Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982146

RESUMEN

This study aimed to investigate morphological and metabolic changes in the brains of 5xFAD mice. Structural magnetic resonance imaging (MRI) and 1H magnetic resonance spectroscopy (MRS) were obtained in 10- and 14-month-old 5xFAD and wild-type (WT) mice, while 31P MRS scans were acquired in 11-month-old mice. Significantly reduced gray matter (GM) was identified by voxel-based morphometry (VBM) in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice compared to WT mice. Significant reductions in N-acetyl aspartate and elevation of myo-Inositol were revealed by the quantification of MRS in the hippocampus of 5xFAD mice, compared to WT. A significant reduction in NeuN-positive cells and elevation of Iba1- and GFAP-positive cells supported this observation. The reduction in phosphomonoester and elevation of phosphodiester was observed in 11-month-old 5xFAD mice, which might imply a sign of disruption in the membrane synthesis. Commonly reported 1H MRS features were replicated in the hippocampus of 14-month-old 5xFAD mice, and a sign of disruption in the membrane synthesis and elevation of breakdown were revealed in the whole brain of 5xFAD mice by 31P MRS. GM volume reduction was identified in the thalamus, hypothalamus, and periaqueductal gray areas of 5xFAD mice.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/metabolismo , Imagen por Resonancia Magnética , Sustancia Gris/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad
2.
NMR Biomed ; 35(10): e4779, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35642280

RESUMEN

Phosphorus (31 P-) MRS in vivo enables detection and quantification of important phosphorus-containing metabolites in biological tissues. 31 P-MRS of the normal spleen is challenging due to the relatively small volume and the larger distance between the spleen and surface coil. However, reference spectra of the healthy spleen are invaluable in studies of splenic malignancies and benign causes of splenomegaly, as well as in the study of its physiology. The purpose of this work was to investigate the feasibility of localized 31 P-MRS of healthy spleen in situ in a clinically acceptable measurement time using a clinical 3 T MR scanner. In this work, 31 P spectra of five healthy volunteers were measured using single-voxel image-selected in vivo spectroscopy (ISIS). The measurement sequence was augmented by broadband proton decoupling and nuclear Overhauser effect enhancement. It is demonstrated that localized 31 P-MRS of the spleen in situ using single-voxel ISIS is feasible on a clinical 3 T scanner in a clinically acceptable acquisition time. However, results have to be corrected for the transmitter excitation profile, and chemical shift displacement errors need to be taken into consideration during placement of the volume of interest. Results presented here could be used as a reference in future studies of splenomegaly caused by haematological malignancies.


Asunto(s)
Fósforo , Bazo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Protones , Bazo/diagnóstico por imagen , Esplenomegalia
3.
NMR Biomed ; 35(3): e4688, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35060211

RESUMEN

The article of Lopez et al describes the use of a multi-parametric MR approach to study muscle T2 relaxation times and 31 P-MRS indices of energetics and sarcolemma integrity in a mouse model of DMD, the mdx mouse. Muscular dystrophies have a multi-factorial disease cascade, and there are several MR methods used to assess these. Aspects that reflect disease progression are outlined on the left, while features that are more related to disease activity are outlined on the right.


Asunto(s)
Distrofia Muscular de Duchenne , Sarcolema , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos mdx , Músculos
4.
NMR Biomed ; 34(2): e4422, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33025629

RESUMEN

Measurement of ATP concentrations and synthesis in humans indicated abnormal hepatic energy metabolism in obesity, non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes. Further mechanistic studies on energy metabolism require the detailed phenotyping of specific mouse models. Thus, this study aimed to establish and evaluate a robust and fast single voxel 31 P MRS method to quantify hepatic γ-ATP concentrations at 11.7 T in three mouse models with different insulin sensitivities and liver fat contents (72-week-old C57BL/6 control mice, 72-week-old insulin resistant sterol regulatory-element binding protein-1c overexpressing (SREBP-1c+ ) mice and 10-12-week-old prediabetic non-obese diabetic (NOD) mice). Absolute quantification was performed by employing an external reference and a matching replacement ATP phantom with 3D image selected in vivo spectroscopy 31 P MRS. This single voxel 31 P MRS method non-invasively quantified hepatic γ-ATP within 17 min and the repeatability tests provided a coefficient of variation of 7.8 ± 1.1%. The mean hepatic γ-ATP concentrations were markedly lower in SREBP-1c+ mice (1.14 ± 0.10 mM) than in C57BL/6 mice (2.15 ± 0.13 mM; p < 0.0002) and NOD mice (1.78 ± 0.13 mM; p < 0.006, one-way ANOVA test). In conclusion, this method allows us to rapidly and precisely measure hepatic γ-ATP concentrations, and thereby to non-invasively detect abnormal hepatic energy metabolism in mice with different degrees of insulin resistance and NAFLD. Thus, this 31 P MRS will also be useful for future mechanistic as well as therapeutic translational studies in other murine models.


Asunto(s)
Adenosina Trifosfato/análisis , Hígado/química , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Fósforo/análisis , Tejido Adiposo/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Resistencia a la Insulina , Lipodistrofia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Resonancia Magnética Nuclear Biomolecular/instrumentación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
5.
NMR Biomed ; 33(11): e4385, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32754921

RESUMEN

Quantitative MRI and MRS of muscle are increasingly being used to measure individual pathophysiological processes in Becker muscular dystrophy (BMD). In particular, muscle fat fraction was shown to be highly associated with functional tests in BMD. However, the muscle strength per unit of contractile cross-sectional area is lower in patients with BMD compared with healthy controls. This suggests that the quality of the non-fat-replaced (NFR) muscle tissue is lower than in healthy controls. Consequently, a measure that reflects changes in muscle tissue itself is needed. Here, we explore the potential of water T2 relaxation times, diffusion parameters and phosphorus metabolic indices as early disease markers in patients with BMD. For this purpose, we examined these measures in fat-replaced (FR) and NFR lower leg muscles in patients with BMD and compared these values with those in healthy controls. Quantitative proton MRI (three-point Dixon, multi-spin-echo and diffusion-weighted spin-echo echo planar imaging) and 2D chemical shift imaging 31 P MRS data were acquired in 24 patients with BMD (age 18.8-66.2 years) and 13 healthy controls (age 21.3-63.6 years). Muscle fat fractions, phosphorus metabolic indices, and averages and standard deviations (SDs) of the water T2 relaxation times and diffusion tensor imaging (DTI) parameters were assessed in six individual leg muscles. Phosphodiester levels were increased in the NFR and FR tibialis anterior, FR peroneus and FR gastrocnemius lateralis muscles. No clear pattern was visible for the other metabolic indices. Increased T2 SD was found in the majority of FR muscles compared with NFR and healthy control muscles. No differences in average water T2 relaxation times or DTI indices were found between groups. Overall, our results indicate that primarily muscles that are further along in the disease process showed increases in T2 heterogeneity and changes in some metabolic indices. No clear differences were found for the DTI indices between groups.


Asunto(s)
Imagen por Resonancia Magnética , Distrofia Muscular de Duchenne/diagnóstico por imagen , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Anciano , Humanos , Concentración de Iones de Hidrógeno , Masculino , Metaboloma , Persona de Mediana Edad , Fosfocreatina/metabolismo , Fósforo/metabolismo , Agua , Adulto Joven
6.
NMR Biomed ; : e4246, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32037688

RESUMEN

Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.

7.
NMR Biomed ; 33(6): e4295, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32180296

RESUMEN

An unknown intense signal (Pun ) with a mean chemical shift of 5.3 ppm was observed in 31 P MR spectra from the calf muscles of patients with the diabetic foot syndrome. The aim of the study was to identify the origin of this signal and its potential as a biomarker of muscle injury. Calf muscles of 68 diabetic patients (66.3 ± 8.6 years; body mass index = 28.2 ± 4.3 kg/m2 ) and 12 age-matched healthy controls were examined by (dynamic) 31 P MRS (3 T system, 31 P/1 H coil). Phantoms (glucose-1-phosphate, Pi and PCr) were measured at pH values of 7.05 and 7.51. At rest, Pun signals with intensities higher than 50% of the Pi intensity were observed in 10 of the 68 examined diabetic subjects. We tested two hypothetical origins of the Pun signal: (1) phosphorus from phosphoesters and (2) phosphorus from extra- and intracellular alkaline phosphate pools. 2,3-diphosphoglycerate and glucose-1-phosphate are the only phosphoesters with signals in the chemical shift region close to 5.3 ppm. Both compounds can be excluded: 2,3-diphosphoglycerate due to the missing second signal component at 6.31 ppm; glucose-1-phosphate because its chemical shifts are about 0.2 ppm downfield from the Pi signal (4.9 ppm). If the Pun signal is from phosphate, it represents a pH value of 7.54 ± 0.05. Therefore, it could correspond to signals of Pi in mitochondria. However, patients with critical limb ischemia have rather few mitochondria and so the Pun signal probably originates from interstitia. Our data suggest that the increased Pun signal observed in patients with the diabetic foot syndrome is a biomarker of severe muscular damage.


Asunto(s)
Extremidades/diagnóstico por imagen , Extremidades/patología , Isquemia/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Fósforo/química , Procesamiento de Señales Asistido por Computador , Anciano , Humanos , Concentración de Iones de Hidrógeno , Fantasmas de Imagen , Descanso
8.
NMR Biomed ; 32(10): e4054, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633389

RESUMEN

The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.


Asunto(s)
Espectroscopía de Resonancia Magnética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Colina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Metaboloma , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Ácido Succínico/metabolismo
9.
NMR Biomed ; 31(6): e3905, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29578260

RESUMEN

Exercise studies investigating the metabolic response of calf muscles using 31 P MRS are usually performed with a single knee angle. However, during natural movement, the distribution of workload between the main contributors to force, gastrocnemius and soleus is influenced by the knee angle. Hence, it is of interest to measure the respective metabolic response of these muscles to exercise as a function of knee angle using localized spectroscopy. Time-resolved multivoxel 31 P MRS at 7 T was performed simultaneously in gastrocnemius medialis and soleus during rest, plantar flexion exercise and recovery in 12 healthy volunteers. This experiment was conducted with four different knee angles. PCr depletions correlated negatively with knee angle in gastrocnemius medialis, decreasing from 79±14 % (extended leg) to 35±23 %(∼40°), and positively in soleus, increasing from 20±21 % to 36±25 %; differences were significant. Linear correlations were found between knee angle and end-exercise PCr depletions in gastrocnemius medialis (R2 =0.8) and soleus (R2 =0.53). PCr recovery times and end-exercise pH changes that correlated with PCr depletion were consistent with the literature in gastrocnemius medialis and differences between knee angles were significant. These effects were less pronounced in soleus and not significant for comparable PCr depletions. Maximum oxidative capacity calculated for all knee angles was in excellent agreement with the literature and showed no significant changes between different knee angles. In conclusion, these findings confirm that plantar flexion exercise with a straight leg is a suitable paradigm, when data are acquired from gastrocnemius only (using either localized MRS or small surface coils), and that activation of soleus requires the knee to be flexed. The present study comprises a systematic investigation of the effects of the knee angle on metabolic parameters, measured with dynamic multivoxel 31 P MRS during muscle exercise and recovery, and the findings should be used in future study design.


Asunto(s)
Ejercicio Físico/fisiología , Articulación de la Rodilla/fisiología , Espectroscopía de Resonancia Magnética , Fósforo/química , Rango del Movimiento Articular/fisiología , Adulto , Femenino , Humanos , Concentración de Iones de Hidrógeno , Modelos Lineales , Masculino , Oxidación-Reducción , Fosfocreatina/metabolismo
10.
Magn Reson Med ; 78(6): 2082-2094, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28127795

RESUMEN

PURPOSE: In vivo MRS is often characterized by a spectral signal-to-noise ratio (SNR) that varies highly between experiments. A common design for spectroscopic studies is to compare the ratio of two spectral peak amplitudes between groups, e.g. individual PCr/γ-ATP ratios in 31 P-MRS. The uncertainty on this ratio is often neglected. We wished to explore this assumption. THEORY: The canonical theory for the propagation of uncertainty on the ratio of two spectral peaks and its incorporation in the Frequentist hypothesis testing framework by weighted averaging is presented. METHODS: Two retrospective re-analyses of studies comparing spectral peak ratios and one prospective simulation were performed using both the weighted and unweighted methods. RESULTS: It was found that propagating uncertainty correctly improved statistical power in all cases considered, which could be used to reduce the number of subjects required to perform an MR study. CONCLUSION: The variability of in vivo spectroscopy data is often accounted for by requiring it to meet an SNR threshold. A theoretically sound propagation of the variable uncertainty caused by quantifying spectra of differing SNR is therefore likely to improve the power of in vivo spectroscopy studies. Magn Reson Med 78:2082-2094, 2017. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Algoritmos , Animales , Simulación por Computador , Diabetes Mellitus/diagnóstico por imagen , Humanos , Modelos Estadísticos , Imagen Molecular , Método de Montecarlo , Fósforo/química , Estudios Prospectivos , Ratas , Ratas Endogámicas SHR , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Relación Señal-Ruido
11.
NMR Biomed ; 30(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27859827

RESUMEN

Quantitative MRI and MRS are increasingly important as non-invasive outcome measures in therapy development for Duchenne muscular dystrophy (DMD). Many studies have focussed on individual measures such as fat fraction and metabolite levels in relation to age and functionality, but much less attention has been given to how these indices relate to each other. Here, we assessed spatially resolved metabolic changes in leg muscles of DMD patients, and classified muscles according to the degree of fat replacement compared with healthy controls. Quantitative MRI (three-point Dixon and multi-spin echo without fat suppression and a tri-exponential fit) and 2D-CSI 31 P MRS scans were obtained from 18 DMD patients and 12 healthy controls using a 3 T and a 7 T MR scanner. Metabolite levels, T2 values and fat fraction were individually assessed for five lower leg muscles. In muscles with extensive fat replacement, phosphodiester over adenosine triphosphate (PDE/ATP), inorganic phosphate over phosphocreatine, intracellular tissue pH and T2 were significantly increased compared with healthy controls. In contrast, in muscles without extensive fat replacement, only PDE/ATP and T2 values were significantly elevated. Overall, our results show that PDE levels and T2 values increase prior to the occurrence of fat replacement and remain elevated in later stages of the disease. This suggests that these individual measures could not only function as early markers for muscle damage but also reflect potentially reversible pathology in the more advanced stages.


Asunto(s)
Adenosina Trifosfato/metabolismo , Tejido Adiposo/patología , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Adolescente , Niño , Preescolar , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/diagnóstico , Fósforo/farmacocinética , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
J Magn Reson ; 343: 107286, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36075133

RESUMEN

PURPOSE: We constructed a 13C/31P surface coil at 3 T for studying cancer metabolism and bioenergetics. In a single scan session, hyperpolarized 13C-pyruvate MRS and 31P MRS was carried out for a healthy rat brain. METHODS: All experiments were carried out at 3 Tesla. The multinuclear surface coil was designed as two coplanar loops each tuned to either the 13C or 31P operating frequency with an LCC trap on the 13C loop. A commercial volume proton coil was used for anatomical localization and B0 shimming. Single tuned coils operating at either the 13C or 31P frequency were built to evaluate the relative performance of the multinuclear coil. Coil performance metrics consisted of measuring Q factor ratio, calculating system input power using a single-pulse acquisition, and acquiring SNR and flip angle maps using 2D CSI sequences. To observe in vivo spectra, a bolus of hyperpolarized [1-13C] pyruvate was administered via tail vein. In vivo13C and endogenous 31P spectra were obtained in a single scan session using 1D slice selective acquisitions. RESULTS: When compared with single tuned surface coils, the multinuclear coil performance showed a decrease in Q factor ratio, SNR, and transmit efficiency. Flip angle maps showed adequate flip angles within the phantom when the transmit voltage was set using an external phantom. Results show good detection of 13C labeled lactate, alanine, and bicarbonate in addition to ATP from 31P MRS. CONCLUSIONS: The coil enables obtaining complementary information within a scan session, thus reducing the number of trials and minimizing biological variability for studies of metabolism and bioenergetics.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Animales , Ratas , Roedores/metabolismo , Bicarbonatos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fantasmas de Imagen , Ácido Pirúvico/metabolismo , Lactatos , Alanina , Adenosina Trifosfato , Diseño de Equipo
13.
Front Physiol ; 13: 793987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35173629

RESUMEN

In this acute intervention study, we investigated the potential benefit of ketone supplementation in humans by studying cardiac phosphocreatine to adenosine-triphosphate ratios (PCr/ATP) and skeletal muscle PCr recovery using phosphorus magnetic resonance spectroscopy (31P-MRS) before and after ingestion of a ketone ester drink. We recruited 28 healthy individuals: 12 aged 23-70 years for cardiac 31P-MRS, and 16 aged 60-75 years for skeletal muscle 31P-MRS. Baseline and post-intervention resting cardiac and dynamic skeletal muscle 31P-MRS scans were performed in one visit, where 25 g of the ketone monoester, deltaG®, was administered after the baseline scan. Administration was timed so that post-intervention 31P-MRS would take place 30 min after deltaG® ingestion. The deltaG® ketone drink was well-tolerated by all participants. In participants who provided blood samples, post-intervention blood glucose, lactate and non-esterified fatty acid concentrations decreased significantly (-28.8%, p ≪ 0.001; -28.2%, p = 0.02; and -49.1%, p ≪ 0.001, respectively), while levels of the ketone body D-beta-hydroxybutyrate significantly increased from mean (standard deviation) 0.7 (0.3) to 4.0 (1.1) mmol/L after 30 min (p ≪ 0.001). There were no significant changes in cardiac PCr/ATP or skeletal muscle metabolic parameters between baseline and post-intervention. Acute ketone supplementation caused mild ketosis in blood, with drops in glucose, lactate, and free fatty acids; however, such changes were not associated with changes in 31P-MRS measures in the heart or in skeletal muscle. Future work may focus on the effect of longer-term ketone supplementation on tissue energetics in groups with compromised mitochondrial function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA