Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(1): 56-64, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581375

RESUMEN

Food security is threatened by climate change, with heat and drought being the main stresses affecting crop physiology and ecosystem services, such as plant-pollinator interactions. We hypothesize that tracking and ranking pollinators' preferences for flowers under environmental pressure could be used as a marker of plant quality for agricultural breeding to increase crop stress tolerance. Despite increasing relevance of flowers as the most stress sensitive organs, phenotyping platforms aim at identifying traits of resilience by assessing the plant physiological status through remote sensing-assisted vegetative indexes, but find strong bottlenecks in quantifying flower traits and in accurate genotype-to-phenotype prediction. However, as the transport of photoassimilates from leaves (sources) to flowers (sinks) is reduced in low-resilient plants, flowers are better indicators than leaves of plant well-being. Indeed, the chemical composition and amount of pollen and nectar that flowers produce, which ultimately serve as food resources for pollinators, change in response to environmental cues. Therefore, pollinators' preferences could be used as a measure of functional source-to-sink relationships for breeding decisions. To achieve this challenging goal, we propose to develop a pollinator-assisted phenotyping and selection platform for automated quantification of Genotype × Environment × Pollinator interactions through an insect geo-positioning system. Pollinator-assisted selection can be validated by metabolic, transcriptomic, and ionomic traits, and mapping of candidate genes, linking floral and leaf traits, pollinator preferences, plant resilience, and crop productivity. This radical new approach can change the current paradigm of plant phenotyping and find new paths for crop redomestication and breeding assisted by ecological decisions.


Asunto(s)
Productos Agrícolas , Flores , Fenotipo , Fitomejoramiento , Polinización , Estrés Fisiológico , Polinización/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Fitomejoramiento/métodos , Flores/fisiología , Flores/genética , Animales , Genotipo
2.
Plant J ; 118(4): 1071-1085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294345

RESUMEN

Hybrid breeding is a promising strategy to quickly improve wheat yield and stability. Due to the usefulness of the Rht 'Green Revolution' dwarfing alleles, it is important to gain a better understanding of their impact on traits related to hybrid development. Traits associated with cross-pollination efficiency were studied using Near Isogenic Lines carrying the different sets of alleles in Rht genes: Rht1 (semi-dwarf), Rht2 (semi-dwarf), Rht1 + 2 (dwarf), Rht3 (extreme dwarf), Rht2 + 3 (extreme dwarf), and rht (tall) during four growing seasons. Results showed that the extreme dwarfing alleles Rht2 + 3, Rht3, and Rht1 + 2 presented the greatest effects in all the traits analyzed. Plant height showed reductions up to 64% (Rht2 + 3) compared to rht. Decreases up to 20.2% in anther length and 33% in filament length (Rht2 + 3) were observed. Anthers extrusion decreased from 40% (rht) to 20% (Rht1 and Rht2), 11% (Rht3), 8.3% (Rht1 + 2), and 6.5% (Rht2 + 3). Positive correlations were detected between plant height and anther extrusion, anther, and anther filament lengths, suggesting the negative effect of dwarfing alleles. Moreover, the magnitude of these negative impacts depends on the combination of the alleles: Rht2 + 3 > Rht3/Rht1 + 2 > Rht2/Rht1 > rht (tall). Reductions were consistent across genotypes and environments with interactions due to magnitude effects. Our results indicate that Rht alleles are involved in multiple traits of interest for hybrid wheat production and the need to select alternative sources for reduced height/lodging resistance for hybrid breeding programs.


Asunto(s)
Alelos , Flores , Polinización , Triticum , Triticum/genética , Triticum/fisiología , Triticum/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento/métodos , Fenotipo , Genes de Plantas/genética
3.
Ecol Lett ; 27(3): e14412, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549269

RESUMEN

Agricultural intensification not only increases food production but also drives widespread biodiversity decline. Increasing landscape heterogeneity has been suggested to increase biodiversity across habitats, while increasing crop heterogeneity may support biodiversity within agroecosystems. These spatial heterogeneity effects can be partitioned into compositional (land-cover type diversity) and configurational heterogeneity (land-cover type arrangement), measured either for the crop mosaic or across the landscape for both crops and semi-natural habitats. However, studies have reported mixed responses of biodiversity to increases in these heterogeneity components across taxa and contexts. Our meta-analysis covering 6397 fields across 122 studies conducted in Asia, Europe, North and South America reveals consistently positive effects of crop and landscape heterogeneity, as well as compositional and configurational heterogeneity for plant, invertebrate, vertebrate, pollinator and predator biodiversity. Vertebrates and plants benefit more from landscape heterogeneity, while invertebrates derive similar benefits from both crop and landscape heterogeneity. Pollinators benefit more from configurational heterogeneity, but predators favour compositional heterogeneity. These positive effects are consistent for invertebrates and vertebrates in both tropical/subtropical and temperate agroecosystems, and in annual and perennial cropping systems, and at small to large spatial scales. Our results suggest that promoting increased landscape heterogeneity by diversifying crops and semi-natural habitats, as suggested in the current UN Decade on Ecosystem Restoration, is key for restoring biodiversity in agricultural landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Europa (Continente) , Productos Agrícolas , Agricultura/métodos
4.
Proc Biol Sci ; 291(2020): 20232941, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593850

RESUMEN

Invasive flowering plants can disrupt plant-pollinator networks. This is well documented where invasives occur amongst native plants; however, the potential for 'spillover' effects of invasives that form stands in adjacent habitats are less well understood. Here we quantify the impact of two invasive Australian species, Acacia saligna and Acacia longifolia, on the plant-pollinator networks in fynbos habitats in South Africa. We compared networks from replicate 1 ha plots of native vegetation (n = 21) that were subjected to three treatments: (1) at least 400 m from flowering Acacia; (2) adjacent to flowering Acacia, or (3) adjacent to flowering Acacia where all Acacia flowers were manually removed. We found that native flowers adjacent to stands of flowering Acacia received significantly more insect visits, especially from beetles and Apis mellifera capensis, and that visitation was more generalized. We also recorded visitation to, and the seed set of, three native flowering species and found that two received more insect visits, but produced fewer seeds, when adjacent to flowering Acacia. Our research shows that 'spillover' effects of invasive Acacia can lead to significant changes in visitation and seed production of native co-flowering species in neighbouring habitats-a factor to be considered when managing invaded landscapes.


Asunto(s)
Acacia , Polinización , Animales , Australia , Plantas , Semillas , Insectos , Flores , Especies Introducidas
5.
Proc Biol Sci ; 291(2024): 20232811, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864325

RESUMEN

Pesticides have been identified as major drivers of insect biodiversity loss. Thus, the study of their effects on non-pest insect species has attracted a lot of attention in recent decades. In general toxicology, the 'gold standard' to assess the toxicity of a substance is to measure mass-specific LD50 (i.e. median lethal dose per unit body mass). In entomology, reviews attempting to compare these data across all available studies are lacking. To fill this gap in knowledge, we performed a systematic review of the lethality of imidacloprid for adult insects. Imidacloprid is possibly the most extensively studied insecticide in recent times, yet we found that little is comparable across studies, owing to both methodological divergence and missing estimates of body mass. By accounting for body mass whenever possible, we show how imidacloprid sensitivity spans across an apparent range of approximately six orders of magnitude across insect species. Very high variability within species can also be observed owing to differences in exposure methods and observation time. We suggest that a more comparable and comprehensive approach has both biological and economic relevance. Ultimately, this would help to identify differences that could direct research towards preventing non-target species from being negatively affected.


Asunto(s)
Imidazoles , Insectos , Insecticidas , Neonicotinoides , Nitrocompuestos , Especificidad de la Especie , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Animales , Insecticidas/toxicidad , Insectos/efectos de los fármacos , Imidazoles/toxicidad , Dosificación Letal Mediana
6.
Proc Biol Sci ; 291(2018): 20232298, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471551

RESUMEN

Plants produce an array of chemical and mechanical defences that provide protection against many herbivores and pathogens. Putatively defensive compounds and structures can even occur in floral rewards: for example, the pollen of some plant taxa contains toxic compounds or possesses conspicuous spines. Yet little is known about whether pollen defences restrict host-plant use by bees. In other words, do bees, like other insect herbivores, tolerate the defences of their specific host plants while being harmed by non-host defences? To answer this question, we compared the effects of a chemical defence from Lupinus (Fabaceae) pollen and a putative mechanical defence (pollen spines) from Asteraceae pollen on larval survival of nine bee species in the tribe Osmiini (Megachilidae) varying in their pollen-host use. We found that both types of pollen defences reduce larval survival rate in some bee species. These detrimental effects were, however, mediated by host-plant associations, with bees being more tolerant of the pollen defences of their hosts, relative to the defences of plant taxa exploited by other species. This pattern strongly suggests that bees are adapted to the pollen defences of their hosts, and that host-plant use by bees is constrained by their ability to tolerate such defences.


Asunto(s)
Flores , Plantas , Abejas , Animales , Flores/química , Polen/química , Insectos , Larva , Polinización
7.
Proc Biol Sci ; 291(2025): 20240714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889783

RESUMEN

Extreme heat poses a major threat to plants and pollinators, yet the indirect consequences of heat stress are not well understood, particularly for native solitary bees. To determine how brief exposure of extreme heat to flowering plants affects bee behaviour, fecundity, development and survival we conducted a no-choice field cage experiment in which Osmia lignaria were provided blueberry (Vaccinium corymbosum), phacelia (Phacelia tanacetifolia) and white clover (Trifolium repens) that had been previously exposed to either extreme heat (37.5°C) or normal temperatures (25°C) for 4 h during early bloom. Despite a similar number of open flowers and floral visitation frequency between the two treatments, female bees provided with heat-stressed plants laid approximately 70% fewer eggs than females provided with non-stressed plants. Their progeny received similar quantities of pollen provisions between the two treatments, yet larvae consuming pollen from heat-stressed plants had significantly lower survival as larvae and adults. We also observed trends for delayed emergence and reduced adult longevity when larvae consumed heat-stressed pollen. This study is the first to document how short, field-realistic bursts of extreme heat exposure to flowering host plants can indirectly affect bee pollinators and their offspring, with important implications for crop pollination and native bee populations.


Asunto(s)
Fertilidad , Polinización , Animales , Abejas/fisiología , Femenino , Calor Extremo/efectos adversos , Calor , Longevidad , Polen
8.
New Phytol ; 243(4): 1571-1585, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922897

RESUMEN

Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.


Asunto(s)
Brassica rapa , Mariposas Diurnas , Flores , Aptitud Genética , Calor , Polinización , Polinización/fisiología , Animales , Flores/fisiología , Abejas/fisiología , Brassica rapa/fisiología , Mariposas Diurnas/fisiología , Herbivoria/fisiología , Semillas/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Fenotipo , Oviposición/fisiología , Temperatura , Carácter Cuantitativo Heredable
9.
Glob Chang Biol ; 30(5): e17319, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38804095

RESUMEN

Current ecological communities are in a constant state of flux from climate change and from species introductions. Recent discussion has focused on the positive roles introduced species can play in ecological communities and on the importance of conserving resilient ecosystems, but not how these two ideas intersect. There has been insufficient work to define the attributes needed to support ecosystem resilience to climate change in modern communities. Here, I argue that non-invasive, introduced plant species could play an important role in supporting the resilience of terrestrial ecosystems to climate change. Using examples from multiple taxonomic groups and ecosystems, I discuss how introduced plants can contribute to ecosystem resilience via their roles in plant and insect communities, as well as their associated ecosystem functions. I highlight the current and potential contributions of introduced plants and where there are critical knowledge gaps. Determining when and how introduced plants are contributing to the resilience of ecosystems to climate change will contribute to effective conservation strategies.


Asunto(s)
Cambio Climático , Ecosistema , Especies Introducidas , Plantas , Animales , Conservación de los Recursos Naturales , Insectos/fisiología , Fenómenos Fisiológicos de las Plantas
10.
Glob Chang Biol ; 30(1): e17060, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273538

RESUMEN

Compared to non-urban environments, cities host ecological communities with altered taxonomic diversity and functional trait composition. However, we know little about how these urban changes take shape over time. Using historical bee (Apoidea: Anthophila) museum specimens supplemented with online repositories and researcher collections, we investigated whether bee species richness tracked urban and human population growth over the past 118 years. We also determined which species were no longer collected, whether those species shared certain traits, and if collector behavior changed over time. We focused on Wake County, North Carolina, United States where human population size has increased over 16 times over the last century along with the urban area within its largest city, Raleigh, which has increased over four times. We estimated bee species richness with occupancy models, and rarefaction and extrapolation curves to account for imperfect detection and sample coverage. To determine if bee traits correlated with when species were collected, we compiled information on native status, nesting habits, diet breadth, and sociality. We used non-metric multidimensional scaling to determine if individual collectors contributed different bee assemblages over time. In total, there were 328 species collected in Wake County. We found that although bee species richness varied, there was no clear trend in bee species richness over time. However, recent collections (since 2003) were missing 195 species, and there was a shift in trait composition, particularly lost species were below-ground nesters. The top collectors in the dataset differed in how often they collected bee species, but this was not consistent between historic and contemporary time periods; some contemporary collectors grouped closer together than others, potentially due to focusing on urban habitats. Use of historical collections and complimentary analyses can fill knowledge gaps to help understand temporal patterns of species richness in taxonomic groups that may not have planned long-term data.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Abejas , Estados Unidos , Humanos , Ciudades , North Carolina , Densidad de Población
11.
Bioscience ; 74(1): 54-64, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38313561

RESUMEN

Pollinators, which provide vital services to wild ecosystems and agricultural crops, are facing global declines and habitat loss. As undeveloped land becomes increasingly scarce, much focus has been directed recently to roadsides as potential target zones for providing floral resources to pollinators. Roadsides, however, are risky places for pollinators, with threats from vehicle collisions, toxic pollutants, mowing, herbicides, and more. Although these threats have been investigated, most studies have yet to quantify the costs and benefits of roadsides to pollinators and, therefore, do not address whether the costs outweigh the benefits for pollinator populations using roadside habitats. In this article, we address how, when, and under what conditions roadside habitats may benefit or harm pollinators, reviewing existing knowledge and recommending practical questions that managers and policymakers should consider when planning pollinator-focused roadside management.

12.
J Evol Biol ; 37(8): 935-946, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38902913

RESUMEN

Pollinators are thought to be the main drivers of floral evolution. Flowers are also colonized by abundant communities of microbes that can affect the interaction between plants and their pollinators. Very little is known, however, about how flower-colonizing microbes influence floral evolution. Here we performed a 6-generation experimental evolution study using fast-cycling Brassica rapa, in which we factorially manipulated the presence of pollinators and flower microbes to determine how pollinators and microbes interact in driving floral evolution. We measured the evolution of 6 morphological traits, as well as the plant mating system and flower attractiveness. Only one of the 6 traits (flower number) evolved in response to pollinators, while microbes did not drive the evolution of any trait, nor did they interact with pollinators in driving the evolution of morphological traits. Moreover, we did not find evidence that pollinators or microbes affected the evolution of flower attractiveness to pollinators. However, we found an interactive effect of pollinators and microbes on the evolution of autonomous selfing, a trait that is expected to evolve in response to pollinator limitations. Overall, we found only weak evidence that microbes mediate floral evolution. However, our ability to detect an interactive effect of pollinators and microbes might have been limited by weak pollinator-mediated selection in our experimental setting. Our results contrast with previous (similar) experimental evolution studies, highlighting the susceptibility of such experiments to drift and to experimental artefacts.


Asunto(s)
Evolución Biológica , Flores , Polinización , Flores/microbiología , Animales , Brassica rapa/microbiología
13.
Ann Bot ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722218

RESUMEN

BACKGROUND AND AIMS: The majority of the earth's land area is currently occupied by humans. Measuring how terrestrial plants reproduce in these pervasive environments is essential for understanding their long-term viability and their ability to adapt to changing environments. METHODS: We conducted hierarchical and phylogenetically-independent meta-analyses to assess the overall effects of anthropogenic land-use changes on pollination, and male and female fitness in terrestrial plants. KEY RESULTS: We found negative global effects of land use change (i.e., mainly habitat loss and fragmentation) on pollination and on female and male fitness of terrestrial flowering plants. Negative effects were stronger in plants with self-incompatibility (SI) systems and pollinated by invertebrates, regardless of life form and sexual expression. Pollination and female fitness of pollination generalist and specialist plants were similarly negatively affected by land-use change, whereas male fitness of specialist plants showed no effects. CONCLUSIONS: Our findings indicate that angiosperm populations remaining in fragmented habitats negatively affect pollination, and female and male fitness, which will likely decrease the recruitment, survival, and long-term viability of plant populations remaining in fragmented landscapes. We underline the main current gaps of knowledge for future research agendas and call out not only for a decrease in the current rates of land-use changes across the world but also to embark on active restoration efforts to increase the area and connectivity of remaining natural habitats.

14.
Environ Sci Technol ; 58(1): 54-62, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38127782

RESUMEN

The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.


Asunto(s)
Plaguicidas , Probióticos , Abejas , Animales , Agricultura/métodos , Polinización , Fitoquímicos , Proteínas Recombinantes
15.
Oecologia ; 205(1): 149-162, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796612

RESUMEN

Patterns of abundance across space and time, and intraspecific variation in body size, are two species attributes known to influence diet breadth and the structure of interaction networks. Yet, the relative influence of these attributes on diet breadth is often assumed to be equal among taxonomic groups, and the relationship between intraspecific variation in body size on interaction patterns is frequently neglected. We observed bee-flower interactions in multiple locations across Montana, USA, for two growing seasons and measured spatial and temporal patterns of abundance, along with interspecific and intraspecific variation in body size for prevalent species. We predicted that the association between spatial and temporal patterns of abundance and intraspecific variation in body size, and diet breadth, would be stronger for bumble bee compared to non-bumble bee species, because species with flexible diets and long activity periods can interact with more food items. Bumble bees had higher local abundance, occurred in many local communities, more intraspecific variation in body size, and longer phenophases compared to non-bumble bee species, but only local abundance and phenophase duration had a stronger positive association with the diet breadth of bumble bee compared to non-bumble bee species. Communities with a higher proportion of bumble bees also had higher intraspecific variation in body size at the network-level, and network-level intraspecific variation in body size was positively correlated with diet generalization. Our findings highlight that the association between species attributes and diet breadth changes depending on the taxonomic group, with implications for the structure of interaction networks.


Asunto(s)
Tamaño Corporal , Dieta , Animales , Abejas , Montana , Flores
16.
Oecologia ; 204(4): 751-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38523192

RESUMEN

Shifts in flowering time among plant communities as a result of climate change, including extreme weather events, are a growing concern. These plant phenological changes may affect the quantity and quality of food sources for specialized insect pollinators. Plant-pollinator interactions are threatened by habitat alterations and biodiversity loss, and changes in these interactions may lead to declines in flower visitors and pollination services. Most prior research has focused on short-term plant-pollinator interactions, which do not accurately capture changes in pollination services. Here, we characterized long-term plant-pollinator interactions and identified potential risks to specialized butterfly species due to habitat loss, fragmented landscapes, and changes in plant assemblages. We used 21 years of historical data from museum specimens to track the potential effects of direct and indirect changes in precipitation, temperature, monsoons, and wildfires on plant-pollinator mutualism in the Great Basin and Sierra Nevada. We found decreased pollen richness associated with butterflies within sites, as well as an increase in pollen grain abundance of drought-tolerant plants, particularly in the past 10 years. Moreover, increased global temperatures and the intensity and frequency of precipitation and wildfires were negatively correlated with pollen diversity. Our findings have important implications for understanding plant-pollinator interactions and the pollination services affected by global warming.


Asunto(s)
Cambio Climático , Polen , Polinización , Animales , Lepidópteros/fisiología , Mariposas Diurnas/fisiología , Ecosistema , Biodiversidad
17.
Ecotoxicology ; 33(6): 546-559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38649545

RESUMEN

Wild bees are crucial pollinators of flowering plants and concerns are rising about their decline associated with pesticide use. Interspecific variation in wild bee response to pesticide exposure is expected to be related to variation in their morphology, physiology, and ecology, though there are still important knowledge gaps in its understanding. Pesticide risk assessments have largely focussed on the Western honey bee sensitivity considering it protective enough for wild bees. Recently, guidelines for Bombus terrestris and Osmia bicornis testing have been developed but are not yet implemented at a global scale in pesticide risk assessments. Here, we developed and tested a new simplified method of pesticide exposure on wild bee species collected from the field in Belgium. Enough specimens of nine species survived in a laboratory setting and were exposed to oral and topical acute doses of a sulfoximine insecticide. Our results confirm significant variability among wild bee species. We show that Osmia cornuta is more sensitive to sulfoxaflor than B. terrestris, whereas Bombus hypnorum is less sensitive. We propose hypotheses on the mechanisms explaining interspecific variations in sensitivity to pesticides. Future pesticide risk assessments of wild bees will require further refinement of protocols for their controlled housing and exposure.


Asunto(s)
Insecticidas , Piridinas , Compuestos de Azufre , Animales , Abejas/efectos de los fármacos , Abejas/fisiología , Insecticidas/toxicidad , Piridinas/toxicidad , Compuestos de Azufre/toxicidad , Especificidad de la Especie , Bélgica , Medición de Riesgo
18.
J Environ Manage ; 352: 120031, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232587

RESUMEN

Bees are primary pollinators across various terrestrial biomes and rely heavily on floral resources for sustenance. The composition of landscapes can influence bee foraging behavior, while human activities can directly affect both the composition and nutritional value of bee food. We aimed to assess how landscape structure and land use practices can impact the composition and nutritional value of food sources for two generalist social bee species, Apis mellifera and Scaptotrigona postica. Food samples were collected from twenty-five colonies of A. mellifera and thirteen of S. postica to examine how food composition and nutritional value may vary based on the extent of human land use and the composition of landscapes surrounding beekeeping sites. The pollen composition and nutritional value of A. mellifera were influenced by both land use practices and landscape heterogeneity. The number of patches determined total sugar and lipid content. Landscape heterogeneity affected pollen composition in S. postica, primarily due to the number of patches, while total sugar was affected by landscape diversity. Pollen nutritional value in S. postica was linked to land use, mainly meadow and vegetation, which influenced total sugar and dry matter. S. postica showed a higher sensitivity to land use changes compared to A. mellifera, which was more affected by landscape heterogeneity. Assuring landscape heterogeneity by preserving remaining forest patches around apiaries and meliponaries is crucial. Thoughtful land use planning is essential to support beekeeping activities and ensure an adequate quantity and quality of bee food resources.


Asunto(s)
Ecosistema , Polen , Humanos , Abejas , Animales , Polen/química , Alimentos , Bosques , Azúcares/análisis
19.
Ecol Lett ; 26(1): 37-52, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36414536

RESUMEN

Soils contain biotic and abiotic legacies of previous conditions that may influence plant community biomass and associated aboveground biodiversity. However, little is known about the relative strengths and interactions of the various belowground legacies on aboveground plant-insect interactions. We used an outdoor mesocosm experiment to investigate the belowground legacy effects of range-expanding versus native plants, extreme drought and their interactions on plants, aphids and pollinators. We show that plant biomass was influenced more strongly by the previous plant community than by the previous summer drought. Plant communities consisted of four congeneric pairs of natives and range expanders, and their responses were not unanimous. Legacy effects affected the abundance of aphids more strongly than pollinators. We conclude that legacies can be contained as soil 'memories' that influence aboveground plant community interactions in the next growing season. These soil-borne 'memories' can be altered by climate warming-induced plant range shifts and extreme drought.


Asunto(s)
Áfidos , Suelo , Animales , Sequías , Insectos , Biomasa , Plantas , Ecosistema
20.
Annu Rev Pharmacol Toxicol ; 60: 241-255, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31914891

RESUMEN

Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees. The findings are relevant to the management of both neonicotinoids and the new generation of pesticides targeting insect nicotinic acetylcholine receptors.


Asunto(s)
Control de Insectos/métodos , Insecticidas/farmacología , Neonicotinoides/farmacología , Animales , Abejas , Humanos , Resistencia a los Insecticidas , Insecticidas/toxicidad , Terapia Molecular Dirigida , Neonicotinoides/toxicidad , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA