Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(29): e2311527, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38334257

RESUMEN

Stretchable organic transistors for skin-like biomedical applications require low-voltage operation to accommodate limited power supply and safe concerns. However, most of the currently reported stretchable organic transistors operate at relatively high voltages. Decreasing their operational voltage while keeping the high mobility still remains a key challenge. Here, the study presents a new dielectric design to achieve high-dielectric constant poly(urea-urethane) (PUU) elastomer, by incorporating a flexible small-molecular diamine crosslinking agent 4-aminophenyl disulfide (APDS) into the main chain of (poly (propylene glycol), tolylene 2,4-diiso-cyanate terminated) (PPG-TDI). Compared with commercial elastomers, the PUU elastomer as dielectric of the stretchable organic transistors shows the outstanding advantages including lower surface roughness (0.33 nm), higher adhesion (45.18 nN), higher dielectric constant (13.5), as well as higher stretchability (896%). The PUU dielectric enables the intrinsically stretchable, all-solution-processed organic transistor to operate at a low operational voltage down to -10 V, while preserving a substantial mobility of 1.39 cm2 V-1 s-1. Impressively, the transistor also demonstrates excellent electrical stability under repeated switching of 10 000 cycles, and remarkable mechanical robustness when stretched up to 100%. The work opens up a new molecular engineering strategy to successfully realize low-voltage high-mobility stretchable all-solution-processed organic transistors.

2.
Adv Mater ; 34(45): e2205763, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36103729

RESUMEN

To address the challenge of realizing multifunctional polymers simultaneously exhibiting high strength and high toughness through molecular engineering, ultrastrong and supertough shape-memory poly(urea-urethane) (PUU) is fabricated by regulating: i) the reversible cross-links composed of rigid units and multiple hydrogen bonds, and ii) the molecular weight of soft segments. The optimal material exhibits an unparalleled strength of 84.2 MPa at a large elongation at a break of 925.6%, a superior toughness of 322.8 MJ m-3 , and remarkable fatigue resistance without fracture. The repeated stretching of this material induces an irreversible deformation, which, however, can be rapidly recovered by heating. Moreover, all samples are capable of temporary shape fixation at -40 °C (recovering the original shape at 30 °C) and exhibit blue fluorescence when excited at the optimum wavelength, which is ascribed to clusterization-triggered emission (CTE) due to the formation of microphase-separation structures. Thus, the adopted approach provides a solution to a long-standing problem and paves the way to the realization of intrinsically luminescent shape-memory materials exhibiting both ultrahigh strength and ultrahigh toughness.

3.
Polymers (Basel) ; 10(10)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30960981

RESUMEN

Feathers are made of keratin, a fibrous protein with high content of disulfide-crosslinks and hydrogen-bonds. Feathers have been mainly used as reinforcing fiber in the preparation of biocomposites with a wide variety of polymers, also poly(urea-urethane)s. Surface compatibility between the keratin fiber and the matrix is crucial for having homogenous, high quality composites with superior mechanical properties. Poly(urea-urethane) type polymers are convenient for this purpose due to the presence of polar functionalities capable of forming hydrogen-bonds with keratin. Here, we demonstrate that the interfacial compatibility can be further enhanced by incorporating sulfur moieties in the polymer backbone that lead to new fiber-matrix interactions. We comparatively studied two analogous thermoplastic poly(urea-urethane) elastomers prepared starting from the same isocyanate-functionalized polyurethane prepolymer and two aromatic diamine chain extenders, bis(4-aminophenyl) disulfide (TPUU-SS) and the sulfur-free counterpart bis(4-aminophenyl) methane (TPUU). Then, biocomposites with high feather loadings (40, 50, 60 and 75 wt %) were prepared in a torque rheometer and hot-compressed into flexible sheets. Mechanical characterization showed that TPUU-SS based materials underwent higher improvement in mechanical properties than biocomposites made of the reference TPUU (up to 7.5-fold higher tensile strength compared to neat polymer versus 2.3-fold). Field Emission Scanning Electron Microscope (FESEM) images also provided evidence that fibers were completely embedded in the TPUU-SS matrix. Additionally, density, thermal stability, and water absorption of the biocomposites were thoroughly characterized.

4.
Appl Biochem Biotechnol ; 180(3): 558-575, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27184256

RESUMEN

Poly(urea-urethane) (PUU) nanoparticles with encapsulated superparamagnetic magnetite (Fe3O4) were obtained by interfacial miniemulsion polymerization and used as support for immobilization of lipase B from Candida antarctica (CALB). CALB enzyme was immobilized on magnetic PUU nanoparticles in two steps. The enzyme was immobilized in the lyophilized nanoparticles (magnetic PUU) after the support synthesis in phosphate buffer (pH 7.6) containing CALB, by the contact between nanoparticles and enzymatic solution. The mixture was incubated at 30 °C in an orbital shaker during 0.5 until 6 h to determine the time for maximum immobilization efficiency. The enzyme activity was determined by esterification reactions between lauric acid and propanol. Residual activities above 95 % in relation to free enzyme were obtained in 1 h of immobilization with enzyme concentration of 0.55 mg/mL. FTIR spectrum and SEM-FEG images were used to confirm the presence of CALB on magnetic support after immobilization and stability of support even after immobilization process, respectively. Thermal (40, 60, and 80 °C) and pH (pH 4, 7, and 10) stabilities, storage stability, and reuse were evaluated. CALB immobilized derivatives showed high stabilities with residual activities of 95, 100, and 100 % at 40, 60, and 80 °C, respectively, in 6 h of incubation. After incubation in different pH values, CALB immobilized derivative presented activities of 81, 76, and 69 % in relation to activities in the beginning of the stabilization process in pH 4, 7, and 10, respectively. Furthermore, CALB immobilized derivative reduces only 15 % of its activity after 30 days of storage at 4 °C. Reuse results showed that immobilized CALB on magnetic PUU nanoparticles led to 95 % of geranyl oleate conversion after 8 cycles of application demonstrating high stability of the CALB immobilized derivative under different conditions.


Asunto(s)
Candida/enzimología , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Nanopartículas de Magnetita/química , Poliuretanos/farmacología , Urea/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Ésteres/metabolismo , Concentración de Iones de Hidrógeno , Nanopartículas de Magnetita/ultraestructura , Microscopía Fluorescente , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
5.
Adv Mater ; 28(35): 7646-51, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27374855

RESUMEN

Poly(urea-urethane) thermosets containing the 1-tert-butylethylurea (TBEU) structure feature a reversible dissociation/association process of their covalent linkages under mild conditions. Unlike conventional thermosets, TBEU-based poly(urea-urethane) thermosets maintain their malleability after curing. Under high temperature (100 °C) and applied pressure (300 kPa), ground TBEU thermoset powder can be remolded to bulk after 20 min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA