Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(44): e2204173, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36161494

RESUMEN

Passivation is a popular method to increase power conversion efficiency (PCE), reduce hysteresis related to surface traps and defects, and adjust mismatched energy levels. In this paper, an approach is reported using ammonium chloride (AC) to enhance passivation effects by controlling chlorine (Cl) and ammonium ions (NH4 + ) on the front and back side of tin oxides (SnO2 ). AC pre-treatment is applied to indium tin-oxide (ITO) prior to SnO2 deposition to advance the passivation approaches and compare the completely separated NH4 + and Cl passivation effects, and sole NH4 + is successfully isolated on the SnO2 surface, the counterpart of AC-post-treatment, generating ammonia (NH3 ) and Cl. It is demonstrated that multifunctional healing effects of NH4 + are ascribed from AC-pre-treatment being the basis of SnO2 crystallization and adjusting bifacial interface energy levels at ITO/SnO2 and SnO2 /perovskite to enhance photo-carrier transport. As calculated by density functional theory, how the change of the passivation agent from Cl to NH4 + more effectively suppresses non-radiative recombination ascribed to hydrated SnO2 surface defects is explained. Consequently, enhancement of photo-carrier transport significantly improves a superior open-circuit voltage of 1.180 V and suppresses the hysteresis, which leads to the PCE of 22.25% in an AC-pre-treated device 3.000% higher than AC-post-treated devices.

2.
Nanotechnology ; 33(22)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35168229

RESUMEN

In this work, we use pump-probe Kelvin probe force microscopy (pp-KPFM) in combination with non-contact atomic force microscopy (nc-AFM) under ultrahigh vacuum, to investigate the nature of the light-induced surface potential dynamics in alumina-passivated crystalline silicon, and in an organic bulk heterojunction thin film based on the PTB7-PC71BM tandem. In both cases, we demonstrate that it is possible to identify and separate the contributions of two different kinds of photo-induced charge distributions that give rise to potential shifts with opposite polarities, each characterized by different dynamics. The data acquired on the passivated crystalline silicon are shown to be fully consistent with the band-bending at the silicon-oxide interface, and with electron trapping processes in acceptors states and in the passivation layer. The full sequence of events that follow the electron-hole generation can be observed on the pp-KPFM curves, i.e. the carriers spatial separation and hole accumulation in the space charge area, the electron trapping, the electron-hole recombination, and finally the electron trap-release. Two dimensional dynamical maps of the organic blend photo-response are obtained by recording the pump-probe KPFM curves in data cube mode, and by implementing a specific batch processing protocol. Sample areas displaying an extra positive SPV component characterized by decay time-constants of a few tens of microseconds are thus revealed, and are tentatively attributed to specific interfaces formed between a polymer-enriched skin layer and recessed acceptor aggregates. Decay time constant images of the negative SPV component confirm that the acceptor clusters act as electron-trapping centres. Whatever the photovoltaic technology, our results exemplify how some of the SPV components may remain completely hidden to conventional SPV imaging by KPFM, with possible consequences in terms of photo-response misinterpretation. This work furthermore highlights the need of implementing time-resolved techniques that can provide a quantitative measurement of the time-resolved potential.

3.
Beilstein J Nanotechnol ; 9: 1834-1843, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013877

RESUMEN

In recent years, the investigation of the complex interplay between the nanostructure and photo-transport mechanisms has become of crucial importance for the development of many emerging photovoltaic technologies. In this context, Kelvin probe force microscopy under frequency-modulated excitation has emerged as a useful technique for probing photo-carrier dynamics and gaining access to carrier lifetime at the nanoscale in a wide range of photovoltaic materials. However, some aspects about the data interpretation of techniques based on this approach are still the subject of debate, for example, the plausible presence of capacitance artifacts. Special attention shall also be given to the mathematical model used in the data-fitting process as it constitutes a determining aspect in the calculation of time constants. Here, we propose and demonstrate an automatic numerical simulation routine that enables to predict the behavior of spectroscopy curves of the average surface photovoltage as a function of a frequency-modulated excitation source in photovoltaic materials, enabling to compare simulations and experimental results. We describe the general aspects of this simulation routine and we compare it against experimental results previously obtained using single-point Kelvin probe force microscopy under frequency-modulated excitation over a silicon nanocrystal solar cell, as well as against results obtained by intensity-modulated scanning Kelvin probe microscopy over a polymer/fullerene bulk heterojunction device. Moreover, we show how this simulation routine can complement experimental results as additional information about the photo-carrier dynamics of the sample can be gained via the numerical analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA