and logic elements, suggests the potential use of elastic vibrations (i.e., phonons) in information processing, for example, in advanced computational systems, smart actuators, and programmable materials. Previous experimental realizations of acoustic diodes and mechanical switches have used nonlinearities to break transmission symmetry. However, existing solutions require operation at different frequencies or involve signal conversion in the electronic or optical domains. Here, we show an experimental realization of a phononic transistor-like device using geometric nonlinearities to switch and amplify elastic vibrations, via magnetic coupling, operating at a single frequency. By cascading this device in a tunable mechanical circuit board, we realize the complete set of mechanical logic elements and interconnect selected ones to execute simple calculations.

3.
Adv Mater ; : e2307998, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072673

RESUMEN

Non-Hermitian (NH) physics describes novel phenomena in open systems that allow generally complex spectra. Introducing NH physics into topological metamaterials, which permits explorations of topological wave phenomena in artificially designed structures, not only enables the experimental verification of exotic NH phenomena in these flexible platforms, but also enriches the manipulation of wave propagation beyond the Hermitian cases. Here, a perspective on the advances in the research of NH topological phononic metamaterials is presented, which covers the exceptional points and their topological geometries, the skin effect related to the topology of complex spectra, the interplay of NH effects and topological states in phononic metamaterials, etc.

4.
Adv Mater ; 29(39)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28841769

RESUMEN

Phononic metamaterials rely on the presence of resonances in a structured medium to control the propagation of elastic waves. Their response depends on the geometry of their fundamental building blocks. A major challenge in metamaterials design is the realization of basic building blocks that can be tuned dynamically. Here, a metamaterial plate is realized that can be dynamically tuned by harnessing geometric and magnetic nonlinearities in the individual unit cells. The proposed tuning mechanism allows a stiffness variability of the individual unit cells and can control the amplitude of transmitted excitation through the plate over three orders of magnitude. The concepts can be extended to metamaterials at different scales, and they can be applied in a broad range of engineering applications, from seismic shielding at low frequency to ultrasonic cloaking at higher frequency ranges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA