RESUMEN
OBJECTIVES: To assess the accuracy of a synthetic hematocrit derived from virtual non-contrast (VNC) and virtual non-iodine images (VNI) for myocardial extracellular volume (ECV) computation with photon-counting detector computed tomography (PCD-CT). MATERIALS AND METHODS: Consecutive patients undergoing PCD-CT including a coronary CT angiography (CCTA) and a late enhancement (LE) scan and having a blood hematocrit were retrospectively included. In the first 75 patients (derivation cohort), CCTA and LE scans were reconstructed as VNI at 60, 70, and 80 keV and as VNC with quantum iterative reconstruction (QIR) strengths 2, 3, and 4. Blood pool attenuation (BPmean) was correlated to blood hematocrit. In the next 50 patients (validation cohort), synthetic hematocrit was calculated using BPmean. Myocardial ECV was computed using the synthetic hematocrit and compared with the ECV using the blood hematocrit as a reference. RESULTS: In the derivation cohort (49 men, mean age 79 ± 8 years), a correlation between BPmean and blood hematocrit ranged from poor for VNI of CCTA at 80 keV, QIR2 (R2 = 0.12) to moderate for VNI of LE at 60 keV, QIR4; 70 keV, QIR3 and 4; and VNC of LE, QIR3 and 4 (all, R2 = 0.58). In the validation cohort (29 men, age 75 ± 14 years), synthetic hematocrit was calculated from VNC of the LE scan, QIR3. Median ECV was 26.9% (interquartile range (IQR), 25.5%, 28.8%) using the blood hematocrit and 26.8% (IQR, 25.4%, 29.7%) using synthetic hematocrit (VNC, QIR3; mean difference, -0.2%; limits of agreement, -2.4%, 2.0%; p = 0.33). CONCLUSION: Synthetic hematocrit calculated from VNC images enables an accurate computation of myocardial ECV with PCD-CT. CLINICAL RELEVANCE STATEMENT: Virtual non-contrast images from cardiac late enhancement scans with photon-counting detector CT allow the calculation of a synthetic hematocrit, which enables accurate computation of myocardial extracellular volume. KEY POINTS: Blood hematocrit is mandatory for conventional myocardial extracellular volume computation. Synthetic hematocrit can be calculated from virtual non-iodine and non-contrast photon-counting detector CT images. Synthetic hematocrit from virtual non-contrast images enables computation of the myocardial extracellular volume.
RESUMEN
PURPOSE: To compare the diagnostic approach of acute pulmonary embolism (PE) with photon-counting-detector CT (PCD-CT) and energy-integrating-detector CT (EID-CT). MATERIALS AND METHODS: Two cohorts underwent CT angiographic examinations with EID-CT (Group 1; n = 158) and PCD-CT (Group 2; n = 172), (b) with two options in Group 1, dual energy (Group 1a) or single energy (Group 1b) and a single option in Group 2 (spectral imaging with single source). RESULTS: In Group 2, all patients benefited from spectral imaging, only accessible to 105 patients (66.5%) in Group 1, with a mean acquisition time significantly shorter (0.9 ± 0.1 s vs 4.0 ± 0 .3 s; p < 0.001) and mean values of CTDIvol and DLP reduced by 46.3% and 47.7%, respectively. Comparing the quality of 70 keV (Group 2) and averaged (Group 1a) images: (a) the mean attenuation within pulmonary arteries did not differ (p = 0.13); (b) the image noise was significantly higher (p < 0.001) in Group 2 with no difference in subjective image noise (p = 0.29); and (c) 89% of examinations were devoid of artifacts in Group 2 vs 28.6% in Group 1a. The percentage of diagnostic examinations was 95.2% (100/105; Group 1a), 100% (53/53; Group 1b), and 95.3% (164/172; Group 2). There were 4.8% (5/105; Group 1a) and 4.7% (8/172; Group 2) of non-diagnostic examinations, mainly due to the suboptimal quality of vascular opacification with the restoration of a diagnostic image quality on low-energy images. CONCLUSION: Compared to EID-CT, morphology and perfusion imaging were available in all patients scanned with PCD-CT, with the radiation dose reduced by 48%. CLINICAL RELEVANCE STATEMENT: PCD-CT enables scanning patients with the advantages of both spectral imaging, including high-quality morphologic imaging and lung perfusion for all patients, and fast scanning-a combination that is not simultaneously accessible with EID-CT while reducing the radiation dose by almost 50%.
Asunto(s)
Angiografía por Tomografía Computarizada , Fotones , Embolia Pulmonar , Embolia Pulmonar/diagnóstico por imagen , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Enfermedad Aguda , Angiografía por Tomografía Computarizada/métodos , Adulto , Tomografía Computarizada por Rayos X/métodos , Anciano de 80 o más Años , Arteria Pulmonar/diagnóstico por imagenRESUMEN
PURPOSE: The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS: Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS: Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION: The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT: ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
RESUMEN
BACKGROUND. The higher spatial resolution and image contrast for iodine-containing tissues of photon-counting detector (PCD) CT may address challenges in evaluating small calcified vessels when performing lower extremity CTA by energy-integrating detector (EID) CTA. OBJECTIVE. The purpose of the study was to compare the evaluation of infrapopliteal vasculature between lower extremity CTA performed using EID CT and PCD CT. METHODS. This prospective study included 32 patients (mean age, 69.7 ± 11.3 [SD] years; 27 men, five women) who underwent clinically indicated lower extremity EID CTA between April 2021 and March 2022; participants underwent investigational lower extremity PCD CTA later the same day as EID CTA using a reduced IV contrast media dose. Two radiologists independently reviewed examinations in two sessions, each containing a random combination of EID CTA and PCD CTA examinations; the readers assessed the number of visualized fibular perforators, characteristics of stenoses at 11 infrapopliteal segmental levels, and subjective arterial sharpness. RESULTS. Mean IV contrast media dose was 60.0 ± 11.0 (SD) mL for PCD CTA versus 139.6 ± 11.8 mL for EID CTA (p < .001). The number of identified fibular perforators per lower extremity was significantly higher for PCD CTA than for EID CTA for reader 1 (R1) (mean ± SD, 6.4 ± 3.2 vs 4.2 ± 2.4; p < .001) and reader 2 (R2) (8.8 ± 3.4 vs 7.6 ± 3.3; p = .04). Reader confidence for assessing stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 82.3 ± 20.3 vs 78.0 ± 20.2; p < .001) but not R2 (89.8 ± 16.7 vs 90.6 ± 7.1; p = .24). The number of segments per lower extremity with total occlusion was significantly lower for PCD CTA than for EID CTA for R2 (mean ± SD, 0.5 ± 1.3 vs 0.9 ± 1.7; p = .04) but not R1 (0.6 ± 1.3 vs 1.0 ± 1.5; p = .07). The number of segments per lower extremity with clinically significant nonocclusive stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 2.2 ± 2.2 vs 1.6 ± 1.7; p = .01) but not R2 (1.1 ± 2.0 vs 1.1 ± 1.4; p = .89). Arterial sharpness was significantly greater for PCD CTA than for EID CTA for R1 (mean ± SD, 3.2 ± 0.5 vs 1.8 ± 0.5; p < .001) and R2 (3.2 ± 0.4 vs 1.7 ± 0.8; p < .001). CONCLUSION. PCD CTA yielded multiple advantages relative to EID CTA for visualizing small infrapopliteal vessels and characterizing associated plaque. CLINICAL IMPACT. The use of PCD CTA may improve vascular evaluation in patients with peripheral arterial disease.
Asunto(s)
Medios de Contraste , Fotones , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Constricción Patológica , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Extremidad Inferior/diagnóstico por imagenRESUMEN
BACKGROUND. Dual-energy CT pulmonary angiography (CTPA) with energy-integrating detector (EID) technology is limited by the inability to use high-pitch technique. OBJECTIVE. The purpose of this study was to compare the image quality of anatomic images and iodine maps between high-pitch photon-counting detector (PCD) CTPA and dual-energy EID CTPA. METHODS. This prospective study included 117 patients (70 men and 47 women; median age, 65 years) who underwent CTPA to evaluate for pulmonary embolism between March 2022 and November 2022. Fifty-eight patients were randomized to undergo PCD CTPA (pitch, 2.0), and 59 were randomized to undergo EID CTPA (pitch, 0.55). For each examination, 120-kV polychromatic images, 60-keV virtual monogenetic images (VMIs), and iodine maps were reconstructed. One radiologist measured CNR and SNR. Three radiologists independently assessed subjective image quality (on a scale of 1-4, with a score of 1 denoting highest quality). Radiation dose was recorded. RESULTS. SNR and CNR were higher for PCD CTPA than for EID CTPA for polychromatic images and VMIs, for all assessed vessels other than the left upper lobe artery. For example, for PCD CTPA versus EID CTPA, the right lower lobe artery on polychromatic images had an SNR of 34.5 versus 28.0 (p = .003) and a CNR of 29.2 versus 24.4 (p = .001), and on VMIs it had an SNR of 43.2 versus 32.7 (p = .005) and a CNR of 37.4 versus 29.3 (p = .002). For both scanners for readers 1 and 2, the median image quality score for polychromatic images and VMIs was 1, although distributions indicated significantly better scores for PCD CTPA than for EID CTPA for polychromatic images for reader 1 (p = .02) and reader 2 (p = .005) and for VMIs for reader 1 (p = .001) and reader 2 (p = .006). The image quality of anatomic image sets was not different between PCD CTPA and EID CTPA for reader 3 (p > .05). The image quality of iodine maps was not different between PCD CTPA and EID CTPA for any reader (p > .05). For PCD CTPA versus EID CTPA, the CTDIvol was 3.9 versus 4.5 mGy (p = .03), and the DLP was 123.5 mGy × cm versus 157.0 mGy × cm (p < .001). CONCLUSION. High-pitch PCD CTPA provided anatomic images with better subjective and objective image quality versus dual-energy EID CTPA, with lower radiation dose. Iodine maps showed no significant difference in image quality between scanners. CLINICAL IMPACT. CTPA may benefit from the PCD CT technique.
Asunto(s)
Yodo , Masculino , Humanos , Femenino , Anciano , Estudios Prospectivos , Fotones , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Dosis de RadiaciónRESUMEN
BACKGROUND. Photon-counting detector (PCD) CT could be useful to help address the typically high radiation doses of conventional energy-integrating detector (EID) CT of the lumbar spine. OBJECTIVE. The purpose of our study was to compare PCD CT and EID CT of the lumbar spine, both performed using tin filtration, in terms of radiation dose and image quality. METHODS. This study included a prospective sample of 39 patients (22 men, 17 women; mean age, 27.2 years) who underwent investigational PCD CT of the lumbar spine as part of a separate study and a retrospective sample of 39 patients (22 men, 17 women; mean age, 34.9 years) who underwent clinically indicated EID CT of the lumbar spine. In both groups, all examinations were performed using unenhanced technique with tin prefiltration between June 2022 and January 2023. Patients were matched between groups using age, sex, and BMI. A custom gaussian curve-fitting algorithm was used to automatically calculate image noise, SNR, and CNR for each examination, on the basis of all voxels within the image set. Three radiologists independently reviewed examinations to perform a subjective visual assessment of visualization of trabecular architecture, cortical bone, neuroforaminal content, paraspinal muscles, and intervertebral disk, as well as overall image quality, using a 4-point Likert scale (1 = poor, 4 = excellent). PCD CT and EID CT examinations were compared. RESULTS. Mean CTDIvol was 4.4 ± 1.0 (SD) mGy for PCD CT versus 11.1 ± 1.9 mGy for EID CT (p < .001). Mean size-specific dose estimate (SSDE) was 6.2 ± 1.0 (SD) mGy for PCD CT versus 14.2 ± 1.8 mGy for EID CT (p < .001). PCD CT and EID CT examinations were not significantly different in terms of image noise or SNR (both p > .05). PCD CT, in comparison with EID CT, showed significantly higher CNR (mean ± SD, 33.6 ± 3.3 vs 29.3 ± 4.1; p < .001). For all three readers, the median score for overall image quality was 4 (range, 3-4) for both PCD CT and EID CT. PCD CT and EID CT examinations showed no significant difference in terms of any qualitative measure for any reader (all p > .05). CONCLUSION. PCD CT, in comparison with EID CT, yielded significantly lower radiation dose with preserved image quality. CLINICAL IMPACT. The findings support expanded use of PCD CT for lumbar spine evaluation.
Asunto(s)
Fotones , Estaño , Masculino , Humanos , Femenino , Adulto , Estudios Prospectivos , Estudios Retrospectivos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Dosis de RadiaciónRESUMEN
BACKGROUND. Photon-counting detector (PCD) CT may allow lower radiation doses than used for conventional energy-integrating detector (EID) CT, with preserved image quality. OBJECTIVE. The purpose of this study was to compare PCD CT and EID CT, reconstructed with and without a denoising tool, in terms of image quality of the osseous pelvis in a phantom, with attention to low radiation doses. METHODS. A pelvic phantom comprising human bones in acrylic material mimicking soft tissue underwent PCD CT and EID CT at various tube potentials and radiation doses ranging from 0.05 to 5.00 mGy. Additional denoised reconstructions were generated using a commercial tool. Noise was measured in the acrylic material. Two readers performed independent qualitative assessments that entailed determining the denoised EID CT reconstruction with the lowest acceptable dose and then comparing this reference reconstruction with PCD CT reconstructions without and with denoising, using subjective Likert scales. RESULTS. Noise was lower for PCD CT than for EID CT. For instance, at 0.05 mGy and 100 kV with tin filter, noise was 38.4 HU for PCD CT versus 48.8 HU for EID CT. Denoising further reduced noise; for example, for PCD CT at 100 kV with tin filter at 0.25 mGy, noise was 19.9 HU without denoising versus 9.7 HU with denoising. For both readers, lowest acceptable dose for EID CT was 0.10 mGy (total score, 11 of 15 for both readers). Both readers somewhat agreed that PCD CT without denoising at 0.10 mGy (reflecting reference reconstruction dose) was relatively better than the reference reconstruction in terms of osseous structures, artifacts, and image quality. Both readers also somewhat agreed that denoised PCD CT reconstructions at 0.10 mGy and 0.05 mGy (reflecting matched and lower doses, respectively, with respect to reference reconstruction dose) were relatively better than the reference reconstruction for the image quality measures. CONCLUSION. PCD CT showed better-quality images than EID CT when performed at the lowest acceptable radiation dose for EID CT. PCD CT with denoising yielded better-quality images at a dose lower than lowest acceptable dose for EID CT. CLINICAL IMPACT. PCD CT with denoising could facilitate lower radiation doses for pelvic imaging.
Asunto(s)
Fotones , Estaño , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Dosis de Radiación , PelvisRESUMEN
BACKGROUND. Use of virtual monoenergetic images (VMIs) from multienergy CT scans can mitigate inconsistencies in traditional attenuation measurements that result from variation in scan-related factors. Photon-counting detector (PCD) CT systems produce VMIs as standard image output under flexible scanning conditions. OBJECTIVE. The purpose of this article was to evaluate the consistency of monoenergetic attenuation measurements obtained from a clinical PCD CT scanner across a spectrum of scanning paradigms. METHODS. A phantom with 10 tissue-simulating inserts was imaged using a clinical dual-source PCD CT scanner. Nine scanning paradigms were obtained across combinations of tube voltages (90, 120, and 140 kVp) and image quality (IQ) levels (80, 145, and 180). Images were reconstructed at VMI levels of 50, 60, 70, and 80 keV. Consistency of attenuation measurements was assessed, using the 120 kVp with IQ level of 145 scanning paradigm as the reference scan. RESULTS. For all scanning paradigms, attenuation measurements showed intra-class correlation of 0.999 and higher with respect to the reference scan. Across inserts, mean bias relative to the reference scan ranged from -14.9 to 13.6 HU, -2.7 to 1.7 HU, and -3.9 to 3.8 HU at tube voltages of 90, 120, and 140 kVp, respectively; and from -14.9 to 13.6 HU, -6.4 to 3.8 HU, -3.7 to 1.4 HU, and -7.2 to 4.3 HU at VMI levels of 50, 60, 70, and 80 keV, respectively. Thus, mean bias did not exceed 5 HU for any insert at tube potentials of 120 kVp and 140 kVp, nor for any insert at a VMI level of 70 keV. At a VMI level of 50 keV and tube potential of 90 kVp, mean bias exceeded 5 HU for 14 of 30 possible combinations of inserts and scanning paradigms and exceeded 10 HU for four of 30 such combinations. At VMI levels of both 60 and 80 keV, mean bias exceeded 5 HU for only two combinations of inserts and scanning paradigms, all at a tube potential of 90 kVp. CONCLUSION. PCD CT generally provided consistent attenuation measurements across combinations of scanning paradigms and VMI levels. CLINICAL IMPACT. PCD CT may facilitate quantitative applications of CT data in clinical practice.
Asunto(s)
Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Humanos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Reproducibilidad de los ResultadosRESUMEN
BACKGROUND. CSF-venous fistulas (CVFs), which are an increasingly recognized cause of spontaneous intracranial hypotension (SIH), are often diminutive in size and exceedingly difficult to detect by conventional imaging. OBJECTIVE. This purpose of this study was to compare energy-integrating detector (EID) CT myelography and photon-counting detector (PCD) CT myelography in terms of image quality and diagnostic performance for detecting CVFs in patients with SIH. METHODS. This retrospective study included 38 patients (15 men and 23 women; mean age, 55 ± 10 [SD] years) with SIH who underwent both clinically indicated EID CT myelography (slice thickness, 0.625 mm) and PCD CT myelography (slice thickness, 0.2 mm; performed in ultrahigh-resolution mode) to assess for CSF leak. Three blinded radiologists reviewed examinations in random order, assessing image noise, discernibility of spinal nerve root sleeves, and overall image quality (each assessed using a scale of 0-100, with 100 denoting highest quality) and recording locations of the CVFs. Definite CVFs were defined as CVFs described in CT myelography reports using unequivocal language and having an attenuation value greater than 70 HU. RESULTS. For all readers, PCD CT myelography, in comparison with EID CT myelography, showed higher mean image noise (reader 1: 69.9 ± 18.5 [SD] vs 37.6 ± 15.2; reader 2: 59.5 ± 8.7 vs 49.3 ± 12.7; and reader 3: 57.6 ± 13.2 vs 42.1 ± 16.6), higher mean nerve root sleeve discernibility (reader 1: 81.6 ± 21.7 [SD] vs 30.4 ± 13.6; reader 2: 83.6 ± 10 vs 70.1 ± 18.9; and reader 3: 59.6 ± 13.5 vs 50.5 ± 14.4), and higher mean overall image quality (reader 1: 83.2 ± 20.0 [SD] vs 38.1 ± 13.5; reader 2: 80.1 ± 10.1 vs 72.4 ± 19.8; and reader 3: 57.8 ± 11.2 vs 51.9 ± 13.6) (all p < .05). Eleven patients had a definite CVF. Sensitivity and specificity of EID CT myelography and PCD CT myelography for the detection of definite CVF were 45% and 96% versus 64% and 85%, respectively, for reader 1; 36% and 100% versus 55% and 96%, respectively, for reader 2; and 57% and 100% versus 55% and 93%, respectively, for reader 3. The sensitivity was significantly higher for PCD CT myelography than for EID CT myelography for reader 1 and reader 2 (both p < .05) and was not significantly different between the two techniques for reader 3 (p = .45); for all three readers, specificity was not significantly different between the two modalities (all p > .05). CONCLUSION. In comparison with EID CT myelography, PCD CT myelography yielded significantly improved image quality with significantly higher sensitivity for CVFs (for two of three readers), without significant loss of specificity. CLINICAL IMPACT. The findings support a potential role for PCD CT myelography in facilitating earlier diagnosis and targeted treatment of SIH, avoiding high morbidity during potentially prolonged diagnostic workups.
Asunto(s)
Hipotensión Intracraneal , Mielografía , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Persona de Mediana Edad , Hipotensión Intracraneal/diagnóstico por imagen , Mielografía/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Anciano , Adulto , Medios de Contraste , Fotones , Pérdida de Líquido Cefalorraquídeo/diagnóstico por imagenRESUMEN
BACKGROUND. Calcium blooming causes stenosis overestimation on coronary CTA. OBJECTIVE. The purpose of this article was to evaluate the impact of virtual monoenergetic imaging (VMI) reconstruction level on coronary artery stenosis quantification using photon-counting detector (PCD) CT. METHODS. A phantom containing two custom-made vessels (representing 25% and 50% stenosis) underwent PCD CT acquisitions without and with simulated cardiac motion. A retrospective analysis was performed of 33 patients (seven women, 26 men; mean age, 71.3 ± 9.0 [SD] years; 64 coronary artery stenoses) who underwent coronary CTA by PCD CT followed by invasive coronary angiography (ICA). Scans were reconstructed at nine VMI energy levels (40-140 keV). Percentage diameter stenosis (PDS) was measured, and bias was determined from the ground-truth stenosis percentage in the phantom and ICA-derived quantitative coronary angiography measurements in patients. Extent of blooming artifact was measured in the phantom and in calcified and mixed plaques in patients. RESULTS. In the phantom, PDS decreased for 25% stenosis from 59.9% (40 keV) to 13.4% (140 keV) and for 50% stenosis from 81.6% (40 keV) to 42.3% (140 keV). PDS showed lowest bias for 25% stenosis at 90 keV (bias, 1.4%) and for 50% stenosis at 100 keV (bias, -0.4%). Blooming artifacts decreased for 25% stenosis from 61.5% (40 keV) to 35.4% (140 keV) and for 50% stenosis from 82.7% (40 keV) to 52.1% (140 keV). In patients, PDS for calcified plaque decreased from 70.8% (40 keV) to 57.3% (140 keV), for mixed plaque decreased from 69.8% (40 keV) to 56.3% (140 keV), and for noncalcified plaque was 46.6% at 40 keV and 54.6% at 140 keV. PDS showed lowest bias for calcified plaque at 100 keV (bias, 17.2%), for mixed plaque at 140 keV (bias, 5.0%), and for noncalcified plaque at 40 keV (bias, -0.5%). Blooming artifacts decreased for calcified plaque from 78.4% (40 keV) to 48.6% (140 keV) and for mixed plaque from 73.1% (40 keV) to 44.7% (140 keV). CONCLUSION. For calcified and mixed plaque, stenosis severity measurements and blooming artifacts decreased at increasing VMI reconstruction levels. CLINICAL IMPACT. PCD CT with VMI reconstruction helps overcome current limitations in stenosis quantification on coronary CTA.
Asunto(s)
Estenosis Coronaria , Placa Aterosclerótica , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Angiografía por Tomografía Computarizada/métodos , Estudios Retrospectivos , Constricción Patológica , Tomografía Computarizada por Rayos X/métodos , Estenosis Coronaria/diagnóstico por imagenRESUMEN
This study aimed to evaluate the potential reduction in contrast medium utilization using photon-counting detector computed tomography (PCD-CT). One PCD-CT scan (CT1) and three conventional (non-PCD-CT) CT scans (CT2-CT4) were performed using a multi-energy CT phantom that contained eight rods with different iodine concentrations (0.2, 0.5, 1, 2, 5, 10, 15, and 20 mg/ml). The CT values of the seven groups (CT1 for 40, 50, 60, and 70 keV; and CT2-4) were measured. Noise and contrast-to-noise ratio (CNR) were assessed for the eight rods at various iodine concentrations. CT2 and CT1 (40 keV) respectively required 20 mg/ml and 5 mg/ml of iodine, indicating that a comparable contrast effect could be obtained with approximately one-fourth of the contrast medium amount. The standard deviation values increased at lower energy levels irrespective of the iodine concentration. The CNR exhibited a decreasing trend with lower iodine concentrations, while it remained relatively stable across all iodine levels (40-70 keV). This study demonstrated that virtual monochromatic 40 keV images offer a similar contrast effect with a reduced contrast medium amount when compared to conventional CT systems at 120 kV.
Asunto(s)
Medios de Contraste , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Medios de Contraste/química , Tomografía Computarizada por Rayos X/métodos , Yodo , HumanosRESUMEN
BACKGROUND. Prior work has shown improved image quality for photon-counting detector (PCD) CT of the lungs compared with energy-integrating detector CT. A paucity of the literature has compared PCD CT of the lungs using different reconstruction parameters. OBJECTIVE. The purpose of this study is to the compare the image quality of ultra-high-resolution (UHR) PCD CT image sets of the lungs that were reconstructed using different kernels and slice thicknesses. METHODS. This retrospective study included 29 patients (17 women and 12 men; median age, 56 years) who underwent noncontrast chest CT from February 15, 2022, to March 15, 2022, by use of a commercially available PCD CT scanner. All acquisitions used UHR mode (1024 × 1024 matrix). Nine image sets were reconstructed for all combinations of three sharp kernels (BI56, BI60, and BI64) and three slice thicknesses (0.2, 0.4, and 1.0 mm). Three radiologists independently reviewed reconstructions for measures of visualization of pulmonary anatomic structures and pathologies; reader assessments were pooled. Reconstructions were compared with the clinical reference reconstruction (obtained using the BI64 kernel and a 1.0-mm slice thickness [BI641.0-mm]). RESULTS. The median difference in the number of bronchial divisions identified versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.5), BI600.4-mm (0.3), BI640.2-mm (0.5), and BI600.2-mm (0.2) (all p < .05). The median bronchial wall sharpness versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.3) and BI640.2-mm (0.3) and was lower for BI561.0-mm (-0.7) and BI560.4-mm (-0.3) (all p < .05). Median pulmonary fissure sharpness versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.3), BI600.4-mm (0.3), BI560.4-mm (0.5), BI640.2-mm (0.5), BI600.2-mm (0.5), and BI560.2-mm (0.3) (all p < .05). Median pulmonary vessel sharpness versus the clinical reference reconstruction was lower for reconstructions with BI561.0-mm (-0.3), BI600.4-mm (-0.3), BI560.4-mm (-0.7), BI640.2-mm (-0.7), BI600.2-mm (-0.7), and BI560.2-mm (-0.7). Median lung nodule conspicuity versus the clinical reference reconstruction was lower for reconstructions with BI561.0-mm (-0.3) and BI560.4-mm (-0.3) (both p < .05). Median conspicuity of all other pathologies versus the clinical reference reconstruction was lower for reconstructions with BI561.0 mm (-0.3), BI560.4-mm (-0.3), BI640.2-mm (-0.3), BI600.2-mm (-0.3), and BI560.2-mm (-0.3). Other comparisons among reconstructions were not significant (all p > .05). CONCLUSION. Only the reconstruction using BI640.4-mm yielded improved bronchial division identification and bronchial wall and pulmonary fissure sharpness without a loss in pulmonary vessel sharpness or conspicuity of nodules or other pathologies. CLINICAL IMPACT. The findings of this study may guide protocol optimization for UHR PCD CT of the lungs.
Asunto(s)
Pulmón , Tomografía Computarizada por Rayos X , Masculino , Humanos , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , BronquiosRESUMEN
OBJECTIVE: To compare the image quality of ultra-high-resolution wrist CTs acquired on photon-counting detector CT versus conventional energy-integrating-detector CT systems. MATERIALS AND METHODS: Participants were scanned on a photon-counting-detector CT system after clinical energy-integrating detector CTs. Energy-integrating-detector CT scan parameters: comb filter-based ultra-high-resolution mode, 120 kV, 250 mAs, Ur70 or Ur73 kernel, 0.4- or 0.6-mm section thickness. Photon-counting-detector CT scan parameters: non-comb-based ultra-high-resolution mode, 120 kV, 120 mAs, Br84 kernel, 0.4-mm section thickness. Two musculoskeletal radiologists blinded to CT system, scored specific osseous structures using a 5-point Likert scale (1 to 5). The Wilcoxon rank-sum test was used for statistical analysis of reader scores. Paired t-test was used to compare volume CT dose index, bone CT number, and image noise between CT systems. P-value < 0.05 was considered statistically significant. RESULTS: Twelve wrists (mean participant age 55.3 ± 17.8, 6 females, 6 males) were included. The mean volume CT dose index was lower for photon-counting detector CT (9.6 ± 0.1 mGy versus 19.0 ± 6.7 mGy, p < .001). Photon-counting-detector CT images had higher Likert scores for visualization of osseous structures (median score = 4, p < 0.001). The mean bone CT number was higher in photon-counting-detector CT images (1946 ± 77 HU versus 1727 ± 49 HU, p < 0.001). Conversely, there was no difference in the mean image noise of the two CT systems (63 ± 6 HU versus 61 ± 6 HU, p = 0.13). CONCLUSION: Ultra-high-resolution imaging with photon-counting-detector CT depicted wrist structures more clearly than conventional energy-integrating-detector CT despite a 49% radiation dose reduction.
Asunto(s)
Fotones , Muñeca , Masculino , Femenino , Humanos , Fantasmas de Imagen , Muñeca/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Dosis de RadiaciónRESUMEN
BACKGROUND. Epicardial adipose tissue (EAT) attenuation is a vascular inflammation marker predictive of adverse cardiac events. The fat attenuation index (FAI) assesses fat attenuation for predefined coronary segments. Photon-counting detector (PCD) CT uses routine virtual monoenergetic image (VMI) reconstructions. VMI energy level may affect EAT attenuation and FAI measurements. OBJECTIVE. The purpose of this article was to assess EAT attenuation and FAI measurements at different monoenergetic energy levels in patients undergoing coronary CTA using a first-generation whole-body dual-source PCD CT scanner. METHODS. An anthropomorphic phantom at two sizes with a fat insert was imaged on a first-generation dual-source PCD CT scanner and, as a reference, on a conventional energy-integrating detector (EID) CT scanner at 120 kV. Thirty patients (11 women, 19 men; mean age, 48 ± 10 years; Agatston score < 60) who underwent an ECG-gated unenhanced calcium-scoring scan and contrast-enhanced coronary CTA by PCD CT were retrospectively evaluated. VMIs from 55 to 80 keV at 5-keV increments were reconstructed. EAT attenuation was manually measured on unenhanced and contrast-enhanced images. FAI was calculated using semiautomated software. RESULTS. The attenuation of the phantom fat insert was -69 HU for the reference EID CT; the closest attenuation for PCD CT was observed at 70 keV for the small (-69 HU) and large (-70 HU) phantoms. In patients, EAT attenuation increased for unenhanced acquisition from -111 ± 11 HU at 55 keV to -82 ± 9 HU at 80 keV and for contrast-enhanced acquisition from -104 ± 11 HU at 55 keV to -81 ± 9 HU at 80 keV. The mean attenuation difference between unenhanced and contrast-enhanced scans decreased with increasing energy level (from 7 ± 12 HU to 1 ± 10 HU). The FAI increased from -89 ± 8 HU at 55 keV to -77 ± 12 HU at 80 keV for the right coronary artery, -95 ± 11 HU at 55 keV to -85 ± 11 HU at 80 keV for the left anterior descending artery, and -87 ± 10 HU at 55 keV to -80 ± 12 HU at 80 keV for the circumflex artery. CONCLUSION. EAT attenuation and FAI measurements using PCD CT are impacted by VMI energy level and contrast enhancement. Use of VMI reconstruction at 70 keV provides fat attenuation approximating conventional polychromatic measurements. CLINICAL IMPACT. The findings may help standardize evaluation of pericoronary inflammation by PCD CT as a measure of patients' cardiac risk.
Asunto(s)
Tejido Adiposo , Tomografía Computarizada por Rayos X , Tejido Adiposo/diagnóstico por imagen , Adulto , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodosRESUMEN
Objective.Computed tomography (CT) has advanced since its inception, with breakthroughs such as dual-energy CT (DECT), which extracts additional information by acquiring two sets of data at different energies. As high-flux photon-counting detectors (PCDs) become available, PCD-CT is also becoming a reality. PCD-CT can acquire multi-energy data sets in a single scan by spectrally binning the incident x-ray beam. With this, K-edge imaging becomes possible, allowing high atomic number (high-Z) contrast materials to be distinguished and quantified. In this study, we demonstrated that DECT methods can be converted to PCD-CT systems by extending the method of Bourqueet al(2014). We optimized the energy bins of the PCD for this purpose and expanded the capabilities by employing K-edge subtraction imaging to separate a high-atomic number contrast material.Approach.The method decomposes materials into their effective atomic number (Zeff) and electron density relative to water (ρe). The model was calibrated and evaluated using tissue-equivalent materials from the RMI Gammex electron density phantom with knownρevalues and elemental compositions. TheoreticalZeffvalues were found for the appropriate energy ranges using the elemental composition of the materials.Zeffvaried slightly with energy but was considered a systematic error. Anex vivobovine tissue sample was decomposed to evaluate the model further and was injected with gold chloride to demonstrate the separation of a K-edge contrast agent.Main results.The mean root mean squared percent errors on the extractedZeffandρefor PCD-CT were 0.76% and 0.72%, respectively and 1.77% and 1.98% for DECT. The tissue types in theex vivobovine tissue sample were also correctly identified after decomposition. Additionally, gold chloride was separated from theex vivotissue sample with K-edge imaging.Significance.PCD-CT offers the ability to employ DECT material decomposition methods, along with providing additional capabilities such as K-edge imaging.
Asunto(s)
Compuestos de Oro , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Medios de Contraste , FotonesRESUMEN
OBJECTIVE: Fat deposition is an important marker of many metabolic diseases. As a noninvasive and convenient examination method, CT has been widely used for fat quantification. With the clinical application of photon-counting detector (PCD)-CT, we aimed to investigate the accuracy, stability, and dose level of PCD-CT using various scan settings for fat quantification. MATERIALS AND METHODS: Eleven agar-based lipid-containing phantoms (vials with different fat fractions [FFs]; range: 0 %-100 %) were scanned using PCD-CT. Three scanning types (sequence scan, regular spiral scan with a pitch of 0.8, and high-pitch spiral scan with a pitch of 3.2), four tube voltages (90, 120, 140, and 100 kV with a tin filter), and three image quality (IQ) levels (IQ levels of 20, 40, and 80) were alternated, and each scan setting was used twice. For each scan, a 70-keV image was generated using the same reconstruction parameters. A regular spiral scan at 120 kV with IQ80 was used to transfer the CT numbers of all scans to the FF. Intraclass correlation coefficient (ICC) and Bland-Altman analysis were implemented for accuracy and agreement evaluation, and group differences were compared using analysis of variance. RESULTS: Excellent agreement and accuracy of FF derived by PCD-CT with all scan settings was demonstrated by high ICCs (>0.9; range: 0.929-0.998, p < 0.017) and low bias (<5% range: -2.9 %-5%). The root mean square error (RMSE) between the PCD-CT-acquired FF and the reference standard ranged from 1.0 % to 5.0 %, among which the high-pitch scan at 120 kV with IQ20 accounted for the lowest RMSE (1.0 %). The spiral scan at 120 kV with IQ20 and IQ80 yielded the lowest bias (mean value: 1.19 % and 1.23 %, respectively). CONCLUSION: Fat quantification using PCD-CT reconstructed at 70 keV was accurate and stable under various scan settings. PCD-CT has great potential for fat quantification using ultralow radiation doses.
Asunto(s)
Tejido Adiposo , Fantasmas de Imagen , Fotones , Tejido Adiposo/diagnóstico por imagen , Reproducibilidad de los Resultados , Tomografía Computarizada por Rayos X/métodos , Dosis de Radiación , HumanosRESUMEN
To validate the accuracy of coronary artery calcium score (CACS) using photon-counting detector (PCD) CT under various scanning settings and explore the optimized scanning settings considering both the accuracy and the radiation dose. A CACS phantom containing six hollow cylindrical hydroxyapatite calcifications of two sizes with three densities and 12 patients underwent CACS scans. For PCD-CT, two scanning modes (sequence and flash [high-pitch spiral mode]) and five tube voltages (90kV, 120kV, 140kV, Sn100kV, and Sn140kV) at different image quality (IQ) levels were set for phantom, and patients were scanned with 120kV at IQ19 using flash mode. All acquisitions from PCD-CT were reconstructed at 70keV. Acquisitions in sequence mode at 120kV on an energy-integrating detector CT (EID-CT) was used as the reference. Agatston, mass, and volume scores were calculated. The CACS from PCD-CT exhibited excellent agreements with the reference (all intraclass correlation coefficient [ICC] > 0.99). The root mean square error (RMSE) between the Agatston score acquired from PCD-CT and the reference (5.4-11.5) was small. A radiation dose reduction (16-75%) from PCD-CT compared with the reference was obtained in all protocols using flash mode, albeit with IQ20 only at sequence mode (22-44%). For the patients, ICC ( all ICC > 0.98) and Bland-Altman analysis of CACS all showed high agreements between PCD-CT and the reference, without reclassifying CACS categories(P = 0.317). PCD-CT yields repeatable and accurate CACS across diverse scanning protocols according to our pilot study. Sn100kV, 90kV, and 120kV using flash mode at IQ20 are recommended for clinical applications considering both accuracy and radiation dose.
Asunto(s)
Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Vasos Coronarios , Fantasmas de Imagen , Fotones , Valor Predictivo de las Pruebas , Dosis de Radiación , Calcificación Vascular , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados , Calcificación Vascular/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Angiografía Coronaria/instrumentación , Angiografía Coronaria/métodos , Femenino , Persona de Mediana Edad , Masculino , Angiografía por Tomografía Computarizada/instrumentación , Anciano , Índice de Severidad de la Enfermedad , Interpretación de Imagen Radiográfica Asistida por Computador , Exposición a la Radiación , Tomografía Computarizada Multidetector/instrumentaciónRESUMEN
PURPOSE: Accurate measurements of trabecular bone microarchitecture are required for a proper assessment of bone fragility. Photon-counting detector CT (PCD-CT) has different technical properties than conventional CT, resulting in higher resolution and thereby potentially enabling in-vivo measurement of trabecular microarchitecture. The purpose of this study was to quantify trabecular bone microarchitectural parameters with PCD-CT at varying radiation doses and compare this to µCT as gold standard. METHOD: Both distal radii, distal tibiae, femoral heads, and two vertebrae were dissected from one human. All specimens were scanned ex-vivo on a PCD-CT system (slice increment 0.1 mm; pixel size 0.1042-0.127 mm) and a µCT system (isotropic voxel size 49-68.4 µm). The radiation doses of the PCD-CT scans were varied from 2.5 to 120 mGy based on the volume CT dose index (CTDIvol32). For the PCD-CT scans, contrast-to-noise ratio and trabecular sharpness were calculated and compared between radiation doses. µCT and PCD-CT scans were registered. The trabecular bone was then segmented from all PCD-CT and µCT scans and split into cubes with 6-mm edge length. For each cube, bone volume over total volume, trabecular thickness, trabecular number, and trabecular heterogeneity were calculated and compared between corresponding PCD-CT and µCT cubes. RESULTS: With increasing dose, contrast-to-noise ratio and trabecular sharpness values increased for the PCD-CT images. Already at the lowest dose, high correlations between the trabecular microarchitectural parameters between µCT and PCD-CT were found (R2 = 0.55-0.95), which improved with increasing radiation dose (R2 = 0.76-0.96 at 20 mGy). CONCLUSIONS: PCD-CT can be used to quantify trabecular bone microarchitecture, with accuracy comparable to µCT and at clinically relevant radiation doses.
RESUMEN
The clinical imaging features of photon-counting detector (PCD) computed tomography (CT) are mainly known as dose reduction, improvement of spatial resolution, and reduction of artifacts compared to energy-integrating detector CT (EID-CT). The utility of cranial and spinal PCD-CT and PCD-CT angiography (CTA) has been previously reported. CTA is a widely used technique for noninvasive evaluation. Cranial CTA is important in brain tumors, especially glioblastoma; it evaluates whether the tumor is highly vascularized prior to an operation and helps in the diagnosis and assessment of bleeding risk. Spinal CTA has an important role in the estimation of feeders and drainers prior to selective angiography in the cases of spinal epidural arteriovenous fistulas and spinal tumors, especially in hemangioblastoma. So far, EID-CTA is commonly performed in an adjunctive role prior to selective angiography; PCD-CTA with high spatial resolution can be an alternative to selective angiography. In the cases of cerebral aneurysms, flow diverters are important tools for the treatment of intracranial aneurysms, and postoperative evaluation with cone beam CT with angiography using diluted contrast media is performed to evaluate stent adhesion and in-stent thrombosis. If CTA can replace selective angiography, it will be less invasive for the patient. In this review, we present representative cases with PCD-CT. We also show how well the cranial and spinal PCD-CTA approaches the accuracy of angiographic and intraoperative findings.
RESUMEN
PURPOSE: To explore the potential differences in epicardial adipose tissue (EAT) volume and attenuation measurements between photon-counting detector (PCD) and energy-integrating detector (EID)-CT systems. METHODS: Fifty patients (mean age 69 ± 8 years, 41 male [82 %]) were prospectively enrolled for a research coronary CT angiography (CCTA) on a PCD-CT within 30 days after clinical EID-based CCTA. EID-CT acquisitions were reconstructed using a Bv40 kernel at 0.6 mm slice thickness. The PCD-CT acquisition was reconstructed at a down-sampled resolution (0.6 mm, Bv40; [PCD-DS]) and at ultra-high resolutions (PCD-UHR) with a 0.2 mm slice thickness and Bv40, Bv48, and Bv64 kernels. EAT segmentation was performed semi-automatically at about 1 cm intervals and interpolated to cover the whole epicardium within a threshold of -190 to -30 HU. A subgroup analysis was performed based on quartile groups created from EID-CT data and PCD-UHRBv48 data. Differences were measured using repeated-measures ANOVA and the Friedman test. Correlations were tested using Pearson's and Spearman's rho, and agreement using Bland-Altman plots. RESULTS: EAT volumes significantly differed between some reconstructions (e.g. EID-CT: 138 ml [IQR 100, 188]; PCD-DS: 147 ml [110, 206]; P<0.001). Overall, correlations between PCD-UHR and EID-CT EAT volumes were excellent, e.g. PCD-UHRBv48: r: 0.976 (95 % CI: 0.958, 0.987); P<0.001; with good agreement (mean bias: -9.5 ml; limits of agreement [LoA]: -40.6, 21.6). On the other hand, correlations regarding EAT attenuation was moderate, e.g. PCD-UHRBV48: r: 0.655 (95 % CI: 0.461, 0.790); P<0.001; mean bias: 6.5 HU; LoA: -2.0, 15.0. CONCLUSION: EAT attenuation and volume measurements demonstrated different absolute values between PCD-UHR, PCD-DS as well as EID-CT reconstructions, but showed similar tendencies on an intra-individual level. New protocols and threshold ranges need to be developed to allow comparison between PCD-CT and EID-CT data.