Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Cells ; 26(9): 727-738, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34166546

RESUMEN

CDP-diacylglycerol synthases (Cds) are conserved from bacteria to eukaryotes. Bacterial CdsA is involved not only in phospholipid biosynthesis but also in biosynthesis of glycolipid MPIase, an essential glycolipid that catalyzes membrane protein integration. We found that both Cds4 and Cds5 of Arabidopsis chloroplasts complement cdsA knockout by supporting both phospholipid and MPIase biosyntheses. Comparison of the sequences of CdsA and Cds4/5 suggests a difference in membrane topology at the C-termini, since the region assigned as the last transmembrane region of CdsA, which follows the conserved cytoplasmic domain, is missing in Cds4/5. Deletion of the C-terminal region abolished the function, indicating the importance of the region. Both 6 × His tag attachment to CdsA and substitution of the C-terminal 6 residues with 6 × His did not affect the function. These 6 × His tags were sensitive to protease added from the cytosolic side in vitro, indicating that this region is not a transmembrane one but forms a membrane-embedded reentrant loop. Thus, the C-terminal region of Cds homologues forms a reentrant loop, of which structure is important for the Cds function.


Asunto(s)
Proteínas de Arabidopsis/química , Cloroplastos/genética , Diacilglicerol Colinafosfotransferasa/química , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Cloroplastos/metabolismo , Diacilglicerol Colinafosfotransferasa/genética , Diacilglicerol Colinafosfotransferasa/metabolismo , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , Dominios Proteicos
2.
J Lipid Res ; 62: 100100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34331935

RESUMEN

Choline phospholipids (PLs) such as phosphatidylcholine (PC) and 1-alkyl-2-acyl-sn-glycerophosphocholine are important components for cell membranes and also serve as a source of several lipid mediators. These lipids are biosynthesized in mammals in the final step of the CDP-choline pathway by the choline phosphotransferases choline phosphotransferase 1 (CPT1) and choline/ethanolamine phosphotransferase 1 (CEPT1). However, the contributions of these enzymes to the de novo biosynthesis of lipids remain unknown. Here, we established and characterized CPT1- and CEPT1-deficient human embryonic kidney 293 cells. Immunohistochemical analyses revealed that CPT1 localizes to the trans-Golgi network and CEPT1 to the endoplasmic reticulum. Enzyme assays and metabolic labeling with radiolabeled choline demonstrated that loss of CEPT1 dramatically decreases choline PL biosynthesis. Quantitative PCR and reintroduction of CPT1 and CEPT1 revealed that the specific activity of CEPT1 was much higher than that of CPT1. LC-MS/MS analysis of newly synthesized lipid molecular species from deuterium-labeled choline also showed that these enzymes have similar preference for the synthesis of PC molecular species, but that CPT1 had higher preference for 1-alkyl-2-acyl-sn-glycerophosphocholine with PUFA than did CEPT1. The endogenous level of PC was not reduced by the loss of these enzymes. However, several 1-alkyl-2-acyl-sn-glycerophosphocholine molecular species were reduced in CPT1-deficient cells and increased in CEPT1-deficient cells when cultured in 0.1% FBS medium. These results suggest that CEPT1 accounts for most choline PL biosynthesis activity, and that both enzymes are responsible for the production of different lipid molecular species in distinct organelles.


Asunto(s)
Colina/biosíntesis , Diacilglicerol Colinafosfotransferasa/metabolismo , Fosfolípidos/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Células Cultivadas , Células HEK293 , Humanos
3.
J Biol Chem ; 295(7): 2136-2147, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31796629

RESUMEN

PlsX plays a central role in the coordination of fatty acid and phospholipid biosynthesis in Gram-positive bacteria. PlsX is a peripheral membrane acyltransferase that catalyzes the conversion of acyl-ACP to acyl-phosphate, which is in turn utilized by the polytopic membrane acyltransferase PlsY on the pathway of bacterial phospholipid biosynthesis. We have recently studied the interaction between PlsX and membrane phospholipids in vivo and in vitro, and observed that membrane association is necessary for the efficient transfer of acyl-phosphate to PlsY. However, understanding the molecular basis of such a channeling mechanism remains a major challenge. Here, we disentangle the binding and insertion events of the enzyme to the membrane, and the subsequent catalysis. We show that PlsX membrane binding is a process mostly mediated by phospholipid charge, whereas fatty acid saturation and membrane fluidity remarkably influence the membrane insertion step. Strikingly, the PlsXL254E mutant, whose biological functionality was severely compromised in vivo but remains catalytically active in vitro, was able to superficially bind to phospholipid vesicles, nevertheless, it loses the insertion capacity, strongly supporting the importance of membrane insertion in acyl-phosphate delivery. We propose a mechanism in which membrane fluidity governs the insertion of PlsX and thus regulates the biosynthesis of phospholipids in Gram-positive bacteria. This model may be operational in other peripheral membrane proteins with an unprecedented impact in drug discovery/development strategies.


Asunto(s)
Proteínas Bacterianas/genética , Bacterias Grampositivas/genética , Fluidez de la Membrana/genética , Fosfolípidos/biosíntesis , Bacillus subtilis/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Fosfatos/metabolismo , Fosfolípidos/genética
4.
J Lipid Res ; 61(8): 1221-1231, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32576654

RESUMEN

The final step of the CDP-ethanolamine pathway is catalyzed by ethanolamine phosphotransferase 1 (EPT1) and choline/EPT1 (CEPT1). These enzymes are likely involved in the transfer of ethanolamine phosphate from CDP-ethanolamine to lipid acceptors such as 1,2-diacylglycerol (DAG) for PE production and 1-alkyl-2-acyl-glycerol (AAG) for the generation of 1-alkyl-2-acyl-glycerophosphoethanolamine. Here, we investigated the intracellular location and contribution to ethanolamine phospholipid (EP) biosynthesis of EPT1 and CEPT1 in HEK293 cells. Immunohistochemical analyses revealed that EPT1 localizes to the Golgi apparatus and CEPT1 to the ER. We created EPT1-, CEPT1-, and EPTI-CEPT1-deficient cells, and labeling of these cells with radio- or deuterium-labeled ethanolamine disclosed that EPT1 is more important for the de novo biosynthesis of 1-alkenyl-2-acyl-glycerophosphoethanolamine than is CEPT1. EPT1 also contributed to the synthesis of PE species containing the fatty acids 36:1, 36:4, 38:5, 38:4, 38:3, 40:6, 40:5, and 40:4. In contrast, CEPT1 was important for PE formation from shorter fatty acids such as 32:2, 32:1, 34:2, and 34:1. Brefeldin A treatment did not significantly affect the levels of the different PE species, indicating that the subcellular localization of the two enzymes is not responsible for their substrate preferences. In vitro enzymatic analysis revealed that EPT1 prefers AAG 16-20:4 > DAG 18:0-20:4 > DAG 16:0-18:1 = AAG 16-18:1 as lipid acceptors and that CEPT1 greatly prefers DAG 16:0-18:1 to other acceptors. These results suggest that EPT1 and CEPT1 differ in organelle location and are responsible for the biosynthesis of distinct EP species.


Asunto(s)
Etanolamina/química , Etanolamina/metabolismo , Etanolaminofosfotransferasa/metabolismo , Fosfolípidos/química , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Transporte de Proteínas
5.
Brain ; 142(11): 3382-3397, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31637422

RESUMEN

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.


Asunto(s)
Fosfatidiletanolaminas/biosíntesis , ARN Nucleotidiltransferasas/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Alelos , Animales , Atrofia , Encéfalo/patología , Niño , Preescolar , Discapacidades del Desarrollo/genética , Epilepsia/genética , Femenino , Técnicas de Inactivación de Genes , Variación Genética , Humanos , Lipidómica , Masculino , Ratones , ARN Nucleotidiltransferasas/deficiencia , Adulto Joven , Pez Cebra
6.
Biochem Biophys Res Commun ; 510(4): 636-642, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30739787

RESUMEN

MPIase is a glycolipid involved in protein integration in E. coli. Recently, we identified CdsA, a CDP-diacylglycerol (CDP-DAG) synthase, as a biosynthetic enzyme for MPIase. YnbB is a CdsA paralogue with a highly homologous C-terminal half. Under CdsA-depleted conditions, YnbB overproduction restored MPIase expression, but not phospholipid biosynthesis. YnbB complemented the growth defect of the cdsA knockout when Tam41p, a mitochondrial CDP-DAG synthase, was co-expressed, suggesting that YnbB possesses sufficient activity for MPIase biosynthesis, but not for phospholipid biosynthesis. Consistently, a chimera consisting of the CdsA N-terminal half and the YnbB C-terminal half (CdsA-N-YnbB-C) complemented the cdsA knockout by itself, but a chimera consisting of the YnbB N-terminal half and the CdsA C-terminal half (YnbB-N-CdsA-C) required co-expression of Tam41p for the complementation. The biosynthetic rate for CDP-DAG in CdsA and CdsA-N-YnbB-C was much faster than that in YnbB and YnbB-N-CdsA-C, indicating that the N-terminal half of CdsA accelerates CDP-DAG biosynthesis to give the fast cell growth. Therefore, the role of YnbB seems to be as a backup for MPIase biosynthesis, suggesting that YnbB is dedicated to MPIase biosynthesis. A mutant with a high pH-sensitive CdsA8 was unable to grow even under permissive conditions when the ynbB gene was deleted, supporting its auxiliary role in the CdsA function.


Asunto(s)
Diacilglicerol Colinafosfotransferasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Fosfotransferasas/metabolismo , Vías Biosintéticas , Glucolípidos/metabolismo , Fosfolípidos/metabolismo
7.
New Phytol ; 224(1): 336-351, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31211859

RESUMEN

Nitrogen (N) deficiency triggers an accumulation of a storage lipid triacylglycerol (TAG) in seed plants and algae. Whereas the metabolic pathway and regulatory mechanism to synthesize TAG from diacylglycerol are well known, enzymes involved in the supply of diacylglycerol remain elusive under N starvation. Lysophosphatidic acid acyltransferase (LPAT) catalyzes an important step of the de novo phospholipid biosynthesis pathway and thus has a strong flux control in the biosynthesis of phospholipids and TAG. Five LPAT isoforms are known in Arabidopsis; however, the functions of LPAT4 and LPAT5 remain elusive. Here, we show that LPAT4 and LPAT5 are functional endoplasmic-reticulum-localized LPATs. Seedlings of the double knockout mutant lpat4-1 lpat5-1 showed reduced content of phospholipids and TAG under normal growth condition. Under N starvation, lpat4-1 lpat5-1 seedlings showed severer growth defect than the wild-type in shoot. The phenotype was similar to dgat1-4, which affects a major TAG biosynthesis pathway and showed similarly reduced TAG content as the lpat4-1 lpat5-1. We suggest that LPAT4 and LPAT5 may redundantly function in endoplasmic-reticulum-localized de novo glycerolipid biosynthesis for phospholipids and TAG, which is important for the N starvation response in Arabidopsis.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Nitrógeno/deficiencia , Triglicéridos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Ácidos Fosfatidicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo , Proteínas Recombinantes/metabolismo , Plantones/crecimiento & desarrollo , Semillas/enzimología , Semillas/crecimiento & desarrollo
8.
Plant J ; 89(1): 3-14, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27595588

RESUMEN

Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfatidilcolinas/biosíntesis , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Fosfatidato Fosfatasa/genética , Fosforilación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
9.
Brain ; 140(3): 547-554, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052917

RESUMEN

Mutations in genes involved in lipid metabolism have increasingly been associated with various subtypes of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative motor neuron disorders characterized by spastic paraparesis. Here, we report an unusual autosomal recessive neurodegenerative condition, best classified as a complicated form of hereditary spastic paraplegia, associated with mutation in the ethanolaminephosphotransferase 1 (EPT1) gene (now known as SELENOI), responsible for the final step in Kennedy pathway forming phosphatidylethanolamine from CDP-ethanolamine. Phosphatidylethanolamine is a glycerophospholipid that, together with phosphatidylcholine, constitutes more than half of the total phospholipids in eukaryotic cell membranes. We determined that the mutation defined dramatically reduces the enzymatic activity of EPT1, thereby hindering the final step in phosphatidylethanolamine synthesis. Additionally, due to central nervous system inaccessibility we undertook quantification of phosphatidylethanolamine levels and species in patient and control blood samples as an indication of liver phosphatidylethanolamine biosynthesis. Although this revealed alteration to levels of specific phosphatidylethanolamine fatty acyl species in patients, overall phosphatidylethanolamine levels were broadly unaffected indicating that in blood EPT1 inactivity may be compensated for, in part, via alternate biochemical pathways. These studies define the first human disorder arising due to defective CDP-ethanolamine biosynthesis and provide new insight into the role of Kennedy pathway components in human neurological function.


Asunto(s)
Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Mutación/genética , Fosfolípidos/biosíntesis , Transducción de Señal/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Niño , Preescolar , Cromatografía Liquida , Consanguinidad , Análisis Mutacional de ADN , Salud de la Familia , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Espectrometría de Masas , Omán , Fosfolípidos/sangre , Saccharomyces cerevisiae , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Paraplejía Espástica Hereditaria/enzimología , Paraplejía Espástica Hereditaria/patología
10.
Yeast ; 34(2): 67-81, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27743455

RESUMEN

Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are transcribed when precursor molecules inositol and choline (IC) are limiting. Gene expression is stimulated by the heterodimeric activator Ino2/Ino4, which binds to ICRE (inositol/choline-responsive element) promoter sequences. Activation is prevented by repressor Opi1, counteracting Ino2 when high concentrations of IC are available. Here we show that ICRE-dependent gene activation is repressed not only by an excess of IC but also under conditions of phosphate starvation. While PHO5 is activated by phosphate limitation, INO1 expression is repressed about 10-fold. Repression of ICRE-dependent genes by low phosphate is no longer observed in an opi1 mutant while repression is still effective in mutants of the PHO regulon (pho4, pho80, pho81 and pho85). In contrast, gene expression with high phosphate is reduced in the absence of pleiotropic sensor protein kinase Pho85. We could demonstrate that Pho85 binds to Opi1 in vitro and in vivo and that this interaction is increased in the presence of high concentrations of phosphate. Interestingly, Pho85 binds to two separate domains of Opi1 which have been previously shown to recruit pleiotropic corepressor Sin3 and activator Ino2, respectively. We postulate that Pho85 positively influences ICRE-dependent gene expression by phosphorylation-dependent weakening of Opi1 repressor, affecting its functional domains required for promoter recruitment and corepressor interaction. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Fosfatos/metabolismo , Fosfolípidos/biosíntesis , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutación , Unión Proteica , Dominios Proteicos , Regulón , Proteínas Represoras/genética , Elementos de Respuesta/genética , Elementos de Respuesta/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Plant Cell Environ ; 40(9): 1807-1818, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28548242

RESUMEN

Upon phosphate starvation, plants retard shoot growth but promote root development presumably to enhance phosphate assimilation from the ground. Membrane lipid remodelling is a metabolic adaptation that replaces membrane phospholipids by non-phosphorous galactolipids, thereby allowing plants to obtain scarce phosphate yet maintain the membrane structure. However, stoichiometry of this phospholipid-to-galactolipid conversion may not account for the massive demand of membrane lipids that enables active growth of roots under phosphate starvation, thereby suggesting the involvement of de novo phospholipid biosynthesis, which is not represented in the current model. We overexpressed an endoplasmic reticulum-localized lysophosphatidic acid acyltransferase, LPAT2, a key enzyme that catalyses the last step of de novo phospholipid biosynthesis. Two independent LPAT2 overexpression lines showed no visible phenotype under normal conditions but showed increased root length under phosphate starvation, with no effect on phosphate starvation response including marker gene expression, root hair development and anthocyanin accumulation. Accompanying membrane glycerolipid profiling of LPAT2-overexpressing plants revealed an increased content of major phospholipid classes and distinct responses to phosphate starvation between shoot and root. The findings propose a revised model of membrane lipid remodelling, in which de novo phospholipid biosynthesis mediated by LPAT2 contributes significantly to root development under phosphate starvation.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Fosfatos/deficiencia , Fosfolípidos/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Aciltransferasas/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucolípidos/metabolismo , Modelos Biológicos , Fenotipo , Fosfatos/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo
12.
Cell Immunol ; 310: 78-88, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27502364

RESUMEN

In activated B cells, increased production of phosphatidylcholine (PtdCho), the most abundant cellular phospholipid, is handled primarily by the CDP-choline pathway. B cell-specific deletion of CTP:phosphocholine cytidylyltransferase α (CCTα), the rate-limiting enzyme in the CDP-choline pathway, led to augmented IgM secretion and reduced IgG production, suggesting that PtdCho synthesis is required for germinal center reactions. To specifically assess whether PtdCho influences B cell fate during germinal center responses, we examined immune responses in mice whereby PtdCho synthesis is disrupted in B cells that have undergone class switch recombination to IgG1 (referred to as either Cγ1wt/wt, Cγ1Cre/wt or Cγ1Cre/Cre based on Cre copy number). Serum IgG1 was markedly reduced in naïve Cγ1Cre/wt and Cγ1Cre/Cre mice, while levels of IgM and other IgG subclasses were similar between Cγ1Cre/wt and Cγ1wt/wt control mice. Serum IgG2b titers were notably reduced and IgG3 titers were increased in Cγ1Cre/Cre mice compared with controls. Following immunization with T cell-dependent antigen NP-KLH, control mice generated high titer IgG anti-NP while IgG anti-NP titers were markedly reduced in both immunized Cγ1Cre/wt and Cγ1Cre/Cre mice. Correspondingly, the frequency of NP-specific IgG antibody-secreting cells was also reduced in spleens and bone marrow of Cγ1Cre/wt and Cγ. 1Cre/Cre mice compared to control mice. Interestingly, though antigen-specific IgM B cells were comparable between Cγ1Cre/wt, Cγ1Cre/Cre and control mice, the frequency and number of IgG1 NP-specific B cells was reduced only in Cγ1Cre/Cre mice. These data indicate that PtdCho is required for the generation of both germinal center-derived B cells and antibody-secreting cells. Further, the reduction in class-switched ASC but not B cells in Cγ1Cre/wt mice suggests that ASC have a greater demand for PtdCho compared to germinal center B cells.


Asunto(s)
Linfocitos B/inmunología , Citidililtransferasa de Colina-Fosfato/metabolismo , Fosfatidilcolinas/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Citidililtransferasa de Colina-Fosfato/genética , Centro Germinal/patología , Inmunidad Humoral/genética , Inmunoglobulina G/sangre , Memoria Inmunológica/genética , Activación de Linfocitos , Ratones , Ratones Noqueados , Linfocitos T/inmunología , Respuesta de Proteína Desplegada
13.
Front Fungal Biol ; 5: 1447588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206133

RESUMEN

There is an urgent need for new antifungal drugs to treat invasive fungal diseases. Unfortunately, the echinocandin drugs that are fungicidal against other important fungal pathogens are ineffective against Cryptococcus neoformans, the causative agent of life-threatening meningoencephalitis in immunocompromised people. Contributing mechanisms for echinocandin tolerance are emerging with connections to calcineurin signaling, the cell wall, and membrane composition. In this context, we discovered that a defect in phosphate uptake impairs the tolerance of C. neoformans to the echinocandin caspofungin. Our previous analysis of mutants lacking three high affinity phosphate transporters revealed reduced elaboration of the polysaccharide capsule and attenuated virulence in mice. We investigated the underlying mechanisms and found that loss of the transporters and altered phosphate availability influences the cell wall and membrane composition. These changes contribute to the shedding of capsule polysaccharide thus explaining the reduced size of capsules on mutants lacking the phosphate transporters. We also found an influence of the calcineurin pathway including calcium sensitivity and an involvement of the endoplasmic reticulum in the response to phosphate limitation. Furthermore, we identified membrane and lipid composition changes consistent with the role of phosphate in phospholipid biosynthesis and with previous studies implicating membrane integrity in caspofungin tolerance. Finally, we discovered a contribution of phosphate to titan cell formation, a cell type that displays modified cell wall and capsule composition. Overall, our analysis reinforces the importance of phosphate as a regulator of cell wall and membrane composition with implications for capsule attachment and antifungal drug susceptibility.

14.
Autophagy ; : 1-26, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39171695

RESUMEN

Hyperphosphorylation and aggregation of MAPT (microtubule-associated protein tau) is a pathogenic hallmark of tauopathies and a defining feature of Alzheimer disease (AD). Pathological MAPT/tau is targeted by macroautophagy/autophagy for clearance after being sequestered within autophagosomes, but autophagy dysfunction is indicated in tauopathy. While mitochondrial bioenergetic deficits have been shown to precede MAPT/tau pathology in tauopathy brains, it is unclear whether energy metabolism deficiency is involved in the pathogenesis of autophagy defects. Here, we reveal that stimulation of anaplerotic metabolism restores defective oxidative phosphorylation (OXPHOS) in tauopathy neurons which, strikingly, leads to pronounced MAPT/tau clearance by boosting autophagy functionality through enhancements of mitochondrial biosynthesis and supply of phosphatidylethanolamine for autophagosome biogenesis. Furthermore, early anaplerotic stimulation of OXPHOS elevates autophagy activity and attenuates MAPT/tau pathology, thereby counteracting memory impairment in tauopathy mice. Taken together, our study sheds light on a pivotal role of mitochondrial bioenergetic deficiency in tauopathy-related autophagy defects and suggests a new therapeutic strategy to prevent the buildup of pathological MAPT/tau in AD and other tauopathy diseases.Abbreviation: AA: antimycin A; AD, Alzheimer disease; ATP, adenosine triphosphate; AV, autophagosome/autophagic vacuole; AZ, active zone; Baf-A1: bafilomycin A1; CHX, cycloheximide; COX, cytochrome c oxidase; DIV, days in vitro; DRG, dorsal root ganglion; ETN, ethanolamine; FRET, Förster/fluorescence resonance energy transfer; FTD, frontotemporal dementia; Gln, glutamine; HA: hydroxylamine; HsMAPT/Tau, human MAPT; IMM, inner mitochondrial membrane; LAMP1, lysosomal-associated membrane protein 1; LIs, lysosomal inhibitors; MDAV, mitochondria-derived autophagic vacuole; MmMAPT/Tau, murine MAPT; NFT, neurofibrillary tangle; OCR, oxygen consumption rate; Omy: oligomycin; OXPHOS, oxidative phosphorylation; PPARGC1A/PGC-1alpha: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PE, phosphatidylethanolamine; phospho-MAPT/tau, hyperphosphorylated MAPT; PS, phosphatidylserine; PISD, phosphatidylserine decarboxylase;SQSTM1/p62, sequestosome 1; STX1, syntaxin 1; SYP, synaptophysin; Tg, transgenic; TCA, tricarboxylic acid; TEM, transmission electron microscopy.

15.
Prog Lipid Res ; 94: 101268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195013

RESUMEN

One of the major constituents of mitochondrial membranes is the phospholipids, which play a key role in maintaining the structure and the functions of the mitochondria. However, mitochondria do not synthesize most of the phospholipids in situ, necessitating the presence of phospholipid import pathways. Even for the phospholipids, which are synthesized within the inner mitochondrial membrane (IMM), the phospholipid precursors must be imported from outside the mitochondria. Therefore, the mitochondria heavily rely on the phospholipid transport pathways for its proper functioning. Since, mitochondria are not part of a vesicular trafficking network, the molecular mechanisms of how mitochondria receive its phospholipids remain a relevant question. One of the major ways that hydrophobic phospholipids can cross the aqueous barrier of inter or intraorganellar spaces is by apposing membranes, thereby decreasing the distance of transport, or by being sequestered by lipid transport proteins (LTPs). Therefore, with the discovery of LTPs and membrane contact sites (MCSs), we are beginning to understand the molecular mechanisms of phospholipid transport pathways in the mitochondria. In this review, we will present a brief overview of the recent findings on the molecular architecture and the importance of the MCSs, both the intraorganellar and interorganellar contact sites, in facilitating the mitochondrial phospholipid transport. In addition, we will also discuss the role of LTPs for trafficking phospholipids through the intermembrane space (IMS) of the mitochondria. Mechanistic insights into different phospholipid transport pathways of mitochondria could be exploited to vary the composition of membrane phospholipids and gain a better understanding of their precise role in membrane homeostasis and mitochondrial bioenergetics.


Asunto(s)
Mitocondrias , Fosfolípidos , Fosfolípidos/metabolismo , Humanos , Animales , Mitocondrias/metabolismo , Transporte Biológico , Membranas Mitocondriales/metabolismo , Proteínas Portadoras/metabolismo
16.
ACS Synth Biol ; 13(5): 1549-1561, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632869

RESUMEN

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Asunto(s)
Adenosina Trifosfato , Arginina , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Células Artificiales/metabolismo , Glicerofosfatos/metabolismo , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Lípidos/biosíntesis , Fosfolípidos/metabolismo , Redes y Vías Metabólicas
17.
Microlife ; 4: uqad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426605

RESUMEN

The outer membrane (OM) protects Gram-negative bacteria from harsh environmental conditions and provides intrinsic resistance to many antimicrobial compounds. The asymmetric OM is characterized by phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. Previous reports suggested an involvement of the signaling nucleotide ppGpp in cell envelope homeostasis in Escherichia coli. Here, we investigated the effect of ppGpp on OM biosynthesis. We found that ppGpp inhibits the activity of LpxA, the first enzyme of LPS biosynthesis, in a fluorometric in vitro assay. Moreover, overproduction of LpxA resulted in elongated cells and shedding of outer membrane vesicles (OMVs) with altered LPS content. These effects were markedly stronger in a ppGpp-deficient background. We further show that RnhB, an RNase H isoenzyme, binds ppGpp, interacts with LpxA, and modulates its activity. Overall, our study uncovered new regulatory players in the early steps of LPS biosynthesis, an essential process with many implications in the physiology and susceptibility to antibiotics of Gram-negative commensals and pathogens.

18.
Biochem Pharmacol ; 206: 115296, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36241095

RESUMEN

In mammalian cells, phospholipids and cholesterol are assembled into bilayer membranes forming the plasma membrane, nuclear envelope, mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and endosomes. Phospholipids are divided into classes based on the molecular structures, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol, cardiolipin, and sphingomyelin. In addition to their structural roles, phospholipids play important roles in many cellular processes, such as membrane protein regulation, membrane trafficking, cell growth, apoptosis, and intracellular signaling. Thus, abnormal phospholipid metabolism is associated with various diseases. In mammalian cells, phospholipid classes are generated through several enzymatic steps, predominantly in the endoplasmic reticulum, mitochondria, and Golgi apparatus. In recent years, various enzymes involved in the biosynthesis of phospholipid classes have been identified. However, little is known about the regulatory mechanisms underlying the biosynthesis of phospholipid classes. Using our recently developed enzymatic fluorometric assays for all major phospholipid classes, we have demonstrated changes in phospholipid composition in intracellular organelles during cell growth. In this review, we summarize the current understanding of the properties and functions of phospholipid biosynthesis enzymes, and discuss their regulatory mechanisms.


Asunto(s)
Retículo Endoplásmico , Fosfolípidos , Animales , Fosfolípidos/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membrana Celular/metabolismo , Fosfatidilserinas/metabolismo , Mamíferos/metabolismo
19.
Front Plant Sci ; 13: 851960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574129

RESUMEN

Phospholipid biosynthesis is a core metabolic pathway that affects all aspects of plant growth and development. One of the earliest step in this pathway is mediated by choline/ethanolamine kinases (CEKs), enzymes in the Kennedy pathway that catalyze the synthesis of the polar head groups found on the most abundant plant phospholipids. The Arabidopsis genome encodes four CEKs. CEK1-3 have been well characterized using viable mutants while CEK4 encodes an essential gene, making it difficult to characterize its effects on plant development and responses to the environment. We have isolated an EMS-induced allele of CEK4 called bumpy stem (bst). bst plants are viable, allowing the effects of decreased CEK4 function to be characterized throughout the Arabidopsis life cycle. bst mutants have a range of developmental defects including ectopic stem growths at the base of their flowers, reduced fertility, and short roots and stems. They are also sensitive to cold temperatures. Supplementation with choline, phosphocholine, ethanolamine, and phosphoethanolamine rescues bst root phenotypes, highlighting the flow of metabolites between the choline and ethanolamine branches of the Kennedy pathway. The identification of bst and characterization of its phenotypes defines new roles for CEK4 that go beyond its established biochemical function as an ethanolamine kinase.

20.
Emerg Top Life Sci ; 3(5): 543-549, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33523160

RESUMEN

A critical aspect of a synthetic minimal cell is expansion of the surrounding boundary layer. This layer should consist of phospholipids (mimics) as these molecules assemble into a bilayer, creating a functional barrier with specific phospholipid species that are essential for membrane related processes. As a first step towards synthetic cells, an in vitro phospholipid biosynthesis pathway has been constructed that utilizes fatty acids as precursors to produce a wide variety of phospholipid species, thereby driving membrane growth. This now needs to be developed further into a sustainable expanding system, meanwhile keeping simplicity in mind. The non-enzymatic synthesis of phospholipid-like molecules forms a realistic alternative for natural enzymatic-based pathways, that nowadays can even support functional membrane proteins. Eventually, coupling to in vitro transcription/translation is required, for which efficient mechanisms of insertion and folding of the involved membrane proteins need to be developed. Such an integrated system will form a suitable foundation of a synthetic minimal cell that eventually can be coupled to other cellular processes such as division.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA