Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fungal Genet Biol ; 171: 103876, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38367799

RESUMEN

Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.


Asunto(s)
Colletotrichum , Zea mays , Zea mays/genética , Virulencia/genética , Pared Celular/genética , Pared Celular/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedades de las Plantas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Ecol Appl ; 34(1): e2920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750229

RESUMEN

Transgenerational plasticity (TGP) allows a plant to acclimate to external variable environments and is a potential mechanism that explains the range expansion and invasion success of some exotic plants. Most studies explored the traits of TGP associated with the success of exotic plant invasions by comparison studies among exotic, native, invasive, and noninvasive species. However, studies on the TGP of invasive plants in different resource environments are scarce, and the biological mechanisms involved are not well understood. This study aimed to determine the role of TGP in the invasiveness of Xanthium strumarium in northeast China. We measured the plant morphology of aboveground parts and the growth of three generations of the invader under different environmental conditions. The results showed that the intergenerational plasticity of X. strumarium was stronger under stress conditions. We found that the X. strumarium parent generation (F0) grown under water and/or nutrient deficiency conditions transferred the environmental information to their offspring (F1 and F2). The F1 generation grown under high-resource conditions has greater height with larger crown sizes, thicker basal diameters, and higher biomass. Both water and nutrients can affect the intergenerational transmission of plant plasticity, nutrients play a more important role compared with water. The high morphological intergenerational plasticity of X. strumarium under a pressure environment can help it quickly adapt to the new environment and accelerate the rapid expansion of the population in the short term. The root:shoot ratio and reproductive and nutrient distribution of the X. strumarium F0 and F1 generations showed high stability when the growth environment of the F0 generation differed from that of the F1 generation. The stable resource allocation strategy can ensure that the obtained resources are evenly distributed to each organ to maintain the long-term existence of the community. Therefore, the study of intergenerational transmission plasticity is of great significance for understanding the invasion process, mechanism, and prevention of invasive plants.


Asunto(s)
Xanthium , Biomasa , Plantas , Adaptación Fisiológica , Agua
3.
Ecol Appl ; 34(1): e2903, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37347236

RESUMEN

Rapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co-occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42' N to 45°43' N) under three N (0, 5, and 10 g N m-2 ) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred-grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.


Asunto(s)
Ambrosia , Nitrógeno , Humanos , Ambrosia/genética , Adaptación Fisiológica/genética , Fenotipo , Plantas , Genética de Población , Especies Introducidas
4.
Oecologia ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134878

RESUMEN

Many invasive plants can reproduce through both seeds and clonal growth. In habitats, interacting seedlings may originate from the same mother, and interacting ramets originating from the same plant may not be adjacent to each other in the stolon, particularly for vines that can show curved growth. However, in a homogeneous environment, how kinship and integration between adjacent/non-adjacent ramets affect plant growth and feedback with soil biota has been less studied. We address these questions using an invasive stoloniferous vine Mikania micrantha. We found that sibling groups and stranger groups did not differ in biomass production, root allocation and feedback with soil biota, indicating that kin recognition is unlikely in M. micrantha. For two-ramet stolon fragments in which interacting ramets were adjacent to each other, older ramets allocated more biomass to roots than younger ramets when integrated, particularly in comparison with disconnected ramets from different genotypes, indicating that a division of labor was induced. For four-ramet stolon fragments in which there were two unrooted ramets between the two rooted, interacting ramets, integration increased biomass allocation to roots, possibly because only two of the four ramets could absorb belowground resources and a lower shoot allocation decreased aboveground light competition. When inoculated with soil biota conditioned by the four-ramet integrated fragments, plants of M. micrantha also increased biomass allocation to roots. These results indicate that the distance between interacting ramets in the stolon may affect the integration effect and feedback with soil biota in clonal plants.

5.
Environ Manage ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265466

RESUMEN

Plant invasion is a leading threat to biodiversity, ecosystem services and human wellbeing worldwide. In the central Himalayas intentionally or accidentally introduced invasive alien plant species (IAPS) facilitate their own establishment and spread, which is altering forest structure, vegetation composition, species diversity and livelihood. To understand the perception and awareness amongst local communities about invasive alien and native plants and its effect on local livelihood, a questionnaire-based study was conducted in 10 villages of Nainital district, Uttarakhand, India. Household data of 179 respondents were triangulated with key informants such as community leaders, teachers and older people. A majority of the respondents were found to be more familiar with the native species (Berberis asiatica, Pyracantha crenulata and Rubus ellipticus) than IAPS (Ageratina adenophora and Lantana camara). Both the IAPS negative impacts on native biodiversity, ecosystem services and livelihood. During the last two decades IAPS have encroached on various forests and caused a decrease in native species in the study area. According to the local perception, deforestation, forest fire, climate change, increased transport, light weight seed, no use and grazing etc. have been the main factors behind the spread of IAPS. A. adenophora invaded both chir pine (Pinus roxburghii) and banj oak (Quercus leucotrichophora) forests while L. camara remained more prominent in low elevation open canopy chir pine forest. Uprooting is the primary method used to control IAPS in crop fields and forests. The studied villages have not reported awareness and education programs about the IAPS. Our study demonstrates the wide range of perspectives on the threat posed by IAPS to forest ecosystems and natural resources. Education could help to raise awareness about the issue and could be beneficial in managing and controlling invasion in the Himalayan region.

6.
Ecol Lett ; 26(9): 1584-1596, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37387416

RESUMEN

Non-native plants are typically released from specialist enemies but continue to be attacked by generalists, albeit at lower intensities. This reduced herbivory may lead to less investment in constitutive defences and greater investment in induced defences, potentially reducing defence costs. We compared herbivory on 27 non-native and 59 native species in the field and conducted bioassays and chemical analyses on 12 pairs of non-native and native congeners. Non-natives suffered less damage and had weaker constitutive defences, but stronger induced defences than natives. For non-natives, the strength of constitutive defences was correlated with the intensity of herbivory experienced, whereas induced defences showed the reverse. Investment in induced defences correlated positively with growth, suggesting a novel mechanism for the evolution of increased competitive ability. To our knowledge, these are the first linkages reported among trade-offs in plant defences related to the intensity of herbivory, allocation to constitutive versus induced defences, and growth.


Asunto(s)
Herbivoria , Fenómenos Fisiológicos de las Plantas , Plantas
7.
BMC Plant Biol ; 23(1): 443, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37730551

RESUMEN

BACKGROUND: Si can be important for the growth, functioning, and stoichiometric regulation of nutrients for high-Si-accumulating bamboo. However, other trees do not actively take up dissolved silicic acid [Si(OH)4] from the soil, likely because they have fewer or no specific Si transporters in their roots. It is unclear what causes differential growth and C:N:P stoichiometry between bamboo and other trees across levels of Si supply. RESULTS: Si supply increased the relative growth rate of height and basal diameter of bamboo saplings, likely by increasing its net photosynthetic rate and ratios of N:P. Moreover, a high concentration of Si supply decreased the ratio of C:Si in bamboo leaves due to a partial substitution of C with Si in organic compounds. We also found that there was a positive correlation between leaf Si concentration and its transpiration rate in tree saplings. CONCLUSIONS: We demonstrated that Si supply can decrease the ratio of C:Si in bamboo leaves and increase the ratio of N:P without altering nutrient status or the N:P ratio of tree saplings. Our findings provide experimental data to assess the different responses between bamboo and other trees in terms of growth, photosynthesis, and C:N:P stoichiometry. These results have implications for assessing the growth and competition between high-Si-accumulating bamboo and other plants when Si availability is altered in ecosystems during bamboo expansion.


Asunto(s)
Ecosistema , Árboles , Silicio , Transporte Biológico , Proteínas de Transporte de Membrana
8.
Appl Environ Microbiol ; 89(10): e0109323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815356

RESUMEN

Climate change, microbial endophytes, and local plants can affect the establishment and expansion of invasive species, yet no study has been performed to assess these interactions. Using a growth chamber, we integrated the belowground (rhizosphere soils) and aboveground (mixture of mature leaf and leaf litter) microbiota into an experimental framework to evaluate the impacts of four native plants acting as microbial inoculation sources on endophyte assembly and growth of the invasive plant Ageratina adenophora in response to drought stress and temperature change. We found that fungal and bacterial enrichment in the leaves and roots of A. adenophora exhibited distinct patterns in response to climatic factors. Many fungi were enriched in roots in response to high temperature and drought stress; in contrast, many bacteria were enriched in leaves in response to low temperature and drought stress. Inoculation of microbiota from phylogenetically close native plant species (i.e., Asteraceae Artemisia atrovirens) causes the recipient plant A. adenophora (Asteraceae) to enrich dominant microbial species from inoculation sources, which commonly results in a lower dissimilar endophytic microbiota and thus produces more negative growth effects when compared to non-Asteraceae inoculations. Drought, microbial inoculation source, and temperature directly impacted the growth of A. adenophora. Both drought and inoculation also indirectly impacted the growth of A. adenophora by changing the root endophytic fungal assembly. Our data indicate that native plant identity can greatly impact the endophyte assembly and host growth of invasive plants, which is regulated by drought and temperature.IMPORTANCEThere has been increasing interest in the interactions between global changes and plant invasions; however, it remains to quantify the role of microbial endophytes in plant invasion with a consideration of their variation in the root vs leaf of hosts, as well as the linkages between microbial inoculations, such as native plant species, and climatic factors, such as temperature and drought. Our study found that local plants acting as microbial inoculants can impact fungal and bacterial enrichment in the leaves and roots of the invasive plant Ageratina adenophora and thus produce distinct growth effects in response to climatic factors; endophyte-mediated invasion of A. adenophora is expected to operate more effectively under favorable moisture. Our study is important for understanding the interactions between climate change, microbial endophytes, and local plant identity in the establishment and expansion of invasive species.


Asunto(s)
Ageratina , Asteraceae , Endófitos/fisiología , Plantas/microbiología , Ageratina/fisiología , Especies Introducidas , Bacterias , Raíces de Plantas/microbiología , Microbiología del Suelo
9.
New Phytol ; 239(4): 1464-1474, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37292017

RESUMEN

The ecological and evolutionary processes shaping community structure and functions of microbial symbionts are known to be scale-dependent. Nonetheless, understanding how the relative importance of these processes changes across spatial scales, and deciphering the hierarchical metacommunity structure of fungal endophytes has proven challenging. We investigated metacommunities of endophytic fungi within leaves of an invasive plant (Alternanthera philoxeroides) across wide latitudinal transects both in its native (Argentina) and introduced (China) ranges to test whether metacommunities of fungal endophytes were structured by different drivers at different spatial scales. We found Clementsian structures with seven discrete compartments (distinctive groups of fungal species with coincident distribution ranges), which coincided with the distribution of major watersheds. Metacommunity compartments were explicitly demarcated at three spatial scales, that is, the between-continent, between-compartment, and within-compartment scales. At larger spatial scales, local environmental conditions (climate, soil, and host plant traits) were replaced by other geographical factors as principal determinants of metacommunity structure of fungal endophytes and community diversity-function relationships. Our results reveal novel insights into the scale dependency of diversity and functions of fungal endophytes, which are likely similar for plant symbionts. These findings can potentially improve our understanding of the global patterns of fungal diversity.


Asunto(s)
Endófitos , Plantas , Plantas/microbiología , Evolución Biológica , China , Hongos , Biodiversidad
10.
Glob Chang Biol ; 29(8): 2286-2300, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653974

RESUMEN

Coastal wetlands provide essential ecosystem goods and services but are extremely vulnerable to sea-level rise, extreme climate, and human activities, especially the coastal wetlands in large river deltas, which are regarded as "natural recorders" of changes in estuarine environments. In addition to the area (loss or gain) and quality (degradation or improvement) of coastal wetlands, the information on coastal wetland structure (e.g., patch size and number) are also major metrics for coastal restoration and biodiversity protection, but remain very limited in China's four major river deltas. In this study, we quantified the spatial-temporal dynamics of total area (TA) and patch number (PN) of coastal wetlands with different sizes in the four deltas and the protected areas (PAs) and assessed the effects of major driving factors during 1984-2020. We also investigated the effectiveness of PAs through the comparison of TA and PN of coastal wetlands before and after the years in which PAs were listed as Ramsar Sites. We found both TA and PN experienced substantial losses in the Liaohe River Delta and Yellow River Delta but recent recoveries in the Yangtze River Delta. The coastal wetlands had a relatively stable and variable trend in TA but had a continually increasing trend in PN in the Pearl River Delta. Furthermore, reduced coastal reclamation, ecological restoration projects, and rapid expansion of invasive plants had great impacts on the coastal wetland structure in various ways. We also found that PAs were effective in halting the decreasing trends in coastal wetland areas and slowing the expansion of reclamation, but the success of PAs is being counteracted by soaring exotic plant invasions. Our findings provide vital information for the government and the public to address increasing challenges of coastal restoration, management, and sustainability in large river deltas.


Asunto(s)
Ecosistema , Humedales , Humanos , Ríos , Biodiversidad , Plantas , China
11.
Ecol Appl ; 33(5): e2864, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186416

RESUMEN

Invasive plants threaten biodiversity worldwide and effective management must control the target invader while conserving biodiversity. Herbicide is often used to control invasive plants, but potential negative impacts on biodiversity have led to spot spraying being recommended over boom spraying to minimize the exposure of nontarget species to chemicals. We examined the influence of herbicide application methods on off-target plant communities in threatened temperate grasslands of southeastern Australia, where spraying with the broadleaf herbicide fluroxypr is commonly used to control St. John's wort, Hypericum perforatum L. It is well established that fluroxypr effectively controls H. perforatum but few studies have examined its impact on native forbs. A spray drift experiment using water-sensitive cards indicated that ground surface coverage was higher for spot spraying (91%-99%) than for boom spraying (5%-31%). We established a replicated, 3-year, before-after-control-impact experiment across 48 1-m2 quadrats to determine how three herbicide application methods (spot spray, fine boom and coarse boom) affected nontarget native forbs, the group most likely to be affected by broadleaf herbicides. This experiment was conducted in grasslands where H. perforatum was almost absent, so responses would reflect the direct impacts of the chemical, rather than structural changes resulting from removal of the target invader. Spot spraying decreased the probability of occurrence of native leguminous forbs, while increasing the occurrence of exotic leguminous forbs and the richness of all exotic species and exotic annual forbs. Spot spraying reduced the occurrence of the native Desmodium varians and the abundance of the native Chrysocephalum apiculatum. During this 3-year study, native species appeared to be impacted either directly by fluroxypr or indirectly by increased competition with exotic species. Where herbicide application is deemed crucial in these grasslands, we recommend boom spraying when H. perforatum density is moderate to high. Spot spraying should only be used when the density of H. perforatum is very low. Given the regional variation in H. perforatum density, the spatial scale of invasion, soil depth, and conservation values, we present a decision tree to assist managers in evaluating the costs and benefits of chemical control, indicating situations where alternative or modified methods could be used.


Asunto(s)
Asteraceae , Herbicidas , Herbicidas/toxicidad , Pradera , Plantas , Biodiversidad
12.
Ecol Appl ; 33(4): e2843, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36922375

RESUMEN

The invasion of exotic plants in the river-lake ecotone has seriously affected the nutrient cycling processes in wetland soil. The South American species Alternanthera philoxeroides (Mart.) Griseb. is rapidly invading the river-lake ecotone in subtropical China, and has become the dominant species in the river-lake ecotone. However, there have been few studies on the effects of A. philoxeroides invasion on soil phosphorus (P) cycling and bioavailability in this ecotone. Here, we measured the bioavailable P fractions, physicochemical properties and nutrient content in the surface soils of the native plant (Zizania latifolia (Griseb.) Turcz and Nelumbo nucifera Gaertn.) communities and the adjacent invasive A. philoxeroides communities in three river-lake ecotones with different nutrient substrates in the subtropical Dongting Lake basin over a 3-year period to reveal the effects of A. philoxeroides invasion on the morphology and concentrations of soil bioavailable P. The principal coordinate analysis results showed that the A. philoxeroides invasion significantly altered the bioavailable P concentrations in the soil of native plant communities in the different river-lake ecotones, and this effect was not disturbed by the heterogeneity of the soil matrix. However, the effects of invasion into different native plant communities on the fractions of soil bioavailable P were different. Compared with native Z. latifolia and N. nucifera communities, A. philoxeroides invasion increased the concentration of inorganic P by 39.5% and 3.7%, respectively, and the concentration of organic P decreased by 32.7% and 31.9%, respectively. In addition, the invasion promoted P cycling and accumulation in the river-lake ecotone, which resulted in average decreases in the soil N:P and C:P ratios of 7.9% and 12.5%, respectively. These results highlight the impact of exotic plant invasions on nutrient cycling in wetland ecosystems in the river-lake ecotone, and this process may be detrimental to the late recovery of native plants.


Asunto(s)
Ecosistema , Fósforo , Suelo , Disponibilidad Biológica , Lagos , Ríos , Especies Introducidas , Plantas , China
13.
Microb Ecol ; 85(1): 209-220, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35034141

RESUMEN

Plant species play a crucial role in mediating the activity and community structure of soil microbiomes through differential inputs of litter and rhizosphere exudates, but we have a poor understanding of how plant species influence comammox Nitrospira, a newly discovered ammonia oxidizer with pivotal functionality. Here, we investigate the abundance, diversity, and community structure of comammox Nitrospira underneath five plant species and a bare tidal flat at three soil depths in a subtropical estuarine wetland. Plant species played a critical role in driving the distribution of individual clades of comammox Nitrospira, explaining 59.3% of the variation of community structure. Clade A.1 was widely detected in all samples, while clades A.2.1, A.2.2, A.3 and B showed plant species-dependent distribution patterns. Compared with the native species Cyperus malaccensis, the invasion of Spartina alterniflora increased the network complexity and changed the community structure of comammox Nitrospira, while the invasive effects from Kandelia obovata and Phragmites australis were relatively weak. Soil depths significantly influenced the community structure of comammox Nitrospira, but the effect was much weaker than that from plant species. Altogether, our results highlight the previously unrecognized critical role of plant species in driving the distribution of comammox Nitrospira in a subtropical estuarine wetland.


Asunto(s)
Nitrificación , Humedales , Oxidación-Reducción , Bacterias , Amoníaco , Suelo/química , Poaceae
14.
Microb Ecol ; 86(2): 1120-1131, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36372840

RESUMEN

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.


Asunto(s)
Micobioma , Humedales , Especies Introducidas , Plantas , Poaceae/fisiología , Suelo/química , Hongos/genética , Microbiología del Suelo , China
15.
Microb Ecol ; 86(3): 2192-2201, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37166500

RESUMEN

To understand the disease-mediated invasion of exotic plants and the potential risk of disease transmission in local ecosystems, it is necessary to characterize population genetic structure and spatio-temporal dynamics of fungal community associated with both invasive and co-occurring plants. In this study, multiple genes were used to characterize the genetic diversity of 165 strains of Colletotrichum gloeosporioides species complex (CGSC) isolated from healthy leaves and symptomatic leaves of invasive plant Ageratina adenophora, as well as symptomatic leaves of its neighbor plants from eleven geographic sites in China. The data showed that these CGSC strains had a high genetic diversity in each geographic site (all Hd > 0.67 and Pi > 0.01). Haplotype diversity and nucleotide diversity varied greatly in individual gene locus: gs had the highest haplotype diversity (Hd = 0.8972), gapdh had the highest nucleotide diversity (Pi = 0.0705), and ITS had the lowest nucleotide diversity (Pi = 0.0074). Haplotypes were not clustered by geographic site, invasive age, or isolation source. AMOVA revealed that the genetic variation was mainly from within-populations, regardless of geographic or isolation origin. Both AMOVA and neutrality tests indicated these CGSC strains occurred gene exchange among geographic populations but did not experience population expansion along with A. adenophora invasion progress. Our data indicated that A. adenophora primarily accumulated these CGSC fungi in the introduced range, suggesting a high frequency of CGSC transmission between A. adenophora and co-occurring neighbor plants. This study is valuable for understanding the disease-mediated plant invasion and the potential risk of disease transmission driven by exotic plants in local ecosystems.


Asunto(s)
Ageratina , Colletotrichum , Ageratina/genética , Ageratina/microbiología , Especies Introducidas , Ecosistema , Colletotrichum/genética
16.
J Chem Ecol ; 49(5-6): 276-286, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37121960

RESUMEN

Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant secondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native (UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, suggesting that other factors explain the success of Rumex spp. in New Zealand.


Asunto(s)
Rumex , Plantas , Taninos , Herbivoria , Hojas de la Planta , Especies Introducidas
17.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32034102

RESUMEN

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Asunto(s)
Flujo Génico , Variación Genética , Plantago/genética , Demografía , Especies Introducidas , Filogenia , Plantago/química
18.
Proc Natl Acad Sci U S A ; 117(41): 25618-25627, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989136

RESUMEN

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.


Asunto(s)
Adaptación Biológica/genética , Introgresión Genética/genética , Malezas/genética , Zea mays/genética , Adaptación Biológica/fisiología , Europa (Continente) , Evolución Molecular , Introgresión Genética/fisiología , Resistencia a los Herbicidas/genética , Resistencia a los Herbicidas/fisiología , Herbicidas/farmacología , Malezas/efectos de los fármacos , Malezas/fisiología , Zea mays/efectos de los fármacos , Zea mays/fisiología
19.
Ecotoxicol Environ Saf ; 259: 115029, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216867

RESUMEN

Nitrogen (N) deposition has increased dramatically in recent decades, which is significantly affecting the invasion and growth of exotic plants. Whether N deposition leads to invasive alien species becoming competitively superior to native species remains to be investigated. In the present study, an invasive species (Oenothera biennis L.) and three co-occurring native species (Artemisia argyi Lévl. et Vant., Inula japonica Thunb., and Chenopodium album L.) were grown in a monoculture (two seedlings of the same species) or mixed culture (one seedling of O. biennis and one seedling of a native species) under three levels of N deposition (0, 6, and 12 g∙m-2∙year-1). Nitrogen deposition had no effect on soil N and P content. Nitrogen deposition enhanced the crown area, total biomass, leaf chlorophyll content, and leaf N to phosphorus ratio in both invasive and native plants. Oenothera biennis dominated competition with C. album and I. japonica due to its high resource acquisition and absorption capacity (greater height, canopy, leaf chlorophyll a to chlorophyll b ratio, leaf chlorophyll content, leaf N content, leaf mass fraction, and lower root-to-shoot ratio). However, the native species A. argyi exhibited competitive ability similar to O. biennis. Thus, invasive species are not always superior competitors of native species; this depends on the identities of the native species. High N deposition enhanced the competitive dominance of O. biennis over I. japonica by 15.45% but did not alter the competitive dominance of O. biennis over C. album. Furthermore, N deposition did not affect the dominance of O. biennis or A. argyi. Therefore, the species composition of the native community must be considered when preparing to resist future biological invasions. Our study contributes to a better understanding of the invasion mechanisms of alien species under N-loading conditions.


Asunto(s)
Nitrógeno , Plantas , Clorofila A , Plantones , Clorofila , Especies Introducidas , Suelo
20.
Geoderma ; 4302023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37600960

RESUMEN

Invasive plants can modify the diversity and taxonomical structure of soil microbiomes. However, it is difficult to generalize the underlying factors as their influence often seems to depend on the complex plant-soil-microbial interactions. In this paper, we investigated how Quercus rubra impacts on the soil microbiome across two soil horizons in relation to native woodland. Five paired adjacent invaded vs native vegetation plots in a managed forest in southern Poland were investigated. Soil microbial communities were assessed along with soil enzyme activities and soil physicochemical parameters, separately for both organic and mineral horizons, as well as forest stand characteristics to explore plant-soil-microbe interactions. Although Q. rubra did not significantly affect pH, organic C, total N, available nutrients nor enzymatic activity, differences in soil abiotic properties (except C to N ratio) were primarily driven by soil depth for both vegetation types. Further, we found significant differences in soil microbiome under invasion in relation to native vegetation. Microbial richness and diversity were lower in both horizons of Q. rubra vs control plots. Moreover, Q. rubra increased relative abundance of unique amplicon sequence variants in both horizons and thereby significantly changed the structure of the core soil microbial communities, in comparison to the control plots. In addition, predicted microbial functional groups indicated a predominant soil depth effect in both vegetation plots with higher abundance of aerobic chemoheterotrophic bacteria and endophytic fungi in the organic horizon and greater abundance of methanotrophic and methylotrophic bacteria, and ectomycorrhizal fungi in the mineral horizon. Overall, our results indicate strong associations between Q. rubra invasion and changes in soil microbiome and associated functions, a finding that needs to be further investigated to predict modifications in ecosystem functioning caused by this invasive species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA