RESUMEN
Akt is a critical protein kinase that drives cancer proliferation, modulates metabolism, and is activated by C-terminal phosphorylation. The current structural model for Akt activation by C-terminal phosphorylation has centered on intramolecular interactions between the C-terminal tail and the N lobe of the kinase domain. Here, we employ expressed protein ligation to produce site-specifically phosphorylated forms of purified Akt1 that are well suited for mechanistic analysis. Using biochemical, crystallographic, and cellular approaches, we determine that pSer473-Akt activation is driven by an intramolecular interaction between the C-tail and the pleckstrin homology (PH)-kinase domain linker that relieves PH domain-mediated Akt1 autoinhibition. Moreover, dual phosphorylation at Ser477/Thr479 activates Akt1 through a different allosteric mechanism via an apparent activation loop interaction that reduces autoinhibition by the PH domain and weakens PIP3 affinity. These results provide a new framework for understanding how Akt is controlled in cell signaling and suggest distinct functions for differentially modified Akt forms.
Asunto(s)
Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Células HCT116 , Humanos , Fosforilación , Dominios Homólogos a Pleckstrina , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt/química , Serina/química , Transducción de Señal , Treonina/químicaRESUMEN
Posttranslational modification (PTM), through the recruitment of effector proteins (i.e., "readers") that signal downstream events, plays key roles in regulating a variety of cellular processes. To understand how a PTM is recognized, it is necessary to find its readers and, importantly, the location of the binding pockets responsible for PTM recognition. Although various methods have been developed to identify PTM readers, it remains a challenge to directly map the PTM-binding regions, especially for intrinsically disordered domains. Here, we demonstrate a photo-crosslinkable, clickable, and cleavable tri-functional amino acid, ADdis-Cys, that when coupled with mass spectrometry (ADdis-Cys-MS) can not only identify PTM readers from complex proteomes but also simultaneously map their PTM-recognition modules. Using ADdis-Cys-MS, we successfully identify the binding sites of several reader-PTM interactions, among which we discover human C1QBP as a histone chaperone. This robust method should find wide applications in examining other histone or non-histone PTM-mediated protein-protein interactions.
Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Mapeo de Interacción de Proteínas/métodos , Aminoácidos/genética , Sitios de Unión , Química Clic/métodos , Reactivos de Enlaces Cruzados , Cisteína/análogos & derivados , Cisteína/síntesis química , Cisteína/química , Histonas/metabolismo , Humanos , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo , Proteómica/métodosRESUMEN
Pausing by RNA polymerase (RNAP) during transcription elongation, in which a translocating RNAP uses a "stepping" mechanism, has been studied extensively, but pausing by RNAP during initial transcription, in which a promoter-anchored RNAP uses a "scrunching" mechanism, has not. We report a method that directly defines the RNAP-active-center position relative to DNA with single-nucleotide resolution (XACT-seq; "crosslink-between-active-center-and-template sequencing"). We apply this method to detect and quantify pausing in initial transcription at 411 (â¼4,000,000) promoter sequences in vivo in Escherichia coli. The results show initial-transcription pausing can occur in each nucleotide addition during initial transcription, particularly the first 4 to 5 nucleotide additions. The results further show initial-transcription pausing occurs at sequences that resemble the consensus sequence element for transcription-elongation pausing. Our findings define the positional and sequence determinants for initial-transcription pausing and establish initial-transcription pausing is hard coded by sequence elements similar to those for transcription-elongation pausing.
Asunto(s)
ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN/métodos , Dominio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción GenéticaRESUMEN
G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.
Asunto(s)
G-Cuádruplex , ADN/química , Replicación del ADN , ARN/químicaRESUMEN
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Asunto(s)
Neoplasias , Esfingolípidos , Humanos , Esfingolípidos/metabolismo , Química Clic , Transporte BiológicoRESUMEN
Lysosomes are catabolic organelles involved in macromolecular digestion, and their dysfunction is associated with pathologies ranging from lysosomal storage disorders to common neurodegenerative diseases, many of which have lipid accumulation phenotypes. The mechanism of lipid efflux from lysosomes is well understood for cholesterol, while the export of other lipids, particularly sphingosine, is less well studied. To overcome this knowledge gap, we have developed functionalized sphingosine and cholesterol probes that allow us to follow their metabolism, protein interactions, and their subcellular localization. These probes feature a modified cage group for lysosomal targeting and controlled release of the active lipids with high temporal precision. An additional photocrosslinkable group allowed for the discovery of lysosomal interactors for both sphingosine and cholesterol. In this way, we found that two lysosomal cholesterol transporters, NPC1 and to a lesser extent LIMP-2/SCARB2, bind to sphingosine and showed that their absence leads to lysosomal sphingosine accumulation which hints at a sphingosine transport role of both proteins. Furthermore, artificial elevation of lysosomal sphingosine levels impaired cholesterol efflux, consistent with sphingosine and cholesterol sharing a common export mechanism.
Asunto(s)
Proteínas Portadoras , Esfingosina , Proteínas Portadoras/metabolismo , Esfingosina/metabolismo , Esteroles/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Colesterol/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Lisosomas/metabolismoRESUMEN
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Azidas , Proteínas que Contienen Bromodominio , Proteínas de Unión al ADN , Acetilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Azidas/metabolismo , Histonas/metabolismo , Interleucinas/metabolismo , Unión Proteica , Humanos , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.
Asunto(s)
ADP Ribosa Transferasas , Receptores ErbB , Exotoxinas , Neoplasias de Cabeza y Cuello , Inmunoglobulina G , Inmunotoxinas , Exotoxina A de Pseudomonas aeruginosa , Factores de Virulencia , Humanos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptores ErbB/inmunología , Animales , Inmunotoxinas/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Ratones , Inmunoglobulina G/farmacología , Línea Celular Tumoral , Exotoxinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Cetuximab/farmacología , Ratones Desnudos , Toxinas Bacterianas , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Femenino , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacologíaRESUMEN
In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.
Asunto(s)
Reactivos de Enlaces Cruzados , Fenilalanina , Flujo de Trabajo , Fenilalanina/química , Fenilalanina/análogos & derivados , Reactivos de Enlaces Cruzados/química , Humanos , Aminoácidos/química , Aminoácidos/genética , Proteómica/métodos , Espectrometría de Masas/métodosRESUMEN
Heat shock cognate protein 70 (Hsc70/HSPA8) belongs to the Hsp70 family of molecular chaperones. The fundamental functions of Hsp70 family molecular chaperones depend on ATP-dependent allosteric regulation of binding and release of hydrophobic polypeptide substrates. Hsc70 is also involved in various other cellular functions including selective pathways of protein degradation: chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), in which Hsc70 recruits substrate proteins containing a KFERQ-like pentapeptide motif from the cytosol to lysosomes and late endosomes, respectively. However, whether the interaction between Hsc70 and the pentapeptide motif is direct or mediated by other molecules has remained unknown. In the present study, we introduced a photo-crosslinker near the KFERQ motif in a CMA/eMI model substrate and successfully detected its crosslinking with Hsc70, revealing the direct interaction between Hsc70 and the KFERQ motif for the first time. In addition, we demonstrated that the loss of the Hsc70 ATPase activity by the D10 N mutation appreciably reduced the crosslinking efficiency. Our present results suggested that the ATP allostery of Hsc70 is involved in the direct interaction of Hsc70 with the KFERQ-like pentapeptide.
RESUMEN
The highly porous morphology of chitosan cryogels, with submicrometric-sized pore cell walls, provides a large surface area which leads to fast water absorption and elevated swelling degrees. These characteristics are crucial for the applications of nitric oxide (NO) releasing biomaterials, in which the release of NO is triggered by the hydration of the material. In the present study, we report the development of chitosan cryogels (CS) with a porous structure of interconnected cells, with wall thicknesses in the range of 340-881 nm, capable of releasing NO triggered by the rapid hydration process. This property was obtained using an innovative strategy based on the functionalization of CS with two previously synthesized S-nitrosothiols: S-nitrosothioglycolic acid (TGA(SNO)) and S-nitrosomercaptosuccinic acid (MSA(SNO)). For this purpose, CS was previously methacrylated with glycidyl methacrylate and subsequently submitted to photocrosslinking and freeze-drying processes. The photocrosslinked hydrogels thus obtained were then functionalized with TGA(SNO) and MSA(SNO) in reactions mediated by carbodiimide. After functionalization, the hydrogels were frozen and freeze-dried to obtain porous S-nitrosated chitosan cryogels with high swelling capacities. Through chemiluminescence measurements, we demonstrated that CS-TGA(SNO) and CS-MSA(SNO) cryogels spontaneously release NO upon water absorption at rates of 3.34 × 10-2 nmol mg-1 min-1 and 1.27 × 10-1 nmol mg-1 min-1, respectively, opening new perspectives for the use of CS as a platform for localized NO delivery in biomedical applications.
Asunto(s)
Quitosano , Criogeles , Óxido Nítrico , Quitosano/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Criogeles/química , Porosidad , Procesos Fotoquímicos , Reactivos de Enlaces Cruzados/químicaRESUMEN
BACKGROUND: Natural DNA restriction enzymes bind duplex DNA with high affinity at multiple sites; however, for some of the artificial chemical-based restriction moieties, invasion of the double-strand for efficient cleavage is an obstacle. We have previously reported photo-induced double-duplex invasion (pDDI) using 3-cyanovinylcarbazole (K)-containing probes for both the target strands that photo-crosslink with pyrimidine bases in a sequence-specific manner on both the strands, stabilizing the opened double-strand for cleavage. The drawback of the pDDI was low efficiency due to inter-probe cross-linking, solved by the inclusion of 5-cyano-uridine at -1 position on the complimentary strand with respect to K in both probes. Although this led to reduced inter-probe cross-linking, the pDDI efficiency was still low. RESULTS: Here, we report that inter-probe cross-linking and intra-probe cross-linking of a single probe is also leading to reduced pDDI efficiency. We addressed this problem by designing DDI probes to inhibit both inter-probe and intra-probe cross-linking. CONCLUSION: Based on the new design of pDDI probe with 5-cyano uridine led to a drastic increase in the efficiency of pDDI in (400-mer) double-stranded DNA with only 1 s of photo-irradiation.
Asunto(s)
Carbazoles , ADN , Reactivos de Enlaces Cruzados , ADN/química , Carbazoles/químicaRESUMEN
Effective recycling of mixed materials requires the separation of the different components without the need for toxic solvents. One approach involves utilizing a water-soluble coating with reversible photo-cross-linkers, making it robust until end of life where it can then be dissolved in water after de-cross-linking. Here, a novel coumarin methacrylate monomer and its nitroxide-mediated copolymerization to create poly((methacrylic acid)-co-(styrene sulfonate)-co-(coumarin methacrylate)) for water-soluble thin films are reported. Under exposure to light, the coumarin functional groups produce reversible [2+2] cycloadditions which cross-link the resulting polymer films, making them no longer water soluble. Characterization of reversible cross-linking behavior is reported through changes in contact angle and in situ rheological characterization. The resulting polymers are successfully integrated into metal-insulator-metal capacitors, demonstrating the potential use for water-soluble reversible photo-cross-linkable dielectric materials for organic electronics.
Asunto(s)
Polímeros , Solubilidad , Agua , Agua/química , Polímeros/química , Procesos Fotoquímicos , Reactivos de Enlaces Cruzados/química , Polimerizacion , Estructura Molecular , Metacrilatos/química , Cumarinas/químicaRESUMEN
This study focuses on the synthesis of fully renewable polycarbonates (PCs) starting from cellulose-based platform molecules levoglucosenone (LGO) and 2,5-bis(hydroxymethyl)furan (BHMF). These unique bio-based PCs are obtained through the reaction of a citronellol-containing triol (Triol-citro) derived from LGO, with a dimethyl carbonate derivative of BHMF (BHMF-DC). Solvent-free polymerizations are targeted to minimize waste generation and promote an eco-friendly approach with a favorable environmental factor (E-factor). The choice of metal catalyst during polymerization significantly influences the polymer properties, resulting in high molecular weight (up to 755 kDa) when Na2 CO3 is employed as an inexpensive catalyst. Characterization using nuclear magnetic resonance confirms the successful incorporation of the furan ring and the retention of the terminal double bond of the citronellol pendant chain. Furthermore, under UV irradiation, the presence of both citronellol and furanic moieties induces singular structural changes, triggering the formation of three distinct structures within the polymer network, a phenomenon herein occurs for the first time in this type of polymer. These findings pave the way to new functional materials prepared from renewable monomers with tunable properties.
Asunto(s)
Monoterpenos Acíclicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Furaldehído/análogos & derivados , Glucosa/análogos & derivados , Cemento de Policarboxilato , Polímeros , Polímeros/químicaRESUMEN
Recent technological advances have expanded the annotated protein coding content of mammalian genomes, as hundreds of previously unidentified, short open reading frame (ORF)-encoded peptides (SEPs) have now been found to be translated. Although several studies have identified important physiological roles for this emerging protein class, a general method to define their interactomes is lacking. Here, we demonstrate that genetic incorporation of the photo-crosslinking noncanonical amino acid AbK into SEP transgenes allows for the facile identification of SEP cellular interaction partners using affinity-based methods. From a survey of seven SEPs, we report the discovery of short ORF-encoded histone binding protein (SEHBP), a conserved microprotein that interacts with chromatin-associated proteins, localizes to discrete genomic loci, and induces a robust transcriptional program when overexpressed in human cells. This work affords a straightforward method to help define the physiological roles of SEPs and demonstrates its utility by identifying SEHBP as a short ORF-encoded transcription factor.
Asunto(s)
Diazometano/metabolismo , Histonas/genética , Lisina/metabolismo , Sistemas de Lectura Abierta , Péptidos/genética , Transcripción Genética , Secuencia de Aminoácidos , Animales , Bovinos , Cromatina/química , Cromatina/metabolismo , Diazometano/análogos & derivados , Regulación de la Expresión Génica , Sitios Genéticos , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Células K562 , Lisina/análogos & derivados , Ratones , Pan troglodytes , Péptidos/metabolismo , Unión Proteica/efectos de la radiación , Mapeo de Interacción de Proteínas , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transcripción Genética/efectos de la radiación , Transgenes , Rayos UltravioletaRESUMEN
We herein report a method for site-selective photo-crosslinking of a DNA duplex. A stilbene pair was introduced into a DNA duplex and a ruthenium complex was conjugated with a triplex-forming oligonucleotide. We demonstrated that [2+2] photocycloaddition of the stilbene pair occurred upon irradiation with visible light when the ruthenium complex was in close proximity due to triplex formation. No reaction occurred when the ruthenium complex was not in proximity to the stilbene pair. The wavelength of visible light used was of lower energy than the wavelength of UV light necessary for direct excitation of stilbene. Quantum chemical calculation indicated that ruthenium complex catalyzed the photocycloaddition via triplet-triplet energy transfer. Site selectivity of this photo-crosslinking system was evaluated using a DNA duplex bearing two stilbene pairs as a substrate; we showed that the site of crosslinking was precisely regulated by the sequence of the oligonucleotide linked to the ruthenium complex. Since this method does not require orthogonal photoresponsive molecules, it will be useful in construction of complex photoresponsive DNA circuits, nanodevices and biological tools.
Asunto(s)
Rutenio , Estilbenos , Rutenio/química , ADN/química , Luz , OligonucleótidosRESUMEN
Herein, we report the major factor for deamination reaction rate acceleration, i.e., hydrophilicity, by using various 5-substituted target cytosines and by carrying out deamination at high temperatures. Through substitution of the groups at the 5'-position of the cytosine, the effect of hydrophilicity was understood. It was then used to compare the various modifications of the photo-cross-linkable moiety as well as the effect of the counter base of the cytosine to edit both DNA and RNA. Furthermore, we were able to achieve cytosine deamination at 37 °C with a half-life in the order of a few hours.
RESUMEN
Metabolites orchestrate cellular processes as either substrates, co-enzymes, inhibitors, or activators of cellular proteins such as enzymes and receptors. Although traditional biochemical and structural biology-based approaches have been successfully employed for the discovery of protein-metabolite interactions, they often fail to detect transient and low-affinity biomolecular relationships. Another limitation of these approaches is that they are performed under in vitro conditions lacking the physiological context. Recently developed mass spectrometry-based methodologies overcome both these shortcomings, and have resulted in the discovery of global protein-metabolite cellular interaction networks. Herein, we describe traditional and modern approaches for the discovery of protein-metabolite interactions, and discuss the impact of these discoveries on our understanding of cellular physiology and on drug development.
Asunto(s)
Proteínas Portadoras , Proteínas , Proteínas/química , Proteínas Portadoras/metabolismo , Espectrometría de Masas/métodos , Mapas de Interacción de ProteínasRESUMEN
Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application. This study proposes a simple production process combining extracellular expression using Brevibacillus choshinensis (B. choshinensis) and rapid column-free purification. Extracellular production was tested using four representative signal peptides; B. choshinensis was found to efficiently secrete Rec1, an RLP derived from Drosophila melanogaster, regardless of the type of signal peptide. However, it was suggested that Rec1 is altered by an increase in the pH of the culture medium associated with prolonged incubation. Production in a jar fermentor with controllable pH yielded 530 mg Rec1 per liter of culture medium, which is superior to productivity using other hosts. The secreted Rec1 was purified from the culture supernatant via (NH4 )2 SO4 and ethanol precipitations, and the purified Rec1 was applied to ring-shaped 3D hydrogels. These results indicate that the combination of secretory production using B. choshinensis and column-free purification can accelerate the further application of RLPs.
Asunto(s)
Brevibacillus , Animales , Brevibacillus/genética , Brevibacillus/metabolismo , Drosophila melanogaster/metabolismo , Hidrogeles , Proteínas de Insectos/genética , Proteínas Recombinantes , Medios de Cultivo/metabolismoRESUMEN
Semaphorin-3A (Sema-3A) is a chemorepellant protein with various biological functions, including kidney development. It interacts with a protein complex consisting of the receptors neuropilin-1 (NRP-1) and plexin-A1. After acute kidney injury, Sema-3A is overexpressed and secreted, leading to a loss of kidney function. The development of peptide inhibitors is a promising approach to modulate the interaction of Sema-3A with its receptor NRP-1. Few interaction points between these binding partners are known. However, an immunoglobulin-like domain-derived peptide of Sema-3A has shown a positive effect on cell proliferation. To specify these interactions between the peptide inhibitor and the Sema-3A-NRP-1 system, the peptides were modified with the photoactivatable amino acids 4-benzoyl-l-phenylalanine or photo-l-leucine by solid-phase peptide synthesis. Activity was tested by an enzyme-linked immunosorbent-based binding assay, and crosslinking experiments were analyzed by Western blot and mass spectrometry, demonstrating a specific binding site of the peptide at Sema-3A. The observed signals for Sema-3A-peptide interaction were found in a defined area of the Sema domain, which was also demonstrated to be involved in NRP-1 binding. The presented data identified the interaction site for further development of therapeutic peptides to treat acute kidney injury by blocking the Sema-3A-NRP-1 interaction.