Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(24): 11493-11500, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38061056

RESUMEN

Photoelectrochemical (PEC) conversion is a promising way to use methane (CH4) as a chemical building block without harsh conditions. However, the PEC conversion of CH4 to value-added chemicals remains challenging due to the thermodynamically favorable overoxidation of CH4. Here, we report WO3 nanotube (NT) photoelectrocatalysts for PEC CH4 conversion with high liquid product selectivity through defect engineering. By tuning the flame reduction treatment, we carefully controlled the oxygen vacancies of WO3 NTs. The optimally reduced WO3 NTs suppressed overoxidation of CH4 showing a high total C1 liquid selectivity of 69.4% and a production rate of 0.174 µmol cm-2 h-1. Scanning electrochemical microscopy revealed that oxygen vacancies can restrain the production of hydroxyl radicals, which, in excess, could further oxidize C1 intermediates to CO2. Additionally, band diagram analysis and computational studies elucidated that oxygen vacancies thermodynamically suppress overoxidation. This work introduces a strategy for understanding and controlling the selectivity of photoelectrocatalysts for direct conversion of CH4 to liquids.

2.
Nanotechnology ; 34(18)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36640446

RESUMEN

Nanowire-based technological advancements thrive in various fields, including energy generation and storage, sensors, and electronics. Among the identified nanowires, silicon nanowires (SiNWs) attract much attention as they possess unique features, including high surface-to-volume ratio, high electron mobility, bio-compatibility, anti-reflection, and elasticity. They were tested in domains of energy generation (thermoelectric, photo-voltaic, photoelectrochemical), storage (lithium-ion battery (LIB) anodes, super capacitors), and sensing (bio-molecules, gas, light, etc). These nano-structures were found to improve the performance of the system in terms of efficiency, stability, sensitivity, selectivity, cost, rapidity, and reliability. This review article scans and summarizes the significant developments that occurred in the last decade concerning the application of SiNWs in the fields of thermoelectric, photovoltaic, and photoelectrochemical power generation, storage of energy using LIB anodes, biosensing, and disease diagnostics, gas and pH sensing, photodetection, physical sensing, and electronics. The functionalization of SiNWs with various nanomaterials and the formation of heterostructures for achieving improved characteristics are discussed. This article will be helpful to researchers in the field of nanotechnology about various possible applications and improvements that can be realized using SiNW.

3.
ACS Appl Bio Mater ; 3(11): 8069-8074, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35019546

RESUMEN

Biohybrid photoelectrochemical systems could combine the light-harvesting ability of semiconductor photocatalysts and the CO2-processing capability of biocatalysts to realize CO2 reduction. How to develop the energy-utilized model can be of importance for the mechanism exploration of photosynthesis. Here, a biohybrid photoelectrochemical system based on HCOO--CO2 circulation was developed to realize the conversion both of solar-to-electric energy and chemical-to-electric energy. The device consists of a TiO2 nanoparticle photoanode and a laser-scribed graphene/formate dehydrogenase biocathode, which was utilized for the formic acid oxidation and the biocatalysis reduction of CO2 to HCOO-, respectively. The as-proposed biohybrid photoelectrochemical system exhibits good performance with an open-circuit potential of 0.93 V and a maximum power output density of 76 µW cm-2. This ingenious strategy not only exploits a robust carbon circulation system for the conversion of solar energy but also provides a way of constructing complex artificial photosynthesis systems.

4.
ACS Appl Mater Interfaces ; 8(20): 12772-9, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27149607

RESUMEN

Despite the recent progress of developing graphitic carbon nitride (g-C3N4) as a metal-free photocatalyst, the synthesis of nanostructured g-C3N4 has still remained a complicated and time-consuming approach from its bulk powder, which substantially limits its photoelectrochemical (PEC) applications as well as the potential to form composites with other semiconductors. Different from the labor-intensive methods used before, such as exfoliation or assistant templates, herein, we developed a facile method to synthesize graphitic C3N4 quantum dots (g-CNQDs) directly grown on TiO2 nanowire arrays via a one-step quasi-chemical vapor deposition (CVD) process in a homemade system. The as-synthesized g-CNQDs uniformly covered over the surface of TiO2 nanowires and exhibited attractive photoluminescence (PL) properties. In addition, compared to pristine TiO2, the heterojunction of g-CNQD-decorated TiO2 nanowires showed a substantially enhanced PEC photocurrent density of 3.40 mA/cm(2) at 0 V of applied potential vs Ag/AgCl under simulated solar light (300 mW/cm(2)) and excellent stability with ∼82% of the photocurrent retained after over 10 h of continuous testing, attributed to the quantum and sensitization effects of g-CNQDs. Density functional theory calculations were further carried out to illustrate the synergistic effect of TiO2 and g-CNQD. Our method suggests that a variety of g-CNQD-based composites with other semiconductor nanowires can be synthesized for energy applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA