Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2208708119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191205

RESUMEN

Photoperiod is an important environmental cue. Plants can distinguish the seasons and flower at the right time through sensing the photoperiod. Soybean is a sensitive short-day crop, and the timing of flowering varies greatly at different latitudes, thus affecting yields. Soybean cultivars in high latitudes adapt to the long day by the impairment of two phytochrome genes, PHYA3 and PHYA2, and the legume-specific flowering suppressor, E1. However, the regulating mechanism underlying phyA and E1 in soybean remains largely unknown. Here, we classified the regulation of the E1 family by phyA2 and phyA3 at the transcriptional and posttranscriptional levels, revealing that phyA2 and phyA3 regulate E1 by directly binding to LUX proteins, the critical component of the evening complex, to regulate the stability of LUX proteins. In addition, phyA2 and phyA3 can also directly associate with E1 and its homologs to stabilize the E1 proteins. Therefore, phyA homologs control the core flowering suppressor E1 at both the transcriptional and posttranscriptional levels, to double ensure the E1 activity. Thus, our results disclose a photoperiod flowering mechanism in plants by which the phytochrome A regulates LUX and E1 activity.


Asunto(s)
Fotoperiodo , Fitocromo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
2.
Plant J ; 115(6): 1647-1660, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285314

RESUMEN

Rice flowering is triggered by transcriptional reprogramming at the shoot apical meristem (SAM) mediated by florigenic proteins produced in leaves in response to changes in photoperiod. Florigens are more rapidly expressed under short days (SDs) compared to long days (LDs) and include the HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1) phosphatidylethanolamine binding proteins. Hd3a and RFT1 are largely redundant at converting the SAM into an inflorescence, but whether they activate the same target genes and convey all photoperiodic information that modifies gene expression at the SAM is currently unclear. We uncoupled the contribution of Hd3a and RFT1 to transcriptome reprogramming at the SAM by RNA sequencing of dexamethasone-inducible over-expressors of single florigens and wild-type plants exposed to photoperiodic induction. Fifteen highly differentially expressed genes common to Hd3a, RFT1, and SDs were retrieved, 10 of which still uncharacterized. Detailed functional studies on some candidates revealed a role for LOC_Os04g13150 in determining tiller angle and spikelet development and the gene was renamed BROADER TILLER ANGLE 1 (BRT1). We identified a core set of genes controlled by florigen-mediated photoperiodic induction and defined the function of a novel florigen target controlling tiller angle and spikelet development.


Asunto(s)
Florigena , Flores , Florigena/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Meristema , Hojas de la Planta/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33963081

RESUMEN

Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Arabidopsis Low N-induced early flowering is compromised in fbh quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target CONSTANS (CO) and downstream florigen FLOWERING LOCUS T (FT) genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates CO and FT transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/metabolismo , Nitrógeno/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosforilación , Fotoperiodo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
4.
Plant Biotechnol J ; 21(8): 1682-1694, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37171033

RESUMEN

Photoperiod-mediated flowering determines the phenological adaptability of crops including soybean (Glycine max). A genome-wide association study (GWAS) identified a new flowering time locus, Time of flowering 13 (Tof13), which defined a gene encoding an AP2/ERF transcription factor. This new transcription factor, which we named TOE4b, is localized in the nucleus. TOE4b has been selected for soybean latitude adaptability. The existing natural variant TOE4bH4 was rare in wild soybean accessions but occurred more frequently in landraces and cultivars. Notably, TOE4bH4 improved high-latitude adaptation of soybean to some extent. The gene-edited TOE4b knockout mutant exhibited earlier flowering, conversely, TOE4b overexpression delayed flowering time. TOE4b is directly bound to the promoters and gene bodies of the key flowering integration factor genes FT2a and FT5a to inhibit their transcription. Importantly, TOE4b overexpression lines in field trials not only showed late flowering but also altered plant architecture, including shorter internode length, more internodes, more branches and pod number per plant, and finally boosted grain yield per plant by 60% in Guangzhou and 87% in Shijiazhuang. Our findings therefore identified TOE4b as a pleiotropic gene to increase yield potential per plant in soybean, and these results provide a promising option for breeding a soybean variety with an idealized plant architecture that promotes high yields.


Asunto(s)
Glycine max , Fotoperiodo , Glycine max/metabolismo , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/fisiología , Fitomejoramiento , Grano Comestible/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
5.
New Phytol ; 239(1): 208-221, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084001

RESUMEN

In natural long days, the florigen gene FLOWERING LOCUS T (FT) shows a bimodal expression pattern with morning and dusk peaks in Arabidopsis. This pattern differs from the one observed in the laboratory, and little is known about underlying mechanisms. A red : far-red (R : FR) ratio difference between sunlight and fluorescent light causes this FT pattern mismatch. We showed that bimodal FT expression patterns were induced in a day longer than 14 h with sunlight R : FR (= c. 1) conditions. By circadian gating experiments, we found that cumulative exposure of R : FR-adjusted light (R : FR ratio was adjusted to 1 with FR supplement) spanning from the afternoon to the next morning required full induction of FT in the morning. Conversely, only 2 h of R : FR adjustment in the late afternoon was sufficient for FT induction at dusk. We identified that phytochrome A (phyA) is required for the morning FT expression in response to the R : FR adjustment on the previous day. As a part of this mechanism, we showed that PHYTOCHROME-INTERACTING FACTOR 7 contributes to FT regulation. Our results suggest that phyA-mediated high-irradiance response and the external coincidence mechanism contribute to morning FT induction under natural long-day conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Fotoperiodo , Flores/genética , Flores/metabolismo , Fitocromo A/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas
6.
Mol Breed ; 43(5): 36, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309391

RESUMEN

Soybean (Glycine max) is an economically important crop worldwide, serving as a major source of oil and protein for human consumption and animal feed. Cultivated soybean was domesticated from wild soybean (Glycine soja) which both species are highly sensitive to photoperiod and can grow over a wide geographical range. The extensive ecological adaptation of wild and cultivated soybean has been facilitated by a series of genes represented as quantitative trait loci (QTLs) that control photoperiodic flowering and maturation. Here, we review the molecular and genetic basis underlying the regulation of photoperiodic flowering in soybean. Soybean has experienced both natural and artificial selection during adaptation to different latitudes, resulting in differential molecular and evolutionary mechanisms between wild and cultivated soybean. The in-depth study of natural and artificial selection for the photoperiodic adaptability of wild and cultivated soybean provides an important theoretical and practical basis for enhancing soybean adaptability and yield via molecular breeding. In addition, we discuss the possible origin of wild soybean, current challenges, and future research directions in this important topic.

7.
Int J Mol Sci ; 24(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37298387

RESUMEN

Flowering time and photoperiod sensitivity are fundamental traits that determine soybean adaptation to a given region or a wide range of geographic environments. The General Regulatory Factors (GRFs), also known as 14-3-3 family, are involved in protein-protein interactions in a phosphorylation-dependent manner, thus regulating ubiquitous biological processes, such as photoperiodic flowering, plant immunity and stress response. In this study, 20 soybean GmSGF14 genes were identified and divided into two categories according to phylogenetic relationships and structural characteristics. Real-time quantitative PCR analysis revealed that GmSGF14g, GmSGF14i, GmSGF14j, GmSGF14k, GmSGF14m and GmSGF14s were highly expressed in all tissues compared to other GmSGF14 genes. In addition, we found that the transcript levels of GmSGF14 family genes in leaves varied significantly under different photoperiodic conditions, indicating that their expression responds to photoperiod. To explore the role of GmSGF14 in the regulation of soybean flowering, the geographical distribution of major haplotypes and their association with flowering time in six environments among 207 soybean germplasms were studied. Haplotype analysis confirmed that the GmSGF14mH4 harboring a frameshift mutation in the 14-3-3 domain was associated with later flowering. Geographical distribution analysis demonstrated that the haplotypes related to early flowering were frequently found in high-latitude regions, while the haplotypes associated with late flowering were mostly distributed in low-latitude regions of China. Taken together, our results reveal that the GmSGF14 family genes play essential roles in photoperiodic flowering and geographical adaptation of soybean, providing theoretical support for further exploring the function of specific genes in this family and varietal improvement for wide adaptability.


Asunto(s)
Glycine max , Fotoperiodo , Haplotipos/genética , Glycine max/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Biochem Biophys Res Commun ; 599: 38-42, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35168062

RESUMEN

CONSTANS is a central protein in the regulation of photoperiodic flowering, which is expressed in response to day length and promotes the expression of Flowering Locus T. The tandem B-box domain in CONSTANS mediates interactions with various proteins to regulate the expression of Flowering Locus T. Although most plants, including Arabidopsis, have multiple B-box proteins, their B-box structures have not been elucidated. Here, we report the crystal structure of a tandem B-box domain from Arabidopsis CONSTANS. The crystal structure shows that each B-box adopts a canonical B-box fold and coordinates two zinc atoms. Furthermore, the crystal structure reveals that the B-box domain has a unique structure that distinguishes it from animal B-boxes at the monomer and dimer level.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Unión al ADN/química , Factores de Transcripción/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Factores de Transcripción/metabolismo , Zinc/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077363

RESUMEN

Pseudo-response regulator (PRR) family members serve as key components of the core clock of the circadian clock, and play important roles in photoperiodic flowering, stress tolerance, growth, and the development of plants. In this study, 14 soybean PRR genes were identified, and classified into three groups according to phylogenetic analysis and structural characteristics. Real-time quantitative PCR analysis revealed that 13 GmPRRs exhibited obvious rhythmic expression under long-day (LD) and short-day (SD) conditions, and the expression of 12 GmPRRs was higher under LD in leaves. To evaluate the effects of natural variations in GmPRR alleles on soybean adaptation, we examined the sequences of GmPRRs among 207 varieties collected across China and the US, investigated the flowering phenotypes in six environments, and analyzed the geographical distributions of the major haplotypes. The results showed that a majority of non-synonymous mutations in the coding region were associated with flowering time, and we found that the nonsense mutations resulting in deletion of the CCT domain were related to early flowering. Haplotype analysis demonstrated that the haplotypes associated with early flowering were mostly distributed in Northeast China, while the haplotypes associated with late flowering were mostly cultivated in the lower latitudes of China. Our study of PRR family genes in soybean provides not only an important guide for characterizing the circadian clock-controlled flowering pathway but also a theoretical basis and opportunities to breed varieties with adaptation to specific regions and farming systems.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Flores , Genómica , Fotoperiodo , Filogenia , Fitomejoramiento , Proteínas de Plantas/metabolismo , Glycine max/metabolismo
10.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408833

RESUMEN

LUX ARRHYTHMO (LUX) plays a key role in circadian rhythms and flowering. Here, we identified the MtLUX gene which is the putative ortholog of LUX in Medicago truncatula. The roles of MtLUX, in both the nodulation belowground and leaf movement aboveground, were investigated by characterizing a loss-of-function mtlux mutant. MtLUX was required for the control of flowering time under both long-day and short-day conditions. Further investigations showed that the early flowering in the mtlux mutant was correlated with the elevated expression level of the MtFTa1 gene but in a CO-like independent manner. MtLUX played a conserved role in the regulatory interactions with MtLHY, MtTOC1, and MtPRR genes, which is similar to those in other species. Meanwhile, the unexpected functions of MtLUX were revealed in nodule formation and nyctinastic leaf movement, probably through the indirect regulation in MtLHY. Its participation in nodulation is of interest in the context of functional conservation and the neo-functionalization of the products of LUX orthologs.


Asunto(s)
Relojes Circadianos , Medicago truncatula , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant J ; 101(6): 1287-1302, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31661582

RESUMEN

Flowering time is a key process in plant development. Photoperiodic signals play a crucial role in the floral transition in Arabidopsis thaliana, and the protein CONSTANS (CO) has a central regulatory function that is tightly regulated at the transcriptional and post-translational levels. The stability of CO protein depends on a light-driven proteasome process that optimizes its accumulation in the evening to promote the production of the florigen FLOWERING LOCUS T (FT) and induce seasonal flowering. To further investigate the post-translational regulation of CO protein we have dissected its interactome network employing in vivo and in vitro assays and molecular genetics approaches. The immunophilin FKBP12 has been identified in Arabidopsis as a CO interactor that regulates its accumulation and activity. FKBP12 and CO interact through the CCT domain, affecting the stability and function of CO. fkbp12 insertion mutants show a delay in flowering time, while FKBP12 overexpression accelerates flowering, and these phenotypes can be directly related to a change in accumulation of FT protein. The interaction is conserved between the Chlamydomonas algal orthologs CrCO-CrFKBP12, revealing an ancient regulatory step in photoperiod regulation of plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Flores/crecimiento & desarrollo , Isomerasa de Peptidilprolil/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Isomerasa de Peptidilprolil/genética , Fotoperiodo , Dominios y Motivos de Interacción de Proteínas , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Técnicas del Sistema de Dos Híbridos
12.
EMBO J ; 36(7): 904-918, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28270524

RESUMEN

Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Flores/efectos de la radiación , Luz , Factores de Transcripción/metabolismo
13.
Biochem Biophys Res Commun ; 571: 32-37, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34303193

RESUMEN

Flowering time or heading date is a critical agronomic trait of rice and is regulated by numerous genes, including several genes encoding nuclear factor YB (NF-YB) in rice, NF-YB11 is one of the genes well known to be involved in the process, delaying flowering under long-day (LD) conditions but promoting flowering under short-day (SD) conditions. In this study, we identified another NF-YB gene, OsNF-YB4. Overexpression of OsNF-YB4 promoted rice flowering under both natural long-day (NLD) and natural short-day (NSD) conditions, whereas suppression or loss-of-function of this gene delayed flowering. The transcription of OsNF-YB4 exhibited an obvious circadian pattern and was induced by light under both LD and SD conditions. Expression analyses of flowering regulators in the photoperiodic flowering pathway demonstrated that up-regulation of OsNF-YB4 resulted in down-regulation of floral repressor Grain number, plant height and heading date 7 (Ghd7), and thus activating the Early heading date 1 (Ehd1)-mediated flowering pathway. Besides, OsNF-YB4 was observed to bind to the specific CCAAT-box regions in the Ghd7 promoter in vitro and interact with GHD7 in yeast. All these evidences support that OsNF-YB4 functions as a flowering promoter by negatively regulating the expression of floral repressor Ghd7 in rice photoperiodic flowering-time regulatory network.


Asunto(s)
Flores/metabolismo , Proteínas Nucleares/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Nucleares/genética , Oryza/genética , Proteínas de Plantas/genética
14.
New Phytol ; 229(1): 429-443, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737885

RESUMEN

In rice, the florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1), OsFD-like basic leucine zipper (bZIP) transcription factors, and Gf14 proteins assemble into florigen activation/repressor complexes (FACs/FRCs), which regulate transition to flowering in leaves and apical meristem. Only OsFD1 has been described as part of complexes promoting flowering at the meristem, and little is known about the role of other bZIP transcription factors, the combinatorial complexity of FAC formation, and their DNA-binding properties. Here, we used mutant analysis, protein-protein interaction assays and DNA affinity purification (DAP) sequencing coupled to in silico prediction of binding syntaxes to study several bZIP proteins that assemble into FACs or FRCs. We identified OsFD4 as a component of a FAC promoting flowering at the shoot apical meristem, downstream of OsFD1. The osfd4 mutants are late flowering and delay expression of genes promoting inflorescence development. Protein-protein interactions indicate an extensive network of contacts between several bZIPs and Gf14 proteins. Finally, we identified genomic regions bound by bZIPs with promotive and repressive effects on flowering. We conclude that distinct bZIPs orchestrate floral induction at the meristem and that FAC formation is largely combinatorial. While binding to the same consensus motif, their DNA-binding syntax is different, suggesting discriminatory functions.


Asunto(s)
Florigena , Oryza , Florigena/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Biosci Biotechnol Biochem ; 85(4): 765-774, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33686404

RESUMEN

Arabidopsis cryptochrome 2 (CRY2) and FLAVIN-BINDING, KELCH REPEAT, and F-BOX 1 (FKF1) are blue light receptors mediating light regulation of growth and development, such as photoperiodic flowering. CRY2 interacts with a basic helix-loop-helix transcription factor CIB1 in response to blue light to activate the transcription of the flowering integrator gene FLOWERING LOCUS T (FT). CIB1, CIB2, CIB4, and CIB5 function redundantly to promote flowering in a CRY2-dependent way and form various heterodimers to bind to the noncanonical E-box sequence in the FT promoter. However, the function of CIB3 has not been described. We discovered that CIB3 promotes photoperiodic flowering independently of CRY2. Moreover, CIB3 does not interact with CRY2 but interacts with CIB1 and functions synergistically with CIB1 to promote the transcription of the GI gene. FKF1 is required for CIB3 to promote flowering and enhances the CIB1-CIB3 interaction in response to blue light.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Fotoperiodo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Unión Proteica
16.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884732

RESUMEN

The photoperiodic flowering pathway is essential for plant reproduction. As blue and ultraviolet-A light receptors, cryptochromes play an important role in the photoperiodic regulation of flowering. Lilium × formolongi is an important cut flower that flowers within a year after seed propagation. Floral induction is highly sensitive to photoperiod. In this study, we isolated the CRYPTOCHROME2 gene (LfCRY2) from L. × formolongi. The predicted LfCRY2 protein was highly homologous to other CRY2 proteins. The transcription of LfCRY2 was induced by blue light. LfCRY2 exhibits its highest diurnal expression during the floral induction stage under both long-day and short-day photoperiods. Overexpression of LfCRY2 in Arabidopsis thaliana promoted flowering under long days but not short days, and inhibited hypocotyl elongation under blue light. Furthermore, LfCRY2 was located in the nucleus and could interact with L. × formolongi CONSTANS-like 9 (LfCOL9) and A. thaliana CRY-interacting basic-helix-loop-helix 1 (AtCIB1) in both yeast and onion cells, which supports the hypothesis that LfCRY2 hastens the floral transition via the CIB1-CO pathway in a manner similar to AtCRY2. These results provide evidence that LfCRY2 plays a vital role in promoting flowering under long days in L. × formolongi.


Asunto(s)
Criptocromos/fisiología , Flores/fisiología , Lilium/genética , Fotoperiodo , Secuencia de Aminoácidos , Arabidopsis , Ritmo Circadiano , Criptocromos/química , Filogenia , Plantas Modificadas Genéticamente
17.
J Integr Plant Biol ; 63(6): 981-994, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33090664

RESUMEN

Photoperiodic flowering is one of the most important factors affecting regional adaptation and yield in soybean (Glycine max). Plant adaptation to long-day conditions at higher latitudes requires early flowering and a reduction or loss of photoperiod sensitivity; adaptation to short-day conditions at lower latitudes involves delayed flowering, which prolongs vegetative growth for maximum yield potential. Due to the influence of numerous major loci and quantitative trait loci (QTLs), soybean has broad adaptability across latitudes. Forward genetic approaches have uncovered the molecular basis for several of these major maturity genes and QTLs. Moreover, the molecular characterization of orthologs of Arabidopsis thaliana flowering genes has enriched our understanding of the photoperiodic flowering pathway in soybean. Building on early insights into the importance of the photoreceptor phytochrome A, several circadian clock components have been integrated into the genetic network controlling flowering in soybean: E1, a repressor of FLOWERING LOCUS T orthologs, plays a central role in this network. Here, we provide an overview of recent progress in elucidating photoperiodic flowering in soybean, how it contributes to our fundamental understanding of flowering time control, and how this information could be used for molecular design and breeding of high-yielding soybean cultivars.


Asunto(s)
Flores/fisiología , Glycine max/fisiología , Fotoperiodo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Glycine max/genética
18.
BMC Plant Biol ; 20(1): 329, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652925

RESUMEN

BACKGROUND: Flowering time is an important trait for productivity in legumes, which include many food and fodder plants. Medicago truncatula (Medicago) is a model temperate legume used to study flowering time pathways. Like Arabidopsis thaliana (Arabidopsis), its flowering is promoted by extended periods of cold (vernalization, V), followed by warm long day (LD) photoperiods. However, Arabidopsis flowering-time genes such as the FLOWERING LOCUS C (FLC)/ MADS AFFECTING FLOWERING (MAF) clade are missing and CONSTANS-LIKE (CO-LIKE) genes do not appear to have a role in Medicago or Pisum sativum (pea). Another photoperiodic regulator, the red/far red photoreceptor PHYTOCHROME A (PHYA), promotes Arabidopsis flowering by stabilizing the CO protein in LD. Interestingly, despite the absence of CO-LIKE function in pea, PsPHYA plays a key role in promoting LD photoperiodic flowering and plant architecture. Medicago has one homolog of PHYA, MtPHYA, but its function is not known. RESULTS: Genetic analysis of two MtPHYA Tnt1 insertion mutant alleles indicates that MtPHYA has an important role in promoting Medicago flowering and primary stem elongation in VLD and LD and in perception of far-red wavelengths in seedlings. MtPHYA positively regulates the expression of MtE1-like (MtE1L), a homologue of an important legume-specific flowering time gene, E1 in soybean and other Medicago LD-regulated flowering-time gene homologues, including the three FLOWERING LOCUS T-LIKE (FT-LIKE) genes, MtFTa1, MtFTb1 and MtFTb2 and the two FRUITFULL-LIKE (FUL-LIKE) genes MtFULa and MtFULb. MtPHYA also modulates the expression of the circadian clock genes, GIGANTEA (GI) and TIMING OF CAB EXPRESSION 1a (TOC1a). Genetic analyses indicate that Mtphya-1 Mte1l double mutants flowered at the same time as the single mutants. However, Mtphya-1 Mtfta1 double mutants had a weak additive effect in delaying flowering and in reduction of primary axis lengths beyond what was conferred by either of the single mutants. CONCLUSION: MtPHYA has an important role in LD photoperiodic control of flowering, plant architecture and seedling de-etiolation under far-red wavelengths in Medicago. It promotes the expression of LD-induced flowering time genes and modulates clock-related genes. In addition to MtFTa1, MtPHYA likely regulates other targets during LD floral induction in Medicago.


Asunto(s)
Relojes Circadianos/genética , Medicago truncatula/genética , Fitocromo A/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/fisiología , Fenotipo , Fotoperiodo , Fitocromo A/genética , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
19.
New Phytol ; 227(5): 1453-1466, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32315442

RESUMEN

Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.


Asunto(s)
Proteínas de Arabidopsis , Florigena , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Florigena/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histonas/metabolismo , Metilación , Fotoperiodo , Espectrometría de Masas en Tándem
20.
Plant J ; 96(2): 329-342, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30030859

RESUMEN

Photoperiod is an important external stimulus governing the precise timing of the floral transition in plants. Members of the FLOWERING LOCUS T (FT)-like clade of phosphatidylethanolamine-binding proteins induce this developmental process in numerous species by forming regulatory protein complexes with FD-like bZIP transcription factors. We identified several thus far unknown FT-like and FD-like genes in the genus Nicotiana and found that, even in the day-neutral species Nicotiana tabacum, floral initiation requires the photoperiod-dependent expression of several FT-like genes. Furthermore, floral promotion under long-day (LD) and short-day (SD) conditions is mediated by an FT-like protein (NtFT5) that originates from the genome of the paternal, facultative SD ancestor Nicotiana tomentosiformis. In contrast, its ortholog of the maternal LD ancestor Nicotiana sylvestris is not present in the genome of N. tabacum cv. SR1. Expression profiling in N. tabacum and its ancestors confirmed the relevance of these FT and FD orthologs in the context of polyploidization. We also found that floral inhibition by tobacco FT-like proteins is not restricted to SD conditions, highlighting the coincident expression of tobacco FT-like genes encoding floral activators and floral inhibitors. Multicolor bimolecular fluorescence complementation analysis revealed the preferential formation of FT/FD complexes that promote rather than inhibit flowering, which in concert with the regulation of NtFT and NtFD expression could explain how floral promotion overcomes floral repression during the floral transition in tobacco.


Asunto(s)
Flores/genética , Nicotiana/genética , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fotoperiodo , Flores/fisiología , Flores/efectos de la radiación , Proteínas de Unión a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/fisiología , Nicotiana/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA