Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biol Chem ; 298(7): 102136, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35714773

RESUMEN

Tumor protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54, and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g., COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, CD spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane-sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an amphipathic lipid packing sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and ALPS-independent mechanisms.


Asunto(s)
Liposomas , Proteínas de Neoplasias , Lípidos , Liposomas/química , Membranas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica , Vesículas Transportadoras/metabolismo
2.
J Biol Chem ; 296: 100238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33380423

RESUMEN

Variants in Apolipoprotein L1 (ApoL1) are known to be responsible for increased risk of some progressive kidney diseases among people of African ancestry. ApoL1 is an amphitropic protein that can insert into phospholipid membranes and confer anion- or cation-selective permeability to phospholipid membranes depending on pH. Whether these activities differ among the variants or whether they contribute to disease pathogenesis is unknown. We used assays of voltage-driven ion flux from phospholipid vesicles and of stable membrane association to assess differences among ApoL1 isoforms. There is a significant (approximately twofold) increase in the cation-selective ion permease activity of the two kidney-disease-associated variants compared with the reference protein. In contrast, we find no difference in the anion-selective permease activity at low pH among the isoforms. Compared with the reference sequence, the two disease-associated variants show increased stable association with phospholipid vesicles under conditions that support the cation permease activity, suggesting that the increased activity may be due to more efficient membrane association and insertion. There is no difference in membrane association among isoforms under optimal conditions for the anion permease activity. These data support a model in which enhanced cation permeability may contribute to the progressive kidney diseases associated with high-risk ApoL1 alleles.


Asunto(s)
Apolipoproteína L1/genética , Predisposición Genética a la Enfermedad , Enfermedades Renales/genética , Riñón/metabolismo , Transporte Biológico/genética , Población Negra/genética , Cationes/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/genética , Mutación con Ganancia de Función/genética , Humanos , Transporte Iónico/genética , Riñón/patología , Enfermedades Renales/patología , Lipoproteínas HDL/genética , Transducción de Señal/genética , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/genética
3.
J Biol Chem ; 295(1): 263-274, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31767684

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) promotes cell growth and proliferation in response to nutrients and growth factors. Amino acids induce lysosomal translocation of mTORC1 via the Rag GTPases. Growth factors activate Ras homolog enriched in brain (Rheb), which in turn activates mTORC1 at the lysosome. Amino acids and growth factors also induce the phospholipase D (PLD)-phosphatidic acid (PA) pathway, required for mTORC1 signaling through mechanisms that are not fully understood. Here, using human and murine cell lines, along with immunofluorescence, confocal microscopy, endocytosis, PLD activity, and cell viability assays, we show that exogenously supplied PA vesicles deliver mTORC1 to the lysosome in the absence of amino acids, Rag GTPases, growth factors, and Rheb. Of note, pharmacological or genetic inhibition of endogenous PLD prevented mTORC1 lysosomal translocation. We observed that precancerous cells with constitutive Rheb activation through loss of tuberous sclerosis complex subunit 2 (TSC2) exploit the PLD-PA pathway and thereby sustain mTORC1 activation at the lysosome in the absence of amino acids. Our findings indicate that sequential inputs from amino acids and growth factors trigger PA production required for mTORC1 translocation and activation at the lysosome.


Asunto(s)
Aminoácidos/deficiencia , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ácidos Fosfatidicos/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Endocitosis , Humanos , Ratones , Fosfolipasa D/metabolismo , Transporte de Proteínas , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
4.
J Biol Chem ; 295(9): 2570-2581, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31819008

RESUMEN

Serum amyloid A (SAA), one of the major highly conserved acute-phase proteins in most mammals, is predominantly produced by hepatocytes and also by a variety of cells in extrahepatic tissues. It is well-known that the expression of SAA is sharply increased in bacterial infections. However, the exact physiological function of SAA during bacterial infection remains unclear. Herein, we showed that SAA expression significantly increased in abscesses of Staphylococcus aureus cutaneous infected mice, which exert direct antibacterial effects by binding to the bacterial cell surface and disrupting the cell membrane in acidic conditions. Mechanically, SAA disrupts anionic liposomes by spontaneously forming small vesicles or micelles under acidic conditions. Especially, the N-terminal region of SAA is necessary for membrane disruption and bactericidal activity. Furthermore, we found that mice deficient in SAA1/2 were more susceptible to infection by S. aureus In addition, the expression of SAA in infected skin was regulated by interleukin-6. Taken together, these findings support a key role of the SAA in host defense and may provide a novel therapeutic strategy for cutaneous bacterial infection.


Asunto(s)
Antibacterianos/metabolismo , Inmunidad Innata , Proteína Amiloide A Sérica/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Proteínas de Fase Aguda/inmunología , Proteínas de Fase Aguda/metabolismo , Animales , Antibacterianos/farmacología , Adhesión Bacteriana , Membrana Celular/efectos de los fármacos , Concentración de Iones de Hidrógeno , Interleucina-6/fisiología , Ratones , Proteína Amiloide A Sérica/inmunología , Proteína Amiloide A Sérica/farmacología , Staphylococcus aureus/citología , Staphylococcus aureus/ultraestructura
5.
J Lipid Res ; 61(8): 1232-1243, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32540926

RESUMEN

PA phosphatase, encoded by PAH1 in the yeast Saccharomyces cerevisiae, catalyzes the Mg2+-dependent dephosphorylation of PA, producing DAG at the nuclear/ER membrane. This enzyme plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. As an interfacial enzyme, PA phosphatase interacts with the membrane surface, binds its substrate, and catalyzes its reaction. The Triton X-100/PA-mixed micellar system has been utilized to examine the activity and regulation of yeast PA phosphatase. This system, however, does not resemble the in vivo environment of the membrane phospholipid bilayer. We developed an assay system that mimics the nuclear/ER membrane to assess PA phosphatase activity. PA was incorporated into unilamellar phospholipid vesicles (liposomes) composed of the major nuclear/ER membrane phospholipids, PC, PE, PI, and PS. We optimized this system to support enzyme-liposome interactions and to afford activity that is greater than that obtained with the aforementioned detergent system. Activity was regulated by phospholipid composition, whereas the enzyme's interaction with liposomes was insensitive to composition. Greater activity was attained with large (≥100 nm) versus small (50 nm) vesicles. The fatty-acyl moiety of PA had no effect on this activity. PA phosphatase activity was dependent on the bulk (hopping mode) and surface (scooting mode) concentrations of PA, suggesting a mechanism by which the enzyme operates along the nuclear/ER membrane in vivo.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/citología
6.
J Biol Chem ; 294(49): 18853-18862, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31645436

RESUMEN

Posttranslational modifications of proteins, such as phosphorylation and dephosphorylation, play critical roles in cellular functions through diverse cell signaling pathways. Protein kinases and phosphatases have been described early on as key regulatory elements of the phosphorylated state of proteins. Tight spatial and temporal regulation of protein kinase and phosphatase activities has to be achieved in the cell to ensure accurate signal transduction. We demonstrated previously that phosphorylation of a membrane protein can lead to its topological rearrangement. Additionally, we found that both the rate and extent of topological rearrangement upon phosphorylation are lipid charge- and lipid environment-dependent. Here, using a model membrane protein (the bacterial lactose permease LacY reconstituted in proteoliposomes) and a combination of real-time measurements and steady-state assessments of protein topology, we established a set of experimental conditions to dissect the effects of phosphorylation and dephosphorylation of a membrane protein on its topological orientation. We also demonstrate that the phosphorylation-induced topological switch of a membrane protein can be reversed upon protein dephosphorylation, revealing a new regulatory role for phosphorylation/dephosphorylation cycles. Furthermore, we determined that the rate of topological rearrangement reversal is correlated with phosphatase activity and is influenced by the membrane's lipid composition, presenting new insights into the spatiotemporal control of the protein phosphorylation state. Together, our results highlight the importance of the compartmentalization of phosphorylation/dephosphorylation cycles in controlling membrane protein topology and, therefore, function, which are influenced by the local lipid environment of the membrane protein.


Asunto(s)
Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteolípidos/metabolismo
7.
J Biol Chem ; 293(48): 18514-18524, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30287684

RESUMEN

The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature. The GTPase atlastin is required for homotypic fusion of ER tubules. All atlastin homologs possess a conserved domain architecture consisting of a GTPase domain, a three-helix bundle middle domain, a hydrophobic membrane anchor, and a C-terminal cytosolic tail. Here, we examined several Drosophila-human atlastin chimeras to identify functional domains of human atlastin-1 in vitro Although all chimeras could hydrolyze GTP, only chimeras containing the human C-terminal tail, hydrophobic segments, or both could fuse membranes in vitro We also determined that co-reconstitution of atlastin with reticulon does not influence GTPase activity or membrane fusion. Finally, we found that both human and Drosophila atlastin hydrophobic membrane anchors do not span the membrane, but rather form two intramembrane hairpin loops. The topology of these hairpins remains static during membrane fusion and does not appear to play an active role in lipid mixing.


Asunto(s)
Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Membrana Dobles de Lípidos , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Fosfolípidos/química , Animales , Proteínas de Drosophila/química , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/química , Proteínas de Unión al GTP/química , Guanosina Trifosfato/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Dominios Proteicos
8.
J Biol Chem ; 292(44): 18344-18353, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28918394

RESUMEN

Apolipoprotein L1 (ApoL1) is a human serum protein conferring resistance to African trypanosomes, and certain ApoL1 variants increase susceptibility to some progressive kidney diseases. ApoL1 has been hypothesized to function like a pore-forming colicin and has been reported to have permeability effects on both intracellular and plasma membranes. Here, to gain insight into how ApoL1 may function in vivo, we used vesicle-based ion permeability, direct membrane association, and intrinsic fluorescence to study the activities of purified recombinant ApoL1. We found that ApoL1 confers chloride-selective permeability to preformed phospholipid vesicles and that this selectivity is strongly pH-sensitive, with maximal activity at pH 5 and little activity above pH 7. When ApoL1 and lipid were allowed to interact at low pH and were then brought to neutral pH, chloride permeability was suppressed, and potassium permeability was activated. Both chloride and potassium permeability linearly correlated with the mass of ApoL1 in the reaction mixture, and both exhibited lipid selectivity, requiring the presence of negatively charged lipids for activity. Potassium, but not chloride, permease activity required the presence of calcium ions in both the association and activation steps. Direct assessment of ApoL1-lipid associations confirmed that ApoL1 stably associates with phospholipid vesicles, requiring low pH and the presence of negatively charged phospholipids for maximal binding. Intrinsic fluorescence of ApoL1 supported the presence of a significant structural transition when ApoL1 is mixed with lipids at low pH. This pH-switchable ion-selective permeability may explain the different effects of ApoL1 reported in intracellular and plasma membrane environments.


Asunto(s)
Apolipoproteína L1/metabolismo , Membrana Celular/metabolismo , Cetilpiridinio/metabolismo , Modelos Moleculares , Potasio/metabolismo , Apolipoproteína L1/química , Apolipoproteína L1/genética , Apolipoproteína L1/farmacología , Transporte Biológico , Señalización del Calcio , Membrana Celular/química , Permeabilidad de la Membrana Celular , Cetilpiridinio/química , Fluorescencia , Concentración de Iones de Hidrógeno , Dosificación Letal Mediana , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Potasio/química , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/crecimiento & desarrollo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo
9.
J Biol Chem ; 291(52): 26773-26785, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27875299

RESUMEN

Virus-host interactions play a role in many stages of the viral lifecycle, including entry. Reovirus, a model system for studying the entry mechanisms of nonenveloped viruses, undergoes a series of regulated structural transitions that culminate in delivery of the viral genetic material. Lipids can trigger one of these conformational changes, infectious subviral particle (ISVP)-to-ISVP* conversion. ISVP* formation releases two virally encoded peptides, myristoylated µ1N (myr-µ1N) and Φ. Among these, myr-µ1N is sufficient to form pores within membranes. Released myr-µ1N can also promote ISVP* formation in trans Using thermal inactivation as a readout for ISVP-to-ISVP* conversion, we demonstrate that lipids render ISVPs less thermostable in a virus concentration-dependent manner. Under conditions in which neither lipids alone nor myr-µ1N alone promotes ISVP-to-ISVP* conversion, myr-µ1N induces particle uncoating when lipids are present. These data suggest that the pore-forming activity and the ISVP*-promoting activity of myr-µ1N are linked. Lipid-associated myr-µ1N interacts with ISVPs and triggers efficient ISVP* formation. The cooperativity between a reovirus component and lipids reveals a distinct virus-host interaction in which membranes can facilitate nonenveloped virus entry.


Asunto(s)
Proteínas de la Cápside/metabolismo , Membrana Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Lípidos de la Membrana/metabolismo , Infecciones por Reoviridae/metabolismo , Reoviridae/fisiología , Virión/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Membrana Celular/química , Membrana Celular/virología , Permeabilidad de la Membrana Celular , Células Cultivadas , Liposomas/química , Ratones , Modelos Biológicos , Ácidos Mirísticos/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Infecciones por Reoviridae/virología , Homología de Secuencia de Aminoácido , Internalización del Virus
10.
J Biol Chem ; 291(33): 17271-82, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27302065

RESUMEN

The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers.


Asunto(s)
Transportador de Glucosa de Tipo 3 , Transportador de Glucosa de Tipo 4 , Fosfolípidos , Transporte Biológico Activo/fisiología , Transportador de Glucosa de Tipo 3/química , Transportador de Glucosa de Tipo 3/metabolismo , Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Liposomas/química , Fosfolípidos/química , Fosfolípidos/metabolismo
11.
Nanomedicine ; 13(3): 1127-1136, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28064008

RESUMEN

Resveratrol and gallic acid, a lipophilic and a hydrophilic phenol, were co-loaded in innovative, biocompatible nanovesicles conceived for ensuring the protection of the skin from oxidative- and inflammatory-related affections. The basic vesicles, liposomes and glycerosomes, were produced by a simple, one-step method involving the dispersion of phospholipid and phenols in water or water/glycerol blend, respectively. Liposomes and glycerosomes were modified by the addition of poloxamer, a stabilizer and viscosity enhancer, thus obtaining viscous or semisolid dispersions of structured vesicles. The vesicles were spherical, unilamellar and small in size (~70 nm in diameter). The superior ability of the poloxamer-structured vesicles to promote the accumulation of both phenols in the skin was demonstrated, as well as their low toxicity and great ability to protect fibroblasts from chemically-induced oxidative damage. The in vivo administration of the vesicular phenols on TPA (phorbol ester)-exposed skin led to a significant reduction of oedema and leukocyte infiltration.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Ácido Gálico/administración & dosificación , Liposomas/química , Poloxámero/química , Piel/efectos de los fármacos , Estilbenos/administración & dosificación , Animales , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Edema/tratamiento farmacológico , Edema/patología , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Ácido Gálico/farmacocinética , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico , Liposomas/ultraestructura , Ratones , Estrés Oxidativo/efectos de los fármacos , Resveratrol , Piel/patología , Absorción Cutánea , Estilbenos/farmacocinética , Estilbenos/farmacología , Estilbenos/uso terapéutico , Porcinos
12.
J Biol Chem ; 290(8): 4772-4783, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25555915

RESUMEN

Fusion of tubular membranes is required to form three-way junctions found in reticular subdomains of the endoplasmic reticulum. The large GTPase Atlastin has recently been shown to drive endoplasmic reticulum membrane fusion and three-way junction formation. The mechanism of Atlastin-mediated membrane fusion is distinct from SNARE-mediated membrane fusion, and many details remain unclear. In particular, the role of the amphipathic C-terminal tail of Atlastin is still unknown. We found that a peptide corresponding to the Atlastin C-terminal tail binds to membranes as a parallel α helix, induces bilayer thinning, and increases acyl chain disorder. The function of the C-terminal tail is conserved in human Atlastin. Mutations in the C-terminal tail decrease fusion activity in vitro, but not GTPase activity, and impair Atlastin function in vivo. In the context of unstable lipid bilayers, the requirement for the C-terminal tail is abrogated. These data suggest that the C-terminal tail of Atlastin locally destabilizes bilayers to facilitate membrane fusion.


Asunto(s)
Proteínas de Drosophila/química , Retículo Endoplásmico/química , GTP Fosfohidrolasas/química , Proteínas de Unión al GTP/química , Membrana Dobles de Lípidos/química , Fusión de Membrana , Proteínas de la Membrana/química , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Secundaria de Proteína
13.
J Biol Chem ; 290(9): 5810-25, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25575593

RESUMEN

The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than ß-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.


Asunto(s)
Membrana Celular/química , Lípidos/análisis , Lípidos de la Membrana/análisis , Plantas/química , 1,2-Dipalmitoilfosfatidilcolina/análisis , Línea Celular , Colesterol/análogos & derivados , Colesterol/análisis , Imagenología Tridimensional , Lípidos/química , Lípidos de la Membrana/química , Microscopía Confocal , Modelos Moleculares , Fosfatidilcolinas/análisis , Fitosteroles/análisis , Espectrometría de Fluorescencia , Esfingolípidos/análisis
14.
Biochim Biophys Acta ; 1848(3): 821-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25482358

RESUMEN

Interactions of two local anesthetics, dibucaine and tetracaine have been studied with phospholipid vesicles containing cholesterol and/or monosialogangliosides (GM1) using fluorescence spectroscopy. The fluorescence intensity of tetracaine showed a marked increase with the increasing molar ratio of the phospholipid to tetracaine, while that of dibucaine showed opposite effects. Steady state anisotropy and the wavelength of maximum emission (λmax) decreased with the increasing phospholipids to tetracaine ratio. The extent of such changes in anisotropy and λmax in the presence and absence of two important components of neuronal membranes, cholesterol and GM1 indicated differential membrane localization of the two local anesthetics. To understand the intercellular mode of action of local anesthetics, we have also studied the interactions of dibucaine and tetracaine with brain spectrin which indicate differential spectrin interactions with similar binding strength. Thermodynamic parameters associated with such binding reveal that binding is favored by entropy. Tetracaine brings about distinct structural changes in spectrin compared to dibucaine, as reflected in the tryptophan mean lifetime and far-UV CD spectra. Tetracaine also exhibits a detergent-like property inducing concentration dependent decrease in spectrin anisotropy, further indicating structural changes in brain spectrin with probable implications in its anesthetic potential.


Asunto(s)
Dibucaína/metabolismo , Lípidos de la Membrana/metabolismo , Fosfolípidos/metabolismo , Espectrina/metabolismo , Tetracaína/metabolismo , Algoritmos , Anestésicos Locales/química , Anestésicos Locales/metabolismo , Animales , Encéfalo/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Dicroismo Circular , Dibucaína/química , Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Cinética , Lípidos de la Membrana/química , Modelos Químicos , Modelos Moleculares , Fosfolípidos/química , Unión Proteica , Ovinos , Espectrina/química , Espectrometría de Fluorescencia , Tetracaína/química , Termodinámica
15.
Biochim Biophys Acta ; 1848(6): 1367-75, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25782727

RESUMEN

To understand the role of cell membrane phospholipids during resistance development to cationic antimicrobial peptides (CAMPs) in Enterococcus faecalis, gradual dose-dependent single exposure pediocin-resistant (Pedr) mutants of E. faecalis (Efv2.1, Efv3.1, Efv3.2, Efv4.1, Efv4.2, Efv5.1, Efv5.2 and Efv5.3), conferring simultaneous resistance to other CAMPs, selected in previous study were characterized for cell membrane phospholipid head-groups and fatty acid composition. The involvement of phospholipids in resistance acquisition was confirmed by in vitro colorimetric assay using PDA (polydiacetylene)-biomimetic membranes. Estimation of ratio of amino-containing phospholipids to amino-lacking phospholipids suggests that phospholipids in cell membrane of Pedr mutants loose anionic character. At moderate level of resistance, the cell-membrane becomes neutralized while at further higher level of resistance, the cell-surface acquired positive charge. Increased expression of mprF gene (responsible for lysinylation of phospholipids) was also observed on acquiring resistance to pediocin in PedrE. faecalis. Decreased level of branched chain fatty acids in Pedr mutants might have contributed in enhancing rigidification of cell membrane and contributing towards resistance. The interaction of pediocin with PDA-biomimetic membranes prepared from wild-type and Pedr mutants was monitored by measuring percent colorimetric response (%CR). Increased %CR of pediocin against PDA-biomimetic membranes prepared from Pedr mutants confirmed that cell membrane phospholipids are involved in the interactions of pore formation by CAMPs. There was a direct linear relationship between percent colorimetric response and IC50 of CAMPs for wild-type and Pedr mutants. This relationship further reveals that in vitro colorimetric assay can be used effectively for quantification of resistance to CAMPs.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/química , Enterococcus faecalis/citología , Fluidez de la Membrana/efectos de los fármacos , Cationes Bivalentes/farmacología , Membrana Celular/efectos de los fármacos , Cromatografía en Capa Delgada , Colorimetría , Electroforesis en Gel de Agar , Enterococcus faecalis/efectos de los fármacos , Ácidos Grasos/metabolismo , Fluoresceínas/metabolismo , Magnesio/farmacología , Pruebas de Sensibilidad Microbiana , Mutación/genética , Fosfolípidos/química , Polímero Poliacetilénico , Polímeros/química , Poliinos/química , Liposomas Unilamelares/química
16.
Biochim Biophys Acta ; 1848(4): 895-906, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25554595

RESUMEN

In a previous study, it was shown that purified preS domains of hepatitis B virus (HBV) could interact with acidic phospholipid vesicles and induce aggregation, lipid mixing and leakage of internal contents which could be indicative of their involvement in the fusion of the viral and cellular membranes (Núñez, E. et al. 2009. Interaction of preS domains of hepatitis B virus with phospholipid vesicles. Biochim. Biophys. Acta 17884:417-424). In order to locate the region responsible for the fusogenic properties of preS, five mutant proteins have been obtained from the preS1 domain of HBV, in which 40 amino acids have been deleted from the sequence, with the starting point of each deletion moving 20 residues along the sequence. These proteins have been characterized by fluorescence and circular dichroism spectroscopy, establishing that, in all cases, they retain their mostly non-ordered conformation with a high percentage of ß structure typical of the full-length protein. All the mutants can insert into the lipid matrix of dimyristoylphosphatidylglycerol vesicles. Moreover, we have studied the interaction of the proteins with acidic phospholipid vesicles and each one produces, to a greater or lesser extent, the effects of destabilizing vesicles observed with the full-length preS domain. The ability of all mutants, which cover the complete sequence of preS1, to destabilize the phospholipid bilayers points to a three-dimensional structure and/or distribution of amino acids rather than to a particular amino acid sequence as being responsible for the membrane fusion process.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B/metabolismo , Fusión de Membrana/fisiología , Fosfatidilgliceroles/metabolismo , Proteínas Virales de Fusión/metabolismo , Dicroismo Circular , Fluorescencia , Hepatitis B/virología , Humanos , Mutación/genética , Fosfatidilgliceroles/química , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética
17.
J Biol Chem ; 289(27): 19098-109, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24860098

RESUMEN

ATP is as an extracellular signaling molecule able to amplify the cell lysis inflicted by certain bacterial toxins including the two RTX toxins α-hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans. Inhibition of P2X receptors completely blocks the RTX toxin-induced hemolysis over a larger concentration range. It is, however, at present not known how the ATP that provides the amplification is released from the attacked cells. Here we show that both HlyA and LtxA trigger acute release of ATP from human erythrocytes that preceded and were not caused by cell lysis. This early ATP release did not occur via previously described ATP-release pathways in the erythrocyte. Both HlyA and LtxA were capable of triggering ATP release in the presence of the pannexin 1 blockers carbenoxolone and probenecid, and the HlyA-induced ATP release was found to be similar in erythrocytes from pannexin 1 wild type and knock-out mice. Moreover, the voltage-dependent anion channel antagonist TRO19622 had no effect on ATP release by either of the toxins. Finally, we showed that both HlyA and LtxA were able to release ATP from ATP-loaded lipid (1-palmitoyl-2-oleoyl-phosphatidylcholine) vesicles devoid of any erythrocyte channels or transporters. Again we were able to show that this happened in a non-lytic fashion, using calcein-containing vesicles as controls. These data show that both toxins incorporate into lipid vesicles and allow ATP to be released. We suggest that both toxins cause acute ATP release by letting ATP pass the toxin pores in both human erythrocytes and artificial membranes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacología , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacología , Aggregatibacter actinomycetemcomitans , Animales , Conexinas/deficiencia , Conexinas/genética , Eritrocitos/citología , Técnicas de Inactivación de Genes , Hemoglobinas/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Membranas Artificiales , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fosfatidilcolinas/metabolismo , Porosidad
18.
J Biol Chem ; 289(35): 24347-65, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25023280

RESUMEN

G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[ß,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptor Muscarínico M2/metabolismo , Western Blotting , Electroforesis en Gel de Poliacrilamida , Inmunoprecipitación , Unión Proteica , Receptor Muscarínico M2/química
19.
J Biol Chem ; 289(28): 19737-46, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24855647

RESUMEN

The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA.


Asunto(s)
Membrana Celular , Hormonas , Multimerización de Proteína/fisiología , Factores de Intercambio de Guanina Nucleótido Rho , Catálisis , Membrana Celular/química , Membrana Celular/enzimología , Membrana Celular/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Células HeLa , Hormonas/química , Hormonas/genética , Hormonas/metabolismo , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/química , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
20.
Biochim Biophys Acta ; 1838(10): 2635-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24863056

RESUMEN

The influences of ergosterol and cholesterol on the activity of the nystatin were investigated experimentally in a POPC model membrane as well as theoretically. The behavior of giant unilamellar vesicles (GUVs) under osmotic stress due to the formation of transmembrane pores was observed on single vesicles at different nystatin concentrations using phase-contrast microscopy. A significant shift of the typical vesicle behavior, i.e., morphological alterations, membrane bursts, slow vesicle ruptures and explosions, towards lower nystatin concentrations was detected in the ergosterol-containing vesicles and a slight shift towards higher nystatin concentrations was detected in the cholesterol-containing membranes. In addition, the nystatin activity was shown to be significantly affected by the ergosterol membrane's molar fraction in a non-proportional manner. The observed tension-pore behavior was interpreted using a theoretical model based on the osmotic phenomena induced by the occurrence of size-selective nystatin pores. The number of nystatin pores for different vesicle behavior was theoretically determined and the role of the different mechanical characteristics of the membrane, i.e., the membrane's expansivity and bending moduli, the line tension and the lysis tension, in the tension-pore formation process was quantified. The sterol-induced changes could not be explained adequately on the basis of the different mechanical characteristics, and were therefore interpreted mainly by the direct influences of the membrane sterols on the membrane binding, the partition and the pore-formation process of nystatin.


Asunto(s)
Colesterol/química , Ionóforos/química , Membranas Artificiales , Nistatina/química , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA